1
|
Ndiaye T, Sy M, Gaye A, Ndiaye D. Genetic polymorphism of Merozoite Surface Protein 1 (msp1) and 2 (msp2) genes and multiplicity of Plasmodium falciparum infection across various endemic areas in Senegal. Afr Health Sci 2019; 19:2446-2456. [PMID: 32127816 PMCID: PMC7040301 DOI: 10.4314/ahs.v19i3.19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Despite a significant decline in Senegal, malaria remains a burden in various parts of the country. Assessment of multiplicity of Plasmodium falciparum infection and genetic diversity of parasites population could help in monitoring of malaria control. OBJECTIVE To assess genetic diversity and multiplicity of infection in P. falciparum isolates from three areas in Senegal with different malaria transmissions. METHODS 136 blood samples were collected from patients with uncomplicated P. falciparum malaria in Pikine, Kedougou and Thies. Polymorphic loci of msp1 and 2 (Merozoite surface protein-1 and 2) genes were amplified by nested PCR. RESULTS For msp1gene, K1 allelic family was predominant with frequency of 71%. Concerning msp2 gene, IC3D7 allelic family was the most represented with frequency of 83%. Multiclonal isolates found were 36% and 31% for msp1et msp2 genes respectively. The MOI found in all areas was 2.56 and was statistically different between areas (P=0.024). Low to intermediate genetic diversity were found with heterozygosity range (He=0,394-0,637) and low genetic differentiation (Fst msp1= 0.011; Fst msp2=0.017) were observed between P. falciparum population within the country. CONCLUSION Low to moderate genetic diversity of P.falciparum strains and MOI disparities were found in Senegal.
Collapse
Affiliation(s)
- Tolla Ndiaye
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | - Mouhamad Sy
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | - Amy Gaye
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | - Daouda Ndiaye
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
2
|
Child MA, Epp C, Bujard H, Blackman MJ. Regulated maturation of malaria merozoite surface protein-1 is essential for parasite growth. Mol Microbiol 2010; 78:187-202. [PMID: 20735778 PMCID: PMC2995310 DOI: 10.1111/j.1365-2958.2010.07324.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The malaria parasite Plasmodium falciparum invades erythrocytes where it replicates to produce invasive merozoites, which eventually egress to repeat the cycle. Merozoite surface protein-1 (MSP1), a prime malaria vaccine candidate and one of the most abundant components of the merozoite surface, is implicated in the ligand-receptor interactions leading to invasion. MSP1 is extensively proteolytically modified, first just before egress and then during invasion. These primary and secondary processing events are mediated respectively, by two parasite subtilisin-like proteases, PfSUB1 and PfSUB2, but the function and biological importance of the processing is unknown. Here, we examine the regulation and significance of MSP1 processing. We show that primary processing is ordered, with the primary processing site closest to the C-terminal end of MSP1 being cleaved last, irrespective of polymorphisms throughout the rest of the molecule. Replacement of the secondary processing site, normally refractory to PfSUB1, with a PfSUB1-sensitive site, is deleterious to parasite growth. Our findings show that correct spatiotemporal regulation of MSP1 maturation is crucial for the function of the protein and for maintenance of the parasite asexual blood-stage life cycle.
Collapse
Affiliation(s)
- Matthew A Child
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | | | | | |
Collapse
|
3
|
Hui GS, Nikaido C, Hashiro C, Kaslow DC, Collins WE. Dominance of conserved B-cell epitopes of the Plasmodium falciparum merozoite surface protein, MSP1, in blood-stage infections of naive Aotus monkeys. Infect Immun 1996; 64:1502-9. [PMID: 8613353 PMCID: PMC173954 DOI: 10.1128/iai.64.5.1502-1509.1996] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have shown that conserved B epitopes were immunodominant in animals hyperimmunized with parasite-purified or recombinant merozoite surface protein MSP1 of Plasmodium falciparum. Cross-priming studies also suggested that a conserved T-helper epitope(s) is efficient in inducing the anti-MSP1 antibody response. In this study, we determined whether a similar profile of immune responses was induced during live P. falciparum infections. Naive Aotus monkeys were infected by blood-stage challenge with either one of the two dimorphic MSP1 alleles represented by the FUP and FVO parasites. Sera collected after parasite clearance were analyzed by enzyme-linked immunosorbent assays (ELISAs). Monkeys infected with parasites carrying one allelic form of MSP1 had antibodies that were equally reactive with homologous or heterologous MSP1s. This preferential recognition of conserved epitopes of MSP1 was confirmed by competitive binding ELISAs. Studies with Plasmodium yoelii and P. falciparum show that the C-terminal 19-kDa fragment of MSP1, MSP1(19), is the target of protective immunity. Thus, monkey sera were assayed for recognition with recombinant MSP1(19)s expressing variant and conserved B epitopes. Results of direct and competitive binding ELISAs showed that the anti-MSP1(19) antibodies were also directed primarily against conserved determinants. The similarities between vaccine- or infection-induced antibody responses suggest a possible reciprocal enhancement of the two populations of anti-MSP1 antibodies when a subunit MSP1 vaccine is introduced into populations living in areas where malaria is endemic. This together with previous observations that conserved determinants are important in MSP1-mediated immunity provides an optimistic outlook that a subunit MSP1 vaccine may be effective and practical for field applications in malaria-exposed populations.
Collapse
Affiliation(s)
- G S Hui
- Department of Tropical Medicine, University of Hawaii, Honolulu, Hawaii 96816, USA.
| | | | | | | | | |
Collapse
|
4
|
Tolle R, Früh K, Doumbo O, Koita O, N'Diaye M, Fischer A, Dietz K, Bujard H. A prospective study of the association between the human humoral immune response to Plasmodium falciparum blood stage antigen gp190 and control of malarial infections. Infect Immun 1993; 61:40-7. [PMID: 8418064 PMCID: PMC302685 DOI: 10.1128/iai.61.1.40-47.1993] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The human humoral immune response to the Plasmodium falciparum merozoite surface antigen gp190 was analyzed to determine the rate of reinfection by the parasite and the ability to control parasite density. The prospective study was carried out in a West African village where malaria is hyperendemic. No correlation between the antibody titers and protection against infection was observed within the group of children. Positive and negative associations of antibody specificities with protection against and/or control of parasitemia were, however, found for adolescents and adults, respectively. Thus, in adolescents, the presence of antibodies to gp190 fragment M6 correlates with a 50% reduced risk of P. falciparum infection and an increased ability to control parasitemia, whereas in adults, the humoral response to some of the polymorphic regions of gp190 associates with an increased risk of infection.
Collapse
Affiliation(s)
- R Tolle
- Zentrum für Molekulare Biologie, INF 282, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Hui GS, Hashimoto A, Chang SP. Roles of conserved and allelic regions of the major merozoite surface protein (gp195) in immunity against Plasmodium falciparum. Infect Immun 1992; 60:1422-33. [PMID: 1548068 PMCID: PMC257014 DOI: 10.1128/iai.60.4.1422-1433.1992] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Plasmodium falciparum major merozoite surface protein gp195 is a candidate antigen for a vaccine against human malaria. The significance of allelism and polymorphism in vaccine-induced immunity to gp195 was investigated in this study. Rabbits were immunized with each of two allelic forms of gp195 that were affinity purified from the FUP and FVO parasite isolates. gp195-specific antibodies raised against one allelic form of gp195 cross-reacted extensively with the gp195 of the heterologous allele in enzyme-linked immunosorbent assays (ELISAs) and immunofluorescence assays. Competitive binding ELISAs with homologous and heterologous gp195s confirmed that a majority of the anti-gp195 antibodies produced against either allelic protein were cross-reactive. Moreover, the biological activities of the gp195 antibody responses were also highly cross-reactive, since anti-gp195 sera inhibited the in vitro growth of the homologous and heterologous parasites with equal efficiency. The degree of cross-reactivity with strain-specific and allele-specific determinants of gp195 in the ELISA was low. These results suggest that the immunological cross-reactivity between the two gp195 proteins is due to recognition of conserved determinants. They also suggest that a gp195-based vaccine may be effective against blood-stage infection with a diverse array of parasite isolates.
Collapse
Affiliation(s)
- G S Hui
- Department of Tropical Medicine, School of Medicine, University of Hawaii, Honolulu 96816
| | | | | |
Collapse
|
6
|
Früh K, Doumbo O, Müller HM, Koita O, McBride J, Crisanti A, Touré Y, Bujard H. Human antibody response to the major merozoite surface antigen of Plasmodium falciparum is strain specific and short-lived. Infect Immun 1991; 59:1319-24. [PMID: 2004813 PMCID: PMC257845 DOI: 10.1128/iai.59.4.1319-1324.1991] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The precursor of the major merozoite antigen of Plasmodium falciparum, gp190, is considered a candidate for inclusion in a malaria vaccine. This protein, which consists of conserved, dimorphic, and polymorphic sequences, is very immunogenic in humans. In a longitudinal study carried out with 94 inhabitants of a rural community in Mali, West Africa, we show that in this endemic area naturally acquired gp190-specific antibodies are predominantly directed against the dimorphic parts of one of the main alleles of gp190. The presence of antibodies against these dimorphic regions correlates with the prevalence of the corresponding antigen in the infecting parasite population. Moreover, qualitative as well as quantitative differences were found in the time course of the humoral immune response to the dimorphic regions in adults and children, who differ in their susceptibility to malaria infection.
Collapse
Affiliation(s)
- K Früh
- Zentrum für Molekulare Biologie, Heidelberg, Federal Republic of Germany
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Structural and antigenic polymorphism of the 35- to 48-kilodalton merozoite surface antigen (MSA-2) of the malaria parasite Plasmodium falciparum. Mol Cell Biol 1991. [PMID: 1990294 DOI: 10.1128/mcb.11.2.963] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Merozoite surface antigen MSA-2 of the human parasite Plasmodium falciparum is being considered for the development of a malaria vaccine. The antigen is polymorphic, and specific monoclonal antibodies differentiate five serological variants of MSA-2 among 25 parasite isolates. The variants are grouped into two major serogroups, A and B. Genes encoding two different variants from serogroup A have been sequenced, and their DNA together with deduced amino acid sequences were compared with sequences encoded by other alleles. The comparison shows that the serological classification reflects differences in DNA sequences and deduced primary structure of MSA-2 variants and serogroups. Thus, the overall homologies of DNA and amino acid sequences are over 95% among variants in the same serogroup. In contrast, similarities between the group A variants and a group B variant are only 70 and 64% for DNA and amino acid sequences, respectively. We propose that the MSA-2 protein is encoded by two highly divergent groups of alleles, with limited additional polymorphism displayed within each group.
Collapse
|
8
|
Structural diversity in the Plasmodium falciparum merozoite surface antigen 2. Proc Natl Acad Sci U S A 1991; 88:1751-5. [PMID: 2000383 PMCID: PMC51102 DOI: 10.1073/pnas.88.5.1751] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Antigens associated with the surface of merozoites of the malaria parasite Plasmodium falciparum are directly accessible to immune attack and therefore are prime vaccine candidates. We have previously shown that one of the two known merozoite surface antigens (merozoite surface antigen 2; MSA-2) exhibits considerable sequence and antigenic diversity in different isolates. The sequences of MSA-2 from three isolates revealed a central domain composed of repeats that vary in number, length, and sequence, flanked in turn by nonrepetitive variable sequences and by conserved N- and C-terminal domains. We report here the sequences of a further four MSA-2 alleles, containing repetitive sequences that are related but not identical to each other. The seven alleles of MSA-2 can be divided into two distinct allele families on the basis of nonrepetitive sequences. Hybridization studies with repeat probes indicated that all of the 44 P. falciparum isolates examined contained repeat regions similar to those defined in known MSA-2 sequences.
Collapse
|
9
|
Structural and antigenic polymorphism of the 35- to 48-kilodalton merozoite surface antigen (MSA-2) of the malaria parasite Plasmodium falciparum. Mol Cell Biol 1991; 11:963-71. [PMID: 1990294 PMCID: PMC359759 DOI: 10.1128/mcb.11.2.963-971.1991] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Merozoite surface antigen MSA-2 of the human parasite Plasmodium falciparum is being considered for the development of a malaria vaccine. The antigen is polymorphic, and specific monoclonal antibodies differentiate five serological variants of MSA-2 among 25 parasite isolates. The variants are grouped into two major serogroups, A and B. Genes encoding two different variants from serogroup A have been sequenced, and their DNA together with deduced amino acid sequences were compared with sequences encoded by other alleles. The comparison shows that the serological classification reflects differences in DNA sequences and deduced primary structure of MSA-2 variants and serogroups. Thus, the overall homologies of DNA and amino acid sequences are over 95% among variants in the same serogroup. In contrast, similarities between the group A variants and a group B variant are only 70 and 64% for DNA and amino acid sequences, respectively. We propose that the MSA-2 protein is encoded by two highly divergent groups of alleles, with limited additional polymorphism displayed within each group.
Collapse
|
10
|
Lew AM, Langford CJ, Anders RF, Kemp DJ, Saul A, Fardoulys C, Geysen M, Sheppard M. A protective monoclonal antibody recognizes a linear epitope in the precursor to the major merozoite antigens of Plasmodium chabaudi adami. Proc Natl Acad Sci U S A 1989; 86:3768-72. [PMID: 2471191 PMCID: PMC287221 DOI: 10.1073/pnas.86.10.3768] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The monoclonal antibody 5C10/66 was shown to afford strong protection in mice against fulminating Plasmodium chabaudi adami infection. This was remarkable, as immunity to this organism is regarded to be mainly T-cell mediated. This antibody identified a 250-kDa molecule in schizonts and an 83-kDa fragment in merozoites. A cDNA clone selected by 5C10/66 was the homologue of the Plasmodium falciparum precursor to the major merozoite surface antigen (PMMSA). Comparison with the P. falciparum sequence showed that the P. chabaudi adami clone encoded the middle portion of the gene and that it can also be divided into variable and conserved blocks. Screening of a set of all possible octamer peptides predicted by the cDNA clone revealed that the core epitope of 5C10/66 was Glu-Thr-Thr-Glu-Thr. This region resides in a variable block of PMMSA.
Collapse
Affiliation(s)
- A M Lew
- Walter and Eliza Hall Institute of Medical Research, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|