1
|
Knockdown of heat shock transcription factor 1 decreases temperature stress tolerance in Bemisia tabaci MED. Sci Rep 2022; 12:16059. [PMID: 36163391 PMCID: PMC9512819 DOI: 10.1038/s41598-022-19788-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 09/05/2022] [Indexed: 11/08/2022] Open
Abstract
The primary function of heat shock transcription factor (HSF) in the heat shock response is to activate the transcription of genes encoding heat shock proteins (HSPs). The phloem-feeding insect Bemisia tabaci (Gennadius) is an important pest of cotton, vegetables and ornamentals that transmits several plant viruses and causes enormous agricultural losses. In this study, the gene encoding HSF (Bthsf1) was characterized in MED B. tabaci. The full-length cDNA encoded a protein of 652 amino acids with an isoelectric point of 5.55. The BtHSF1 deduced amino acid sequence showed strong similarity to HSF in other insects. Expression analyses using quantitative real-time PCR indicated that Bthsf1 was significantly up-regulated in B. tabaci adults and pupae during thermal stress. Although Bthsf1 was induced by both hot and cold stress, the amplitude of expression was greater in the former. Bthsf1 had distinct, significant differences in expression pattern during different duration of high but not low temperature stress. Oral ingestion of dsBthsf1 repressed the expression of Bthsf1 and four heat shock proteins (Bthsp90, Bthsp70-3, Bthsp20 and Bthsp19.5) in MED B. tabaci during hot and cold stress. In conclusion, our results show that Bthsf1 is differentially expressed during high and low temperature stress and regulates the transcription of multiple hsps in MED B. tabaci.
Collapse
|
2
|
Jeong G, Jeon M, Shin J, Lee I. HEAT SHOCK TRANSCRIPTION FACTOR B2b acts as a transcriptional repressor of VIN3, a gene induced by long-term cold for flowering. Sci Rep 2022; 12:10963. [PMID: 35768490 PMCID: PMC9243095 DOI: 10.1038/s41598-022-15052-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022] Open
Abstract
Vernalization, an acceleration of flowering after long-term winter cold, is an intensively studied flowering mechanism in winter annual plants. In Arabidopsis, Polycomb Repressive Complex 2 (PRC2)-mediated suppression of the strong floral repressor, FLOWERING LOCUS C (FLC), is critical for vernalization and a PHD finger domain protein, VERNALIZATION INSENSITIVE 3 (VIN3), recruits PRC2 on FLC chromatin. The level of VIN3 was found to gradually increase in proportion to the length of cold period during vernalization. However, how plants finely regulate VIN3 expression according to the cold environment has not been completely elucidated. As a result, we performed EMS mutagenesis using a transgenic line with a minimal promoter of VIN3 fused to the GUS reporter gene, and isolated a mutant, hyperactivation of VIN3 1 (hov1), which showed increased GUS signal and endogenous VIN3 transcript levels. Using positional cloning combined with whole-genome resequencing, we found that hov1 carries a nonsense mutation, leading to a premature stop codon on the HEAT SHOCK TRANSCRIPTION FACTOR B2b (HsfB2b), which encodes a repressive heat shock transcription factor. HsfB2b directly binds to the VIN3 promoter, and HsfB2b overexpression leads to reduced acceleration of flowering after vernalization. Collectively, our findings reveal a novel fine-tuning mechanism to regulate VIN3 for proper vernalization response.
Collapse
Affiliation(s)
- Goowon Jeong
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea.,Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Korea
| | - Myeongjune Jeon
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea.,Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Korea
| | - Jinwoo Shin
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea.,Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA, 02114, USA
| | - Ilha Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea. .,Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
3
|
Structures of heat shock factor trimers bound to DNA. iScience 2021; 24:102951. [PMID: 34458700 PMCID: PMC8379338 DOI: 10.1016/j.isci.2021.102951] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/15/2021] [Accepted: 08/02/2021] [Indexed: 12/14/2022] Open
Abstract
Heat shock factor 1 (HSF1) and 2 (HSF2) play distinct but overlapping regulatory roles in maintaining cellular proteostasis or mediating cell differentiation and development. Upon activation, both HSFs trimerize and bind to heat shock elements (HSEs) present in the promoter region of target genes. Despite structural insights gained from recent studies, structures reflecting the physiological architecture of this transcriptional machinery remains to be determined. Here, we present co-crystal structures of human HSF1 and HSF2 trimers bound to DNA, which reveal a triangular arrangement of the three DNA-binding domains (DBDs) with protein-protein interactions largely mediated by the wing domain. Two structural properties, different flexibility of the wing domain and local DNA conformational changes induced by HSF binding, seem likely to contribute to the subtle differential specificity between HSF1 and HSF2. Besides, two more structures showing DBDs bound to "two-site" head-to-head HSEs were determined as additions to the published tail-to-tail dimer-binding structures.
Collapse
|
4
|
Malik JA, Lone R. Heat shock proteins with an emphasis on HSP 60. Mol Biol Rep 2021; 48:6959-6969. [PMID: 34498161 DOI: 10.1007/s11033-021-06676-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023]
Abstract
Heat shock phenomenon is a process by which cells express a set of proteins called heat shock proteins (HSPs) against heat stress. HSPs include several families depending upon the molecular weight of the respective protein. Among the different HSPs, The HSP60 is one of the main components representing the framework of chaperone system. HSP60 plays a myriad number of roles like chaperoning, thermotolerance, apoptosis, cancer, immunology and embryonic development. In this review we discussed briefly the general knowledge and focussed on HSP60 in terms of structure, regulation and function in various physiological and pathological conditions.
Collapse
Affiliation(s)
- Javid Ahmad Malik
- Pharmacology and Toxicology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Rafiq Lone
- Department of Botany, Central University of Kashmir, Jammu and Kashmir, India.
| |
Collapse
|
5
|
Chang YW, Wang YC, Zhang XX, Iqbal J, Lu MX, Du YZ. Transcriptional regulation of small heat shock protein genes by heat shock factor 1 (HSF1) in Liriomyza trifolii under heat stress. Cell Stress Chaperones 2021; 26:835-843. [PMID: 34337672 PMCID: PMC8492843 DOI: 10.1007/s12192-021-01224-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/26/2021] [Accepted: 07/27/2021] [Indexed: 01/02/2023] Open
Abstract
Small heat shock proteins (sHSPs) function as molecular chaperones in multiple physiological processes and are active during thermal stress. sHSP expression is controlled by heat shock transcription factor (HSF); however, few studies have been conducted on HSF in agricultural pests. Liriomyza trifolii is an introduced insect pest of horticultural and vegetable crops in China. In this study, the master regulator, HSF1, was cloned and characterized from L. trifolii, and the expression levels of HSF1 and five sHSPs were studied during heat stress. HSF1 expression in L. trifolii generally decreased with rising temperatures, whereas expression of the five sHSPs showed an increasing trend that correlated with elevated temperatures. All five sHSPs and HSF1 showed an upward trend in expression with exposure to 40 ℃ without a recovery period. When a recovery period was incorporated after thermal stress, the expression patterns of HSF1 and sHSPs in L. trifolii exposed to 40 °C was significantly lower than expression with no recovery period. To elucidate potential interactions between HSF1 and sHSPs, double-stranded RNA was synthesized to knock down HSF1 in L. trifolii by RNA interference. The knockdown of HSF1 by RNAi decreased the survival rate and expression of HSP19.5, HSP20.8, and HSP21.3 during high-temperature stress. This study expands our understanding of HSF1-regulated gene expression in L. trifolii exposed to heat stress.
Collapse
Affiliation(s)
- Ya-Wen Chang
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Yu-Cheng Wang
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Xiao-Xiang Zhang
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Junaid Iqbal
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Ming-Xing Lu
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China.
| |
Collapse
|
6
|
Miller IC, Zamat A, Sun LK, Phuengkham H, Harris AM, Gamboa L, Yang J, Murad JP, Priceman SJ, Kwong GA. Enhanced intratumoural activity of CAR T cells engineered to produce immunomodulators under photothermal control. Nat Biomed Eng 2021; 5:1348-1359. [PMID: 34385695 DOI: 10.1038/s41551-021-00781-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/11/2021] [Indexed: 12/17/2022]
Abstract
Treating solid malignancies with chimeric antigen receptor (CAR) T cells typically results in poor responses. Immunomodulatory biologics delivered systemically can augment the cells' activity, but off-target toxicity narrows the therapeutic window. Here we show that the activity of intratumoural CAR T cells can be controlled photothermally via synthetic gene switches that trigger the expression of transgenes in response to mild temperature elevations (to 40-42 °C). In vitro, heating engineered primary human T cells for 15-30 min led to over 60-fold-higher expression of a reporter transgene without affecting the cells' proliferation, migration and cytotoxicity. In mice, CAR T cells photothermally heated via gold nanorods produced a transgene only within the tumours. In mouse models of adoptive transfer, the systemic delivery of CAR T cells followed by intratumoural production, under photothermal control, of an interleukin-15 superagonist or a bispecific T cell engager bearing an NKG2D receptor redirecting T cells against NKG2D ligands enhanced antitumour activity and mitigated antigen escape. Localized photothermal control of the activity of engineered T cells may enhance their safety and efficacy.
Collapse
Affiliation(s)
- Ian C Miller
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Ali Zamat
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Lee-Kai Sun
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Hathaichanok Phuengkham
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Adrian M Harris
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Lena Gamboa
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Jason Yang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - John P Murad
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Saul J Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA.,Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Gabriel A Kwong
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA. .,Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, USA. .,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA. .,Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA, USA. .,Georgia Immunoengineering Consortium, Emory University and Georgia Institute of Technology, Atlanta, GA, USA. .,Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
7
|
Occhigrossi L, D’Eletto M, Barlev N, Rossin F. The Multifaceted Role of HSF1 in Pathophysiology: Focus on Its Interplay with TG2. Int J Mol Sci 2021; 22:ijms22126366. [PMID: 34198675 PMCID: PMC8232231 DOI: 10.3390/ijms22126366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 11/19/2022] Open
Abstract
The cellular environment needs to be strongly regulated and the maintenance of protein homeostasis is crucial for cell function and survival. HSF1 is the main regulator of the heat shock response (HSR), the master pathway required to maintain proteostasis, as involved in the expression of the heat shock proteins (HSPs). HSF1 plays numerous physiological functions; however, the main role concerns the modulation of HSPs synthesis in response to stress. Alterations in HSF1 function impact protein homeostasis and are strongly linked to diseases, such as neurodegenerative disorders, metabolic diseases, and different types of cancers. In this context, type 2 Transglutaminase (TG2), a ubiquitous enzyme activated during stress condition has been shown to promote HSF1 activation. HSF1-TG2 axis regulates the HSR and its function is evolutionary conserved and implicated in pathological conditions. In this review, we discuss the role of HSF1 in the maintenance of proteostasis with regard to the HSF1-TG2 axis and we dissect the stress response pathways implicated in physiological and pathological conditions.
Collapse
Affiliation(s)
- Luca Occhigrossi
- Department of Biology, University of Rome ‘Tor Vergata’, 00133 Rome, Italy; (L.O.); (M.D.)
| | - Manuela D’Eletto
- Department of Biology, University of Rome ‘Tor Vergata’, 00133 Rome, Italy; (L.O.); (M.D.)
| | - Nickolai Barlev
- Institute of Cytology, 194064 Saint-Petersburg, Russia;
- Moscow Institute of Physics and Technology (MIPT), 141701 Dolgoprudny, Russia
| | - Federica Rossin
- Institute of Cytology, 194064 Saint-Petersburg, Russia;
- Correspondence:
| |
Collapse
|
8
|
Heat Shock Factor 1 as a Prognostic and Diagnostic Biomarker of Gastric Cancer. Biomedicines 2021; 9:biomedicines9060586. [PMID: 34064083 PMCID: PMC8224319 DOI: 10.3390/biomedicines9060586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 01/09/2023] Open
Abstract
Identification of effective prognostic and diagnostic biomarkers is needed to improve the diagnosis and treatment of gastric cancer. Early detection of gastric cancer through diagnostic markers can help establish effective treatments. Heat shock factor 1 (HSF1), presented in this review, is known to be regulated by a broad range of transcription factors, including those characterized in various malignant tumors, including gastric cancer. Particularly, it has been demonstrated that HSF1 regulation in various cancers is correlated with different processes, such as cell death, proliferation, and metastasis. Due to the effect of HSF1 on the initiation, development, and progression of various tumors, it is considered as an important gene for understanding and treating tumors. Additionally, HSF1 exhibits high expression in various cancers, and its high expression adversely affects the prognosis of various cancer patients, thereby suggesting that it can be used as a novel, predictive, prognostic, and diagnostic biomarker for gastric cancer. In this review, we discuss the literature accumulated in recent years, which suggests that there is a correlation between the expression of HSF1 and prognosis of gastric cancer patients through public data. Consequently, this evidence also indicates that HSF1 can be established as a powerful biomarker for the prognosis and diagnosis of gastric cancer.
Collapse
|
9
|
Syafruddin SE, Ling S, Low TY, Mohtar MA. More Than Meets the Eye: Revisiting the Roles of Heat Shock Factor 4 in Health and Diseases. Biomolecules 2021; 11:523. [PMID: 33807297 PMCID: PMC8066111 DOI: 10.3390/biom11040523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 12/26/2022] Open
Abstract
Cells encounter a myriad of endogenous and exogenous stresses that could perturb cellular physiological processes. Therefore, cells are equipped with several adaptive and stress-response machinery to overcome and survive these insults. One such machinery is the heat shock response (HSR) program that is governed by the heat shock factors (HSFs) family in response towards elevated temperature, free radicals, oxidants, and heavy metals. HSF4 is a member of this HSFs family that could exist in two predominant isoforms, either the transcriptional repressor HSFa or transcriptional activator HSF4b. HSF4 is constitutively active due to the lack of oligomerization negative regulator domain. HSF4 has been demonstrated to play roles in several physiological processes and not only limited to regulating the classical heat shock- or stress-responsive transcriptional programs. In this review, we will revisit and delineate the recent updates on HSF4 molecular properties. We also comprehensively discuss the roles of HSF4 in health and diseases, particularly in lens cell development, cataract formation, and cancer pathogenesis. Finally, we will posit the potential direction of HSF4 future research that could enhance our knowledge on HSF4 molecular networks as well as physiological and pathophysiological functions.
Collapse
|
10
|
Molecular characterization of Hsf1 as a master regulator of heat shock response in the thermotolerant methylotrophic yeast Ogataea parapolymorpha. J Microbiol 2021; 59:151-163. [PMID: 33527316 DOI: 10.1007/s12275-021-0646-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
Ogataea parapolymorpha (Hansenula polymorpha DL-1) is a thermotolerant methylotrophic yeast with biotechnological applications. Here, O. parapolymorpha genes whose expression is induced in response to heat shock were identified by transcriptome analysis and shown to possess heat shock elements (HSEs) in their promoters. The function of O. parapolymorpha HSF1 encoding a putative heat shock transcription factor 1 (OpHsf1) was characterized in the context of heat stress response. Despite exhibiting low sequence identity (26%) to its Saccharomyces cerevisiae homolog, OpHsf1 harbors conserved domains including a DNA binding domain (DBD), domains involved in trimerization (TRI), transcriptional activation (AR1, AR2), transcriptional repression (CE2), and a C-terminal modulator (CTM) domain. OpHSF1 could complement the temperature sensitive (Ts) phenotype of a S. cerevisiae hsf1 mutant. An O. parapolymorpha strain with an H221R mutation in the DBD domain of OpHsf1 exhibited significantly retarded growth and a Ts phenotype. Intriguingly, the expression of heat-shock-protein-coding genes harboring HSEs was significantly decreased in the H221R mutant strain, even under non-stress conditions, indicating the importance of the DBD for the basal growth of O. parapolymorpha. Notably, even though the deletion of C-terminal domains (ΔCE2, ΔAR2, ΔCTM) of OpHsf1 destroyed complementation of the growth defect of the S. cerevisiae hsf1 strain, the C-terminal domains were shown to be dispensable in O. parapolymorpha. Overexpression of OpHsf1 in S. cerevisiae increased resistance to transient heat shock, supporting the idea that OpHsf1 could be useful in the development of heat-shock-resistant yeast host strains.
Collapse
|
11
|
Bilyk KT, Zhuang X, Vargas-Chacoff L, Cheng CHC. Evolution of chaperome gene expression and regulatory elements in the antarctic notothenioid fishes. Heredity (Edinb) 2020; 126:424-441. [PMID: 33149264 DOI: 10.1038/s41437-020-00382-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
Confined within the cold-stable Southern Ocean, Antarctic notothenioid fishes have undergone an evolutionary loss of the inducible heat shock response (HSR), while facing perpetual low-temperature challenges to cellular proteostasis. This study examines how evolution in chronic cold has affected the shared cellular apparatus that mediates proteostasis under normal and heat stressed states. To deduce Antarctic-specific changes, we compared native expression levels across the full suite of chaperome genes and assessed the structural integrity of two crucial HSR regulators - Heat Shock Factor 1 (HSF1) that activates HSR, and heat shock elements (HSEs), the binding sites for HSF1 - between Antarctic fishes and the basal temperate notothenioid Eleginops maclovinus. Native expression levels of Antarctic fish chaperomes showed very modest changes overall, contrary to the common view of constitutive upregulation in the cold. Only a few cytosolic HSP70 genes showed greater transcription, with only the ancestrally-inducible HSPA6 strongly upregulated across all Antarctic species. Additionally, the constant cold has apparently not relaxed the selective pressures on maintaining HSF1 and HSEs in Antarctic fish. Instead, we found HSF1 experienced intensified selective pressure, with conserved sequence changes in Antarctic species suggesting optimization for non-heat-stress functional roles. HSEs of the HSP70 gene family have largely remained conserved in canonical sequence motifs and copy numbers as in E. maclovinus, showing limited impact of relaxed selective pressure. This study shows that evolution in chronic cold has led to both subtle and distinctive changes in the cellular apparatus for proteostasis and HSR, with functional consequences amenable to experimental evaluation.
Collapse
Affiliation(s)
- Kevin T Bilyk
- Department of Biology, Montclair State University, 1 Normal Ave., Montclair, NJ, 07043, USA.
| | - Xuan Zhuang
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - C-H Christina Cheng
- Department of Evolution, Ecology, and Behavior, University of Illinois, Urbana-Champaign, IL, 61801, USA.
| |
Collapse
|
12
|
Jin J, Li Y, Zhou Z, Zhang H, Guo J, Wan F. Heat Shock Factor Is Involved in Regulating the Transcriptional Expression of Two Potential Hsps ( AhHsp70 and AhsHsp21) and Its Role in Heat Shock Response of Agasicles hygrophila. Front Physiol 2020; 11:562204. [PMID: 33041860 PMCID: PMC7522579 DOI: 10.3389/fphys.2020.562204] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/25/2020] [Indexed: 01/14/2023] Open
Abstract
Heat shock proteins are molecular chaperones that are involved in numerous normal cellular processes and stress responses, and heat shock factors are transcriptional activators of heat shock proteins. Heat shock factors and heat shock proteins are coordinated in various biological processes. The regulatory function of heat shock factors in the expression of genes encoding heat shock proteins (Hsps) has been documented in some model insects, however, the role of transcription factors in modulating Hsps in other insects is still limited. In this study, one heat shock factor gene (AhHsf) was isolated and its two potential target genes (AhHsp70 and AhsHsp21) were confirmed from Agasicles hygrophila. AhHsf sequence analysis indicated that it belongs to the Hsfs gene family. RT-qPCR showed that expression levels of heat shock factors and of two heat shock proteins significantly increased under heat stress. Injection with double-stranded Hsf RNA in freshly emerged adult beetles significantly inhibited expression of AhHsp70 and AhsHsp21, shortened the adult survival, drastically reduced egg production, and ultimately led to a decrease in fecundity. RNA interference (RNAi)-mediated suppression of AhHsp70 or AhsHsp21 expression also significantly affected expression of AhHsf. Our findings revealed a potential transcriptional function of AhHsf to regulate expression of AhHsp70 and AhsHsp21, which may play a key role in A. hygrophila thermotolerance. Our results improve our understanding of the molecular mechanisms of the AhHsf - AhHsps signaling pathway in A. hygrophila.
Collapse
Affiliation(s)
- Jisu Jin
- College of Plant Protection, Hunan Agricultural University, Changsha, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youzhi Li
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Zhongshi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianying Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fanghao Wan
- College of Plant Protection, Hunan Agricultural University, Changsha, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Carpenter RL, Gökmen-Polar Y. HSF1 as a Cancer Biomarker and Therapeutic Target. Curr Cancer Drug Targets 2020; 19:515-524. [PMID: 30338738 DOI: 10.2174/1568009618666181018162117] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/30/2018] [Accepted: 09/15/2018] [Indexed: 12/30/2022]
Abstract
Heat shock factor 1 (HSF1) was discovered in 1984 as the master regulator of the heat shock response. In this classical role, HSF1 is activated following cellular stresses such as heat shock that ultimately lead to HSF1-mediated expression of heat shock proteins to protect the proteome and survive these acute stresses. However, it is now becoming clear that HSF1 also plays a significant role in several diseases, perhaps none more prominent than cancer. HSF1 appears to have a pleiotropic role in cancer by supporting multiple facets of malignancy including migration, invasion, proliferation, and cancer cell metabolism among others. Because of these functions, and others, of HSF1, it has been investigated as a biomarker for patient outcomes in multiple cancer types. HSF1 expression alone was predictive for patient outcomes in multiple cancer types but in other instances, markers for HSF1 activity were more predictive. Clearly, further work is needed to tease out which markers are most representative of the tumor promoting effects of HSF1. Additionally, there have been several attempts at developing small molecule inhibitors to reduce HSF1 activity. All of these HSF1 inhibitors are still in preclinical models but have shown varying levels of efficacy at suppressing tumor growth. The growth of research related to HSF1 in cancer has been enormous over the last decade with many new functions of HSF1 discovered along the way. In order for these discoveries to reach clinical impact, further development of HSF1 as a biomarker or therapeutic target needs to be continued.
Collapse
Affiliation(s)
- Richard L Carpenter
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Bloomington, IN 47405, United States.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Bloomington, IN 47405, United States.,Department of Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, United States
| | - Yesim Gökmen-Polar
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Bloomington, IN 47405, United States.,Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
14
|
Zhao P, Javed S, Shi X, Wu B, Zhang D, Xu S, Wang X. Varying Architecture of Heat Shock Elements Contributes to Distinct Magnitudes of Target Gene Expression and Diverged Biological Pathways in Heat Stress Response of Bread Wheat. Front Genet 2020; 11:30. [PMID: 32117446 PMCID: PMC7010933 DOI: 10.3389/fgene.2020.00030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/09/2020] [Indexed: 12/26/2022] Open
Abstract
The heat shock transcription factor (HSF) binds to cis-regulatory motifs known as heat shock elements (HSEs) to mediate the transcriptional response of HSF target genes. However, the HSF-HSEs interaction is not clearly understood. Using the newly released genome reference sequence of bread wheat, we identified 39,478 HSEs (95.6% of which were non-canonical HSEs) and collapsed them into 30,604 wheat genes, accounting for 27.6% wheat genes. Using the intensively heat-responsive transcriptomes of wheat, we demonstrated that canonical HSEs have a higher propensity to induce a response in the closest downstream genes than non-canonical HSEs. However, the response magnitude induced by non-canonical HSEs was comparable to that induced by canonical HSEs. Significantly, some non-canonical HSEs that contain mismatched nucleotides at specific positions within HSEs had a larger response magnitude than that of canonical HSEs. Consistently, most of the HSEs identified in the promoter regions of heat shock proteins were non-canonical HSEs, suggesting an important role for these non-canonical HSEs. Lastly, distinct diverged biological processes were observed between genes containing different HSE types, suggesting that sequence variation in HSEs plays a key role in the evolution of heat responses and adaptation. Our results provide a new perspective to understand the regulatory network underlying heat responses.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Sidra Javed
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Xue Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Bingjin Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Dongzhi Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Shengbao Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Xiaoming Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
15
|
Martín‐Expósito M, Gas M, Mohamad N, Nuño‐Cabanes C, Tejada‐Colón A, Pascual‐García P, de la Fuente L, Chaves‐Arquero B, Merran J, Corden J, Conesa A, Pérez‐Cañadillas JM, Bravo J, Rodríguez‐Navarro S. Mip6 binds directly to the Mex67 UBA domain to maintain low levels of Msn2/4 stress-dependent mRNAs. EMBO Rep 2019; 20:e47964. [PMID: 31680439 PMCID: PMC6893359 DOI: 10.15252/embr.201947964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/30/2019] [Accepted: 09/11/2019] [Indexed: 11/09/2022] Open
Abstract
RNA-binding proteins (RBPs) participate in all steps of gene expression, underscoring their potential as regulators of RNA homeostasis. We structurally and functionally characterize Mip6, a four-RNA recognition motif (RRM)-containing RBP, as a functional and physical interactor of the export factor Mex67. Mip6-RRM4 directly interacts with the ubiquitin-associated (UBA) domain of Mex67 through a loop containing tryptophan 442. Mip6 shuttles between the nucleus and the cytoplasm in a Mex67-dependent manner and concentrates in cytoplasmic foci under stress. Photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation experiments show preferential binding of Mip6 to mRNAs regulated by the stress-response Msn2/4 transcription factors. Consistent with this binding, MIP6 deletion affects their export and expression levels. Additionally, Mip6 interacts physically and/or functionally with proteins with a role in mRNA metabolism and transcription such as Rrp6, Xrn1, Sgf73, and Rpb1. These results reveal a novel role for Mip6 in the homeostasis of Msn2/4-dependent transcripts through its direct interaction with the Mex67 UBA domain.
Collapse
Grants
- BFU2014-57636 Ministerio de Economía, Industria y Competitividad, Gobierno de España (MINECO)
- BFU2015-71978 Ministerio de Economía, Industria y Competitividad, Gobierno de España (MINECO)
- SAF2015-67077-R Ministerio de Economía, Industria y Competitividad, Gobierno de España (MINECO)
- SAF2017-89901-R Ministerio de Economía, Industria y Competitividad, Gobierno de España (MINECO)
- CTQ2018-84371 Ministerio de Economía, Industria y Competitividad, Gobierno de España (MINECO)
- PGC2018-099872-B-I00 Ministerio de Ciencia, Innovación y Universidades (Ministry of Science, Innovation and Universities)
- PROM/2012/061 Generalitat Valenciana (Regional Government of Valencia)
- PROMETEO 2016/093 Generalitat Valenciana (Regional Government of Valencia)
- ACOMP2014/061 Generalitat Valenciana (Regional Government of Valencia)
- B2017/BMD-3770 Comunidad de Madrid (Madrid Autonomous Community)
- Ministerio de Economía, Industria y Competitividad, Gobierno de España (MINECO)
- Comunidad de Madrid (Madrid Autonomous Community)
Collapse
Affiliation(s)
- Manuel Martín‐Expósito
- Gene Expression and RNA Metabolism LaboratoryInstituto de Biomedicina de Valencia (CSIC)ValenciaSpain
- Gene Expression and RNA Metabolism LaboratoryCentro de Investigación Príncipe Felipe (CIPF)ValenciaSpain
| | - Maria‐Eugenia Gas
- Gene Expression and RNA Metabolism LaboratoryCentro de Investigación Príncipe Felipe (CIPF)ValenciaSpain
| | - Nada Mohamad
- Signal Transduction LaboratoryInstituto de Biomedicina de Valencia (CSIC)ValenciaSpain
| | - Carme Nuño‐Cabanes
- Gene Expression and RNA Metabolism LaboratoryInstituto de Biomedicina de Valencia (CSIC)ValenciaSpain
- Gene Expression and RNA Metabolism LaboratoryCentro de Investigación Príncipe Felipe (CIPF)ValenciaSpain
| | - Ana Tejada‐Colón
- Gene Expression and RNA Metabolism LaboratoryInstituto de Biomedicina de Valencia (CSIC)ValenciaSpain
| | - Pau Pascual‐García
- Gene Expression and RNA Metabolism LaboratoryCentro de Investigación Príncipe Felipe (CIPF)ValenciaSpain
- Present address:
Department of Cell and Developmental BiologyEpigenetics InstitutePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Lorena de la Fuente
- Genomics of Gene Expression LaboratoryCentro de Investigación Príncipe Felipe (CIPF)ValenciaSpain
| | - Belén Chaves‐Arquero
- Department of Biological Physical ChemistryInstitute of Physical‐Chemistry “Rocasolano” (CSIC)MadridSpain
| | - Jonathan Merran
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Jeffry Corden
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Ana Conesa
- Genetics InstituteUniversity of FloridaGainesvilleFLUSA
- Microbiology and Cell Science DepartmentInstitute for Food and Agricultural ResearchUniversity of FloridaGainesvilleFLUSA
| | | | - Jerónimo Bravo
- Signal Transduction LaboratoryInstituto de Biomedicina de Valencia (CSIC)ValenciaSpain
| | - Susana Rodríguez‐Navarro
- Gene Expression and RNA Metabolism LaboratoryInstituto de Biomedicina de Valencia (CSIC)ValenciaSpain
- Gene Expression and RNA Metabolism LaboratoryCentro de Investigación Príncipe Felipe (CIPF)ValenciaSpain
| |
Collapse
|
16
|
Kovács D, Sigmond T, Hotzi B, Bohár B, Fazekas D, Deák V, Vellai T, Barna J. HSF1Base: A Comprehensive Database of HSF1 (Heat Shock Factor 1) Target Genes. Int J Mol Sci 2019; 20:ijms20225815. [PMID: 31752429 PMCID: PMC6888953 DOI: 10.3390/ijms20225815] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 12/28/2022] Open
Abstract
HSF1 (heat shock factor 1) is an evolutionarily conserved master transcriptional regulator of the heat shock response (HSR) in eukaryotic cells. In response to high temperatures, HSF1 upregulates genes encoding molecular chaperones, also called heat shock proteins, which assist the refolding or degradation of damaged intracellular proteins. Accumulating evidence reveals however that HSF1 participates in several other physiological and pathological processes such as differentiation, immune response, and multidrug resistance, as well as in ageing, neurodegenerative demise, and cancer. To address how HSF1 controls these processes one should systematically analyze its target genes. Here we present a novel database called HSF1Base (hsf1base.org) that contains a nearly comprehensive list of HSF1 target genes identified so far. The list was obtained by manually curating publications on individual HSF1 targets and analyzing relevant high throughput transcriptomic and chromatin immunoprecipitation data derived from the literature and the Yeastract database. To support the biological relevance of HSF1 targets identified by high throughput methods, we performed an enrichment analysis of (potential) HSF1 targets across different tissues/cell types and organisms. We found that general HSF1 functions (targets are expressed in all tissues/cell types) are mostly related to cellular proteostasis. Furthermore, HSF1 targets that are conserved across various animal taxa operate mostly in cellular stress pathways (e.g., autophagy), chromatin remodeling, ribosome biogenesis, and ageing. Together, these data highlight diverse roles for HSF1, expanding far beyond the HSR.
Collapse
Affiliation(s)
- Dániel Kovács
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary; (D.K.); (T.S.); (B.H.); (B.B.); (D.F.)
| | - Tímea Sigmond
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary; (D.K.); (T.S.); (B.H.); (B.B.); (D.F.)
| | - Bernadette Hotzi
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary; (D.K.); (T.S.); (B.H.); (B.B.); (D.F.)
| | - Balázs Bohár
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary; (D.K.); (T.S.); (B.H.); (B.B.); (D.F.)
- Earlham Institute, Norwich NR4 7UZ, UK
- Quadram Institute, Norwich NR4 7UA, UK
| | - Dávid Fazekas
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary; (D.K.); (T.S.); (B.H.); (B.B.); (D.F.)
- Earlham Institute, Norwich NR4 7UZ, UK
- Quadram Institute, Norwich NR4 7UA, UK
| | - Veronika Deák
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, University of Technology, H-1111 Budapest, Hungary;
| | - Tibor Vellai
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary; (D.K.); (T.S.); (B.H.); (B.B.); (D.F.)
- MTA-ELTE Genetics Research Group, Eötvös Loránd University, H-1117 Budapest, Hungary
- Correspondence: (T.V.); (J.B.); Tel.: +36-1-372-2500 (ext. 8684) (T.V.); +36-1-372-2500 (ext. 8349) (J.B.); Fax: +36-1-372-2641 (T.V.)
| | - János Barna
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary; (D.K.); (T.S.); (B.H.); (B.B.); (D.F.)
- MTA-ELTE Genetics Research Group, Eötvös Loránd University, H-1117 Budapest, Hungary
- Correspondence: (T.V.); (J.B.); Tel.: +36-1-372-2500 (ext. 8684) (T.V.); +36-1-372-2500 (ext. 8349) (J.B.); Fax: +36-1-372-2641 (T.V.)
| |
Collapse
|
17
|
Structural analysis of missense mutations occurring in the DNA-binding domain of HSF4 associated with congenital cataracts. JOURNAL OF STRUCTURAL BIOLOGY-X 2019; 4:100015. [PMID: 32647819 PMCID: PMC7337047 DOI: 10.1016/j.yjsbx.2019.100015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022]
Abstract
High-resolution structures of wild-type and K23N mutant DBD in HSF4 were determined. Cataract-related mutations in HSF4 were structurally analyzed through MD simulation. Mutations Q61R, K64E, R73H, R116H and R119C likely perturb DNA-binding activity. Mutations K23N, P60H and L114P probably affect trimer formation or folding dynamics. Mutations A19D, H35Y and I86V may be false positives leading to trivial impacts.
Congenital cataract (CC) is the major cause of childish blindness, and nearly 50% of CCs are hereditary disorders. HSF4, a member of the heat shock transcription factor family, acts as a key regulator of cell growth and differentiation during the development of sensory organs. Missense mutations in the HSF4-encoding gene have been reported to cause CC formation; in particular, those occurring within the DNA-binding domain (DBD) are usually autosomal dominant mutations. To address how the identified mutations lead to HSF4 malfunction by placing adverse impacts on protein structure and DNA-binding specificity and affinity, we determined two high-resolution structures of the wild-type DBD and the K23N mutant of human HSF4, built DNA-binding models, conducted in silico mutations and molecular dynamics simulations. Our analysis suggests four possible structural mechanisms underlining the missense mutations in HSF4-DBD and cataractogenesis: (i), disruption of HSE recognition; (ii), perturbation of protein-DNA interactions; (iii), alteration of protein folding; (iv), other impacts, e.g. inhibition of protein oligomerization.
Collapse
|
18
|
Bogan SN, Place SP. Accelerated evolution at chaperone promoters among Antarctic notothenioid fishes. BMC Evol Biol 2019; 19:205. [PMID: 31694524 PMCID: PMC6836667 DOI: 10.1186/s12862-019-1524-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/01/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Antarctic fishes of the Notothenioidei suborder constitutively upregulate multiple inducible chaperones, a highly derived adaptation that preserves proteostasis in extreme cold, and represent a system for studying the evolution of gene frontloading. We screened for Hsf1-binding sites, as Hsf1 is a master transcription factor of the heat shock response, and highly-conserved non-coding elements within proximal promoters of chaperone genes across 10 Antarctic notothens, 2 subpolar notothens, and 17 perciform fishes. We employed phylogenetic models of molecular evolution to determine whether (i) changes in motifs associated with Hsf1-binding and/or (ii) relaxed purifying selection or exaptation at ancestral cis-regulatory elements coincided with the evolution of chaperone frontloading in Antarctic notothens. RESULTS Antarctic notothens exhibited significantly fewer Hsf1-binding sites per bp at chaperone promoters than subpolar notothens and Serranoidei, the most closely-related suborder to Notothenioidei included in this study. 90% of chaperone promoters exhibited accelerated substitution rates among Antarctic notothens relative to other perciformes. The proportion of bases undergoing accelerated evolution (i) was significantly greater in Antarctic notothens than in subpolar notothens and Perciformes in 70% of chaperone genes and (ii) increased among bases that were more conserved among perciformes. Lastly, we detected evidence of relaxed purifying selection and exaptation acting on ancestrally conserved cis-regulatory elements in the Antarctic notothen lineage and its major branches. CONCLUSION A large degree of turnover has occurred in Notothenioidei at chaperone promoter regions that are conserved among perciform fishes following adaptation to the cooling of the Southern Ocean. Additionally, derived reductions in Hsf1-binding site frequency suggest cis-regulatory modifications to the classical heat shock response. Of note, turnover events within chaperone promoters were less frequent in the ancestral node of Antarctic notothens relative to younger Antarctic lineages. This suggests that cis-regulatory divergence at chaperone promoters may be greater between Antarctic notothen lineages than between subpolar and Antarctic clades. These findings demonstrate that strong selective forces have acted upon cis-regulatory elements of chaperone genes among Antarctic notothens.
Collapse
Affiliation(s)
- Samuel N Bogan
- Department of Biology, Sonoma State University, Rohnert Park, CA, 94928, USA.
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA.
| | - Sean P Place
- Department of Biology, Sonoma State University, Rohnert Park, CA, 94928, USA
| |
Collapse
|
19
|
Veri AO, Robbins N, Cowen LE. Regulation of the heat shock transcription factor Hsf1 in fungi: implications for temperature-dependent virulence traits. FEMS Yeast Res 2019; 18:4975774. [PMID: 29788061 DOI: 10.1093/femsyr/foy041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/16/2018] [Indexed: 12/27/2022] Open
Abstract
The impact of fungal pathogens on human health is devastating. For fungi and other pathogens, a key determinant of virulence is the capacity to thrive at host temperatures, with elevated temperature in the form of fever as a ubiquitous host response to defend against infection. A prominent feature of cells experiencing heat stress is the increased expression of heat shock proteins (Hsps) that play pivotal roles in the refolding of misfolded proteins in order to restore cellular homeostasis. Transcriptional activation of this heat shock response is orchestrated by the essential heat shock transcription factor, Hsf1. Although the influence of Hsf1 on cellular stress responses has been studied for decades, many aspects of its regulation and function remain largely enigmatic. In this review, we highlight our current understanding of how Hsf1 is regulated and activated in the model yeast Saccharomyces cerevisiae, and highlight exciting recent discoveries related to its diverse functions under both basal and stress conditions. Given that thermal adaption is a fundamental requirement for growth and virulence in fungal pathogens, we also compare and contrast Hsf1 activation and function in other fungal species with an emphasis on its role as a critical regulator of virulence traits.
Collapse
Affiliation(s)
- Amanda O Veri
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
20
|
Joutsen J, Sistonen L. Tailoring of Proteostasis Networks with Heat Shock Factors. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a034066. [PMID: 30420555 DOI: 10.1101/cshperspect.a034066] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heat shock factors (HSFs) are the main transcriptional regulators of the heat shock response and indispensable for maintaining cellular proteostasis. HSFs mediate their protective functions through diverse genetic programs, which are composed of genes encoding molecular chaperones and other genes crucial for cell survival. The mechanisms that are used to tailor HSF-driven proteostasis networks are not yet completely understood, but they likely comprise from distinct combinations of both genetic and proteomic determinants. In this review, we highlight the versatile HSF-mediated cellular functions that extend from cellular stress responses to various physiological and pathological processes, and we underline the key advancements that have been achieved in the field of HSF research during the last decade.
Collapse
Affiliation(s)
- Jenny Joutsen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|
21
|
Steurer C, Eder N, Kerschbaum S, Wegrostek C, Gabriel S, Pardo N, Ortner V, Czerny T, Riegel E. HSF1 mediated stress response of heavy metals. PLoS One 2018; 13:e0209077. [PMID: 30566508 PMCID: PMC6300263 DOI: 10.1371/journal.pone.0209077] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/29/2018] [Indexed: 01/22/2023] Open
Abstract
The heat shock response (HSR) pathway is a highly conserved cellular stress response and mediated by its master regulator HSF1. Activation of the pathway results in the expression of chaperone proteins (heat shock proteins; HSP) to maintain protein homeostasis. One of the genes strongest upregulated upon stress is HSPA1A (HSP72). Heavy metals are highly toxic to living organisms and known as environmental contaminants, due to industrialisation. Furthermore, many of them are well-described inducers of the HSR pathway. Here we compare the effect of different heavy metals, concerning their potential to activate HSF1 with a sensitive artificial heat shock reporter cell line, consisting of heat shock elements (HSE). In general the responses of the artificial promoter to heavy metal stress were in good agreement with those of well-established HSF1 target genes, like HSPA1A. Nevertheless, differences were observable when effects of heat and heavy metal stress were compared. Whereas heat stress preferentially activated the HSE promoter, heavy metals more strongly induced the HSPA1A promoter. We therefore analysed the HSPA1A promoter in more detail, by isolating and mutating the HSEs. The results indicate that the importance of the individual binding sites for HSF1 is determined by their sequence similarity to the consensus sequence and their position relative to the transcription start site, but they were not differentially affected by heat or heavy metal stress. In contrast, we found that other parts of the HSPA1A promoter have different impact on the response under different stress conditions. In this work we provide deeper insights into the regulation of HSP72 expression as a well as a method to quantitatively and sensitively evaluate different stressor on their potential to activate HSF1.
Collapse
Affiliation(s)
- Christoph Steurer
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, Vienna, Austria
| | - Noreen Eder
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, Vienna, Austria
| | - Sarah Kerschbaum
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, Vienna, Austria
| | - Christina Wegrostek
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, Vienna, Austria
| | - Stefan Gabriel
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, Vienna, Austria
| | - Natalia Pardo
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, Vienna, Austria
| | - Viktoria Ortner
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, Vienna, Austria
| | - Thomas Czerny
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, Vienna, Austria
| | - Elisabeth Riegel
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, Vienna, Austria
| |
Collapse
|
22
|
Arce D, Spetale F, Krsticevic F, Cacchiarelli P, Las Rivas JD, Ponce S, Pratta G, Tapia E. Regulatory motifs found in the small heat shock protein (sHSP) gene family in tomato. BMC Genomics 2018; 19:860. [PMID: 30537925 PMCID: PMC6288846 DOI: 10.1186/s12864-018-5190-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND In living organisms, small heat shock proteins (sHSPs) are triggered in response to stress situations. This family of proteins is large in plants and, in the case of tomato (Solanum lycopersicum), 33 genes have been identified, most of them related to heat stress response and to the ripening process. Transcriptomic and proteomic studies have revealed complex patterns of expression for these genes. In this work, we investigate the coregulation of these genes by performing a computational analysis of their promoter architecture to find regulatory motifs known as heat shock elements (HSEs). We leverage the presence of sHSP members that originated from tandem duplication events and analyze the promoter architecture diversity of the whole sHSP family, focusing on the identification of HSEs. RESULTS We performed a search for conserved genomic sequences in the promoter regions of the sHSPs of tomato, plus several other proteins (mainly HSPs) that are functionally related to heat stress situations or to ripening. Several computational analyses were performed to build multiple sequence motifs and identify transcription factor binding sites (TFBS) homologous to HSF1AE and HSF21 in Arabidopsis. We also investigated the expression and interaction of these proteins under two heat stress situations in whole tomato plants and in protoplast cells, both in the presence and in the absence of heat shock transcription factor A2 (HsfA2). The results of these analyses indicate that different sHSPs are up-regulated depending on the activation or repression of HsfA2, a key regulator of HSPs. Further, the analysis of protein-protein interaction between the sHSP protein family and other heat shock response proteins (Hsp70, Hsp90 and MBF1c) suggests that several sHSPs are mediating alternative stress response through a regulatory subnetwork that is not dependent on HsfA2. CONCLUSIONS Overall, this study identifies two regulatory motifs (HSF1AE and HSF21) associated with the sHSP family in tomato which are considered genomic HSEs. The study also suggests that, despite the apparent redundancy of these proteins, which has been linked to gene duplication, tomato sHSPs showed different up-regulation and different interaction patterns when analyzed under different stress situations.
Collapse
Affiliation(s)
- Debora Arce
- IICAR-CONICET, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, Zavalla, S2125ZAA Argentina
| | - Flavio Spetale
- CIFASIS - CONICET, Ocampo y Esmeralda, Rosario, S2000EZP Argentina
| | | | - Paolo Cacchiarelli
- IICAR-CONICET, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, Zavalla, S2125ZAA Argentina
| | - Javier De Las Rivas
- Cancer Research Center CiC-IBMCC, CSIC/USAL, Campus Miguel de Unamuno s/n, Salamanca, 37007 Spain
| | - Sergio Ponce
- GADIB-FRSN-UTN, Colon 332, San Nicolas, B2900LWH Argentina
| | - Guillermo Pratta
- IICAR-CONICET, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, Zavalla, S2125ZAA Argentina
| | - Elizabeth Tapia
- CIFASIS - CONICET, Ocampo y Esmeralda, Rosario, S2000EZP Argentina
- Faculty of Exact Sciences, Engineering and Surveying, Av. Pellegrini 250, Rosario, S2000BTP Argentina
| |
Collapse
|
23
|
Raje HS, Lieux ME, DiMario PJ. R1 retrotransposons in the nucleolar organizers of Drosophila melanogaster are transcribed by RNA polymerase I upon heat shock. Transcription 2018; 9:273-285. [PMID: 30063880 DOI: 10.1080/21541264.2018.1506682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The ribosomal RNA genes (rDNA) of Drosophila melanogaster reside within centromere-proximal nucleolar organizers on both the X and Y chromosomes. Each locus contains between 200-300 tandem repeat rDNA units that encode 18S, 5.8S, 2S, and 28S ribosomal RNAs (rRNAs) necessary for ribosome biogenesis. In arthropods like Drosophila, about 60% of the rDNA genes have R1 and/or R2 retrotransposons inserted at specific sites within their 28S regions; these units likely fail to produce functional 28S rRNA. We showed earlier that R2 expression increases upon nucleolar stress caused by the loss of the ribosome assembly factor, Nucleolar Phosphoprotein of 140 kDa (Nopp140). Here we show that R1 expression is selectively induced by heat shock. Actinomycin D, but not α-amanitin, blocked R1 expression in S2 cells upon heat shock, indicating that R1 elements are transcribed by Pol I. A series of RT-PCRs established read-through transcription by Pol I from the 28S gene region into R1. Sequencing the RT-PCR products confirmed the 28S-R1 RNA junction and the expression of R1 elements within nucleolar rDNA rather than R1 elements known to reside in centromeric heterochromatin. Using a genome-wide precision run-on sequencing (PRO-seq) data set available at NCBI-GEO, we show that Pol I activity on R1 elements is negligible under normal non-heat shock conditions but increases upon heat shock. We propose that prior to heat shock Pol I pauses within the 5' end of R1 where we find a consensus "pause button", and that heat shock releases Pol I for read-through transcription farther into R1.
Collapse
Affiliation(s)
- Himanshu S Raje
- a Department of Biological Sciences , Louisiana State University , Baton Rouge , LA , USA
| | - Molly E Lieux
- a Department of Biological Sciences , Louisiana State University , Baton Rouge , LA , USA
| | - Patrick J DiMario
- a Department of Biological Sciences , Louisiana State University , Baton Rouge , LA , USA
| |
Collapse
|
24
|
Barna J, Csermely P, Vellai T. Roles of heat shock factor 1 beyond the heat shock response. Cell Mol Life Sci 2018; 75:2897-2916. [PMID: 29774376 PMCID: PMC11105406 DOI: 10.1007/s00018-018-2836-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/07/2018] [Indexed: 01/09/2023]
Abstract
Various stress factors leading to protein damage induce the activation of an evolutionarily conserved cell protective mechanism, the heat shock response (HSR), to maintain protein homeostasis in virtually all eukaryotic cells. Heat shock factor 1 (HSF1) plays a central role in the HSR. HSF1 was initially known as a transcription factor that upregulates genes encoding heat shock proteins (HSPs), also called molecular chaperones, which assist in refolding or degrading injured intracellular proteins. However, recent accumulating evidence indicates multiple additional functions for HSF1 beyond the activation of HSPs. Here, we present a nearly comprehensive list of non-HSP-related target genes of HSF1 identified so far. Through controlling these targets, HSF1 acts in diverse stress-induced cellular processes and molecular mechanisms, including the endoplasmic reticulum unfolded protein response and ubiquitin-proteasome system, multidrug resistance, autophagy, apoptosis, immune response, cell growth arrest, differentiation underlying developmental diapause, chromatin remodelling, cancer development, and ageing. Hence, HSF1 emerges as a major orchestrator of cellular stress response pathways.
Collapse
Affiliation(s)
- János Barna
- Department of Genetics, Eötvös Loránd University, Pázmány Péter Stny. 1/C, Budapest, 1117, Hungary
- MTA-ELTE Genetics Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Péter Csermely
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Tibor Vellai
- Department of Genetics, Eötvös Loránd University, Pázmány Péter Stny. 1/C, Budapest, 1117, Hungary.
- MTA-ELTE Genetics Research Group, Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
25
|
San Gil R, Ooi L, Yerbury JJ, Ecroyd H. The heat shock response in neurons and astroglia and its role in neurodegenerative diseases. Mol Neurodegener 2017; 12:65. [PMID: 28923065 PMCID: PMC5604514 DOI: 10.1186/s13024-017-0208-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 09/01/2017] [Indexed: 12/13/2022] Open
Abstract
Protein inclusions are a predominant molecular pathology found in numerous neurodegenerative diseases, including amyotrophic lateral sclerosis and Huntington's disease. Protein inclusions form in discrete areas of the brain characteristic to the type of neurodegenerative disease, and coincide with the death of neurons in that region (e.g. spinal cord motor neurons in amyotrophic lateral sclerosis). This suggests that the process of protein misfolding leading to inclusion formation is neurotoxic, and that cell-autonomous and non-cell autonomous mechanisms that maintain protein homeostasis (proteostasis) can, at times, be insufficient to prevent protein inclusion formation in the central nervous system. The heat shock response is a pro-survival pathway induced under conditions of cellular stress that acts to maintain proteostasis through the up-regulation of heat shock proteins, a superfamily of molecular chaperones, other co-chaperones and mitotic regulators. The kinetics and magnitude of the heat shock response varies in a stress- and cell-type dependent manner. It remains to be determined if and/or how the heat shock response is activated in the different cell-types that comprise the central nervous system (e.g. neurons and astroglia) in response to protein misfolding events that precede cellular dysfunctions in neurodegenerative diseases. This is particularly relevant considering emerging evidence demonstrating the non-cell autonomous nature of amyotrophic lateral sclerosis and Huntington's disease (and other neurodegenerative diseases) and the destructive role of astroglia in disease progression. This review highlights the complexity of heat shock response activation and addresses whether neurons and glia sense and respond to protein misfolding and aggregation associated with neurodegenerative diseases, in particular Huntington's disease and amyotrophic lateral sclerosis, by inducing a pro-survival heat shock response.
Collapse
Affiliation(s)
- Rebecca San Gil
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, 2522 Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, 2522 Australia
| | - Justin J. Yerbury
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, 2522 Australia
| | - Heath Ecroyd
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, 2522 Australia
| |
Collapse
|
26
|
Koskas S, Decottignies A, Dufour S, Pezet M, Verdel A, Vourc’h C, Faure V. Heat shock factor 1 promotes TERRA transcription and telomere protection upon heat stress. Nucleic Acids Res 2017; 45:6321-6333. [PMID: 28369628 PMCID: PMC5499866 DOI: 10.1093/nar/gkx208] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 11/13/2022] Open
Abstract
In response to metabolic or environmental stress, cells activate powerful defense mechanisms to prevent the formation and accumulation of toxic protein aggregates. The main orchestrator of this cellular response is HSF1 (heat shock factor 1), a transcription factor involved in the up-regulation of protein-coding genes with protective roles. It has become very clear that HSF1 has a broader function than initially expected. Indeed, our previous work demonstrated that, upon stress, HSF1 activates the transcription of a non-coding RNA, named Satellite III, at pericentromeric heterochromatin. Here, we observe that the function of HSF1 extends to telomeres and identify subtelomeric DNA as a new genomic target of HSF1. We show that the binding of HSF1 to subtelomeric regions plays an essential role in the upregulation of non-coding TElomeric Repeat containing RNA (TERRA) transcription upon heat shock. Importantly, our data show that telomere integrity is impacted by heat shock and that telomeric DNA damages are markedly enhanced in HSF1 deficient cells. Altogether, our findings reveal a new direct and essential function of HSF1 in the transcriptional activation of TERRA and in telomere protection upon stress.
Collapse
Affiliation(s)
- Sivan Koskas
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38042 Grenoble Cedex 9, France
| | | | - Solenne Dufour
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38042 Grenoble Cedex 9, France
| | - Mylène Pezet
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38042 Grenoble Cedex 9, France
| | - André Verdel
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38042 Grenoble Cedex 9, France
| | - Claire Vourc’h
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38042 Grenoble Cedex 9, France
| | - Virginie Faure
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38042 Grenoble Cedex 9, France
| |
Collapse
|
27
|
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone that is involved in the activation of disparate client proteins. This implicates Hsp90 in diverse biological processes that require a variety of co-ordinated regulatory mechanisms to control its activity. Perhaps the most important regulator is heat shock factor 1 (HSF1), which is primarily responsible for upregulating Hsp90 by binding heat shock elements (HSEs) within Hsp90 promoters. HSF1 is itself subject to a variety of regulatory processes and can directly respond to stress. HSF1 also interacts with a variety of transcriptional factors that help integrate biological signals, which in turn regulate Hsp90 appropriately. Because of the diverse clientele of Hsp90 a whole variety of co-chaperones also regulate its activity and some are directly responsible for delivery of client protein. Consequently, co-chaperones themselves, like Hsp90, are also subject to regulatory mechanisms such as post translational modification. This review, looks at the many different levels by which Hsp90 activity is ultimately regulated.
Collapse
|
28
|
Abstract
The ability of Hsp90 to activate a disparate clientele implicates this chaperone in diverse biological processes. To accommodate such varied roles, Hsp90 requires a variety of regulatory mechanisms that are coordinated in order to modulate its activity appropriately. Amongst these, the master-regulator heat shock factor 1 (HSF1) is critically important in upregulating Hsp90 during stress, but is also responsible, through interaction with specific transcription factors (such as STAT1 and Strap/p300) for the integration of a variety of biological signals that ultimately modulate Hsp90 expression. Additionally, transcription factors, such as STAT1, STAT3 (including STAT1-STAT3 oligomers), NF-IL6, and NF-kB, are known to influence Hsp90 expression directly. Co-chaperones offer another mechanism for Hsp90 regulation, and these can modulate the chaperone cycle appropriately for specific clientele. Co-chaperones include those that deliver specific clients to Hsp90, and others that regulate the chaperone cycle for specific Hsp90-client complexes by modulating Hsp90s ATPase activity. Finally, post-translational modification (PTM) of Hsp90 and its co-chaperones helps too further regulate the variety of different Hsp90 complexes found in cells.
Collapse
|
29
|
Yang DH, Jung KW, Bang S, Lee JW, Song MH, Floyd-Averette A, Festa RA, Ianiri G, Idnurm A, Thiele DJ, Heitman J, Bahn YS. Rewiring of Signaling Networks Modulating Thermotolerance in the Human Pathogen Cryptococcus neoformans. Genetics 2017; 205:201-219. [PMID: 27866167 PMCID: PMC5223503 DOI: 10.1534/genetics.116.190595] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/08/2016] [Indexed: 01/17/2023] Open
Abstract
Thermotolerance is a crucial virulence attribute for human pathogens, including the fungus Cryptococcus neoformans that causes fatal meningitis in humans. Loss of the protein kinase Sch9 increases C. neoformans thermotolerance, but its regulatory mechanism has remained unknown. Here, we studied the Sch9-dependent and Sch9-independent signaling networks modulating C. neoformans thermotolerance by using genome-wide transcriptome analysis and reverse genetic approaches. During temperature upshift, genes encoding for molecular chaperones and heat shock proteins were upregulated, whereas those for translation, transcription, and sterol biosynthesis were highly suppressed. In this process, Sch9 regulated basal expression levels or induced/repressed expression levels of some temperature-responsive genes, including heat shock transcription factor (HSF1) and heat shock proteins (HSP104 and SSA1). Notably, we found that the HSF1 transcript abundance decreased but the Hsf1 protein became transiently phosphorylated during temperature upshift. Nevertheless, Hsf1 is essential for growth and its overexpression promoted C. neoformans thermotolerance. Transcriptome analysis using an HSF1 overexpressing strain revealed a dual role of Hsf1 in the oxidative stress response and thermotolerance. Chromatin immunoprecipitation demonstrated that Hsf1 binds to the step-type like heat shock element (HSE) of its target genes more efficiently than to the perfect- or gap-type HSE. This study provides insight into the thermotolerance of C. neoformans by elucidating the regulatory mechanisms of Sch9 and Hsf1 through the genome-scale identification of temperature-dependent genes.
Collapse
Affiliation(s)
- Dong-Hoon Yang
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Kwang-Woo Jung
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Soohyun Bang
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jang-Won Lee
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Min-Hee Song
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Anna Floyd-Averette
- Departments of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Richard A Festa
- Departments of Pharmacology and Cancer Biology and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Giuseppe Ianiri
- Departments of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Dennis J Thiele
- Departments of Pharmacology and Cancer Biology and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Joseph Heitman
- Departments of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Yong-Sun Bahn
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
30
|
Altintas O, Park S, Lee SJV. The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Rep 2016; 49:81-92. [PMID: 26698870 PMCID: PMC4915121 DOI: 10.5483/bmbrep.2016.49.2.261] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 01/08/2023] Open
Abstract
Insulin/insulin-like growth factor (IGF)-1 signaling (IIS) pathway regulates
aging in many organisms, ranging from simple invertebrates to mammals, including
humans. Many seminal discoveries regarding the roles of IIS in aging and
longevity have been made by using the roundworm Caenorhabditis
elegans and the fruit fly Drosophila melanogaster. In this
review, we describe the mechanisms by which various IIS components regulate
aging in C. elegans and D. melanogaster. We
also cover systemic and tissue-specific effects of the IIS components on the
regulation of lifespan. We further discuss IIS-mediated physiological processes
other than aging and their effects on human disease models focusing on
C. elegans studies. As both C. elegans and
D. melanogaster have been essential for key findings
regarding the effects of IIS on organismal aging in general, these invertebrate
models will continue to serve as workhorses to help our understanding of
mammalian aging. [BMB Reports 2016; 49(2): 81-92]
Collapse
Affiliation(s)
- Ozlem Altintas
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Sangsoon Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Seung-Jae V Lee
- School of Interdisciplinary Bioscience and Bioengineering, Department of Life Sciences, and Information Technology Convergence Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
31
|
Munkácsy E, Khan MH, Lane RK, Borror MB, Park JH, Bokov AF, Fisher AL, Link CD, Rea SL. DLK-1, SEK-3 and PMK-3 Are Required for the Life Extension Induced by Mitochondrial Bioenergetic Disruption in C. elegans. PLoS Genet 2016; 12:e1006133. [PMID: 27420916 PMCID: PMC4946786 DOI: 10.1371/journal.pgen.1006133] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/27/2016] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial dysfunction underlies numerous age-related pathologies. In an effort to uncover how the detrimental effects of mitochondrial dysfunction might be alleviated, we examined how the nematode C. elegans not only adapts to disruption of the mitochondrial electron transport chain, but in many instances responds with extended lifespan. Studies have shown various retrograde responses are activated in these animals, including the well-studied ATFS-1-dependent mitochondrial unfolded protein response (UPRmt). Such processes fall under the greater rubric of cellular surveillance mechanisms. Here we identify a novel p38 signaling cascade that is required to extend life when the mitochondrial electron transport chain is disrupted in worms, and which is blocked by disruption of the Mitochondrial-associated Degradation (MAD) pathway. This novel cascade is defined by DLK-1 (MAP3K), SEK-3 (MAP2K), PMK-3 (MAPK) and the reporter gene Ptbb-6::GFP. Inhibition of known mitochondrial retrograde responses does not alter induction of Ptbb-6::GFP, instead induction of this reporter often occurs in counterpoint to activation of SKN-1, which we show is under the control of ATFS-1. In those mitochondrial bioenergetic mutants which activate Ptbb-6::GFP, we find that dlk-1, sek-3 and pmk-3 are all required for their life extension.
Collapse
Affiliation(s)
- Erin Munkácsy
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Cellular & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Maruf H. Khan
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Medicine (Division of Geriatrics, Gerontology, and Palliative Medicine), University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Rebecca K. Lane
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Megan B. Borror
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Jae H. Park
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Alex F. Bokov
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Alfred L. Fisher
- Department of Medicine (Division of Geriatrics, Gerontology, and Palliative Medicine), University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Geriatric Research, Education and Clinical Center, South Texas VA Health Care System, San Antonio, Texas, United States of America
- Center for Healthy Aging, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Christopher D. Link
- Institute for Behavioral Genetics & Department of Integrative Physiology, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Shane L. Rea
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
32
|
Martinez-Rossi NM, Jacob TR, Sanches PR, Peres NTA, Lang EAS, Martins MP, Rossi A. Heat Shock Proteins in Dermatophytes: Current Advances and Perspectives. Curr Genomics 2016; 17:99-111. [PMID: 27226766 PMCID: PMC4864838 DOI: 10.2174/1389202917666151116212437] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/02/2015] [Accepted: 07/13/2015] [Indexed: 11/29/2022] Open
Abstract
Heat shock proteins (HSPs) are proteins whose transcription responds rapidly to temperature shifts. They constitute a family of molecular chaperones, involved in the proper folding and stabilisation of proteins under physiological and adverse conditions. HSPs also assist in the protection and recovery of cells exposed to a variety of stressful conditions, including heat. The role of HSPs extends beyond chaperoning proteins, as they also participate in diverse cellular functions, such as the assembly of macromolecular complexes, protein transport and sorting, dissociation of denatured protein aggregates, cell cycle control, and programmed cell death. They are also important antigens from a variety of pathogens, are able to stimulate innate immune cells, and are implicated in acquired immunity. In fungi, HSPs have been implicated in virulence, dimorphic transition, and drug resistance. Some HSPs are potential targets for therapeutic strategies. In this review, we discuss the current understanding of HSPs in dermatophytes, which are a group of keratinophilic fungi responsible for superficial mycoses in humans and animals. Computational analyses were performed to characterise the group of proteins in these dermatophytes, as well as to assess their conservation and to identify DNA-binding domains (5′-nGAAn-3′) in the promoter regions of the hsp genes. In addition, the quantification of the transcript levels of few genes in a pacC background helped in the development of an extended model for the regulation of the expression of the hsp genes, which supports the participation of the pH-responsive transcriptional regulator PacC in this process.
Collapse
Affiliation(s)
- Nilce M Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Tiago R Jacob
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Pablo R Sanches
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Nalu T A Peres
- Present address: Department of Morphology, Federal University of Sergipe, SE, Brazil
| | - Elza A S Lang
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maíra P Martins
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Antonio Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
33
|
Feng H, Liu W, Wang DC. Purification, crystallization and X-ray diffraction analysis of the DNA-binding domain of human heat-shock factor 2. Acta Crystallogr F Struct Biol Commun 2016; 72:294-9. [PMID: 27050263 PMCID: PMC4822986 DOI: 10.1107/s2053230x16003599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/01/2016] [Indexed: 11/10/2022] Open
Abstract
Cells respond to various proteotoxic stimuli and maintain protein homeostasis through a conserved mechanism called the heat-shock response, which is characterized by the enhanced synthesis of heat-shock proteins. This response is mediated by heat-shock factors (HSFs). Four genes encoding HSF1-HSF4 exist in the genome of mammals. In this protein family, HSF1 is the orthologue of the single HSF in lower eukaryotic organisms and is the major regulator of the heat-shock response, while HSF2, which shows low sequence homology to HSF1, serves as a developmental regulator. Increasing evidence has revealed biochemical properties and functional roles that are unique to HSF2, such as its DNA-binding preference and sumoylation patterns, which are distinct from those of HSF1. The structural basis for such differences, however, is poorly understood owing to the lack of available mammalian HSF structures. The N-terminal DNA-binding domain (DBD) is the most conserved functional module and is the only crystallizable domain in HSFs. To date, only HSF1 homologue structures from yeast and fruit fly have been determined. Along with extensive studies of the HSF family, more structural information, particularly from members with a remoter phylogenic relationship to the reported structures, e.g. HSF2, is needed in order to better understand the detailed mechanisms of HSF biology. In this work, the recombinant DBD (residues 7-112) from human HSF2 was produced in Escherichia coli and crystallized. An X-ray diffraction data set was collected to 1.32 Å resolution from a crystal belonging to space group P212121 with unit cell-parameters a = 65.66, b = 67.26, c = 93.25 Å. The data-evaluation statistics revealed good quality of the collected data, thus establishing a solid basis for the determination of the first structure at atomic resolution in this protein family.
Collapse
Affiliation(s)
- Han Feng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Wei Liu
- Institute of Immunology, The Third Military Medical University, Chongqing 400038, People’s Republic of China
| | - Da-Cheng Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| |
Collapse
|
34
|
Neudegger T, Verghese J, Hayer-Hartl M, Hartl FU, Bracher A. Structure of human heat-shock transcription factor 1 in complex with DNA. Nat Struct Mol Biol 2016; 23:140-6. [PMID: 26727489 DOI: 10.1038/nsmb.3149] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/17/2015] [Indexed: 02/06/2023]
Abstract
Heat-shock transcription factor 1 (HSF1) has a central role in mediating the protective response to protein conformational stresses in eukaryotes. HSF1 consists of an N-terminal DNA-binding domain (DBD), a coiled-coil oligomerization domain, a regulatory domain and a transactivation domain. Upon stress, HSF1 trimerizes via its coiled-coil domain and binds to the promoters of heat shock protein-encoding genes. Here, we present cocrystal structures of the human HSF1 DBD in complex with cognate DNA. A comparative analysis of the HSF1 paralog Skn7 from Chaetomium thermophilum showed that single amino acid changes in the DBD can switch DNA binding specificity, thus revealing the structural basis for the interaction of HSF1 with cognate DNA. We used a crystal structure of the coiled-coil domain of C. thermophilum Skn7 to develop a model of the active human HSF1 trimer in which HSF1 embraces the heat-shock-element DNA.
Collapse
Affiliation(s)
- Tobias Neudegger
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jacob Verghese
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andreas Bracher
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
35
|
Crinelli R, Bianchi M, Radici L, Carloni E, Giacomini E, Magnani M. Molecular Dissection of the Human Ubiquitin C Promoter Reveals Heat Shock Element Architectures with Activating and Repressive Functions. PLoS One 2015; 10:e0136882. [PMID: 26317694 PMCID: PMC4552642 DOI: 10.1371/journal.pone.0136882] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/10/2015] [Indexed: 11/19/2022] Open
Abstract
The promoter of the polyubiquitin C gene (UBC) contains putative heat shock elements (HSEs) which are thought to mediate UBC induction upon stress. However, the mapping and the functional characterization of the cis-acting determinants for its up-regulation have not yet been addressed. In this study, the sequence encompassing 916 nucleotides upstream of the transcription start site of the human UBC gene has been dissected by in silico, in vitro and in vivo approaches. The information derived from this analysis was used to study the functional role and the interplay of the identified HSEs in mediating the transcriptional activation of the UBC gene under conditions of proteotoxic stress, induced by the proteasome inhibitor MG132. Here we demonstrate that at least three HSEs, with different configurations, exist in the UBC promoter: two distal, residing within nucleotides -841/-817 and -715/-691, and one proximal to the transcription start site (nt -100/-65). All of them are bound by transcription factors belonging to the heat shock factor (HSF) family, as determined by bandshift, supershift and ChIP analyses. Site-directed mutagenesis of reporter constructs demonstrated that while the distal elements are involved in the up-regulation of UBC in response to proteasome inhibition, the proximal one appears rather to function as negative regulator of the stress-induced transcriptional activity. This is the first evidence that an HSE may exert a negative role on the transcription driven by other HSE motifs on the same gene promoter, highlighting a new level of complexity in the regulation of HSFs and in the control of ubiquitin levels.
Collapse
Affiliation(s)
- Rita Crinelli
- Department of Biomolecular Sciences, Section of Biochemistry and Molecular Biology, University of Urbino “Carlo Bo”, Urbino, Italy
- * E-mail:
| | - Marzia Bianchi
- Department of Biomolecular Sciences, Section of Biochemistry and Molecular Biology, University of Urbino “Carlo Bo”, Urbino, Italy
| | - Lucia Radici
- Department of Biomolecular Sciences, Section of Biochemistry and Molecular Biology, University of Urbino “Carlo Bo”, Urbino, Italy
| | - Elisa Carloni
- Department of Biomolecular Sciences, Section of Biochemistry and Molecular Biology, University of Urbino “Carlo Bo”, Urbino, Italy
| | - Elisa Giacomini
- Department of Biomolecular Sciences, Section of Biochemistry and Molecular Biology, University of Urbino “Carlo Bo”, Urbino, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, Section of Biochemistry and Molecular Biology, University of Urbino “Carlo Bo”, Urbino, Italy
| |
Collapse
|
36
|
Uncoupling Stress-Inducible Phosphorylation of Heat Shock Factor 1 from Its Activation. Mol Cell Biol 2015; 35:2530-40. [PMID: 25963659 DOI: 10.1128/mcb.00816-14] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 05/04/2015] [Indexed: 12/31/2022] Open
Abstract
In mammals the stress-inducible expression of genes encoding heat shock proteins is under the control of the heat shock transcription factor 1 (HSF1). Activation of HSF1 is a multistep process, involving trimerization, acquisition of DNA-binding and transcriptional activities, which coincide with several posttranslational modifications. Stress-inducible phosphorylation of HSF1, or hyperphosphorylation, which occurs mainly within the regulatory domain (RD), has been proposed as a requirement for HSF-driven transcription and is widely used for assessing HSF1 activation. Nonetheless, the contribution of hyperphosphorylation to the activity of HSF1 remains unknown. In this study, we generated a phosphorylation-deficient HSF1 mutant (HSF1Δ∼PRD), where the 15 known phosphorylation sites within the RD were disrupted. Our results show that the phosphorylation status of the RD does not affect the subcellular localization and DNA-binding activity of HSF1. Surprisingly, under stress conditions, HSF1Δ∼PRD is a potent transactivator of both endogenous targets and a reporter gene, and HSF1Δ∼PRD has a reduced activation threshold. Our results provide the first direct evidence for uncoupling stress-inducible phosphorylation of HSF1 from its activation, and we propose that the phosphorylation signature alone is not an appropriate marker for HSF1 activity.
Collapse
|
37
|
Nussbaum I, Weindling E, Jubran R, Cohen A, Bar-Nun S. Deteriorated stress response in stationary-phase yeast: Sir2 and Yap1 are essential for Hsf1 activation by heat shock and oxidative stress, respectively. PLoS One 2014; 9:e111505. [PMID: 25356557 PMCID: PMC4214751 DOI: 10.1371/journal.pone.0111505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/02/2014] [Indexed: 11/19/2022] Open
Abstract
Stationary-phase cultures have been used as an important model of aging, a complex process involving multiple pathways and signaling networks. However, the molecular processes underlying stress response of non-dividing cells are poorly understood, although deteriorated stress response is one of the hallmarks of aging. The budding yeast Saccharomyces cerevisiae is a valuable model organism to study the genetics of aging, because yeast ages within days and are amenable to genetic manipulations. As a unicellular organism, yeast has evolved robust systems to respond to environmental challenges. This response is orchestrated largely by the conserved transcription factor Hsf1, which in S. cerevisiae regulates expression of multiple genes in response to diverse stresses. Here we demonstrate that Hsf1 response to heat shock and oxidative stress deteriorates during yeast transition from exponential growth to stationary-phase, whereas Hsf1 activation by glucose starvation is maintained. Overexpressing Hsf1 does not significantly improve heat shock response, indicating that Hsf1 dwindling is not the major cause for Hsf1 attenuated response in stationary-phase yeast. Rather, factors that participate in Hsf1 activation appear to be compromised. We uncover two factors, Yap1 and Sir2, which discretely function in Hsf1 activation by oxidative stress and heat shock. In Δyap1 mutant, Hsf1 does not respond to oxidative stress, while in Δsir2 mutant, Hsf1 does not respond to heat shock. Moreover, excess Sir2 mimics the heat shock response. This role of the NAD+-dependent Sir2 is supported by our finding that supplementing NAD+ precursors improves Hsf1 heat shock response in stationary-phase yeast, especially when combined with expression of excess Sir2. Finally, the combination of excess Hsf1, excess Sir2 and NAD+ precursors rejuvenates the heat shock response.
Collapse
Affiliation(s)
- Inbal Nussbaum
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Esther Weindling
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ritta Jubran
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Aviv Cohen
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shoshana Bar-Nun
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
38
|
Kobayashi Y, Harada N, Nishimura Y, Saito T, Nakamura M, Fujiwara T, Kuroiwa T, Misumi O. Algae sense exact temperatures: small heat shock proteins are expressed at the survival threshold temperature in Cyanidioschyzon merolae and Chlamydomonas reinhardtii. Genome Biol Evol 2014; 6:2731-40. [PMID: 25267447 PMCID: PMC4224343 DOI: 10.1093/gbe/evu216] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The primitive red alga Cyanidioschyzon merolae inhabits acidic hot springs and shows robust resistance to heat shock treatments up to 63 °C. Microarray analysis was performed to identify the key genes underlying the high temperature tolerance of this organism. Among the upregulated genes that were identified, we focused on two small heat shock proteins (sHSPs) that belong to a unique class of HSP families. These two genes are located side by side in an inverted repeat orientation on the same chromosome and share a promoter. These two genes were simultaneously and rapidly upregulated in response to heat shock treatment (>1,000-fold more than the control). Interestingly, upregulation appeared to be triggered not by a difference in temperatures, but rather by the absolute temperature. Similar sHSP structural genes have been reported in the green alga Chlamydomonas reinhardtii, but the threshold temperature for the expression of these sHSP-encoding genes in Ch. reinhardtii was different from the threshold temperature for the expression of the sHSP genes from Cy. merolae. These results indicate the possible importance of an absolute temperature sensing system in the evolution and tolerance of high-temperature conditions among unicellular microalgae.
Collapse
Affiliation(s)
- Yusuke Kobayashi
- Laboratory of Plant Molecular Genetics, Department of Botany, Kyoto University, Oiwake-cho, Kita-Shirakawa, Kyoto, Japan
| | - Naomi Harada
- Laboratory of Plant Molecular Genetics, Department of Botany, Kyoto University, Oiwake-cho, Kita-Shirakawa, Kyoto, Japan
| | - Yoshiki Nishimura
- Laboratory of Plant Molecular Genetics, Department of Botany, Kyoto University, Oiwake-cho, Kita-Shirakawa, Kyoto, Japan
| | - Takafumi Saito
- Department of Biological Science and Chemistry, Faculty of Science, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Mami Nakamura
- Symbiosis and Cell Evolution Laboratory, Center for Frontier Research, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Takayuki Fujiwara
- Symbiosis and Cell Evolution Laboratory, Center for Frontier Research, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Tsuneyoshi Kuroiwa
- Faculty of Science, Rikkyo University, Toshima-ku, Tokyo, Japan Core Research for Evolutional Science and Technology (CREST, JST), Japan Science and Technology Agency, Kawaguchi, Japan
| | - Osami Misumi
- Department of Biological Science and Chemistry, Faculty of Science, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan Core Research for Evolutional Science and Technology (CREST, JST), Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
39
|
Kust N, Rybalkina E, Mertsalov I, Savchenko E, Revishchin A, Pavlova G. Functional analysis of Drosophila HSP70 promoter with different HSE numbers in human cells. PLoS One 2014; 9:e101994. [PMID: 25101947 PMCID: PMC4125163 DOI: 10.1371/journal.pone.0101994] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/06/2014] [Indexed: 11/18/2022] Open
Abstract
The activation of genetic constructs including the Drosophila hsp70 promoter with four and eight HSE sequences in the regulatory region has been described in human cells. The promoter was shown to be induced at lower temperatures compared to the human hsp70 promoter. The promoter activity increased after a 60-min heat shock already at 38 °C in human cells. The promoter activation was observed 24 h after heat shock for the constructs with eight HSEs, while those with four HSEs required 48 h. After transplantation of in vitro heat-shocked transfected cells, the promoter activity could be maintained for 3 days with a gradual decline. The promoter activation was confirmed in vivo without preliminary heat shock in mouse ischemic brain foci. Controlled expression of the Gdnf gene under a Drosophila hsp70 promoter was demonstrated. This promoter with four and eight HSE sequences in the regulatory region can be proposed as a regulated promoter in genetic therapeutic systems.
Collapse
Affiliation(s)
- Nadezda Kust
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Ltd Apto-pharm, Moscow, Russia
| | | | - Ilya Mertsalov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Savchenko
- Institute of Medicine and Cell Transplantation, Moscow, Russia
- Ltd Apto-pharm, Moscow, Russia
| | - Alexander Revishchin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Institute of Medicine and Cell Transplantation, Moscow, Russia
- Ltd Apto-pharm, Moscow, Russia
| | - Gali Pavlova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Institute of Medicine and Cell Transplantation, Moscow, Russia
- Ltd Apto-pharm, Moscow, Russia
- * E-mail:
| |
Collapse
|
40
|
Ishida K, Varrecchia M, Knudsen GM, Jolly ER. Immunolocalization of anti-hsf1 to the acetabular glands of infectious schistosomes suggests a non-transcriptional function for this transcriptional activator. PLoS Negl Trop Dis 2014; 8:e3051. [PMID: 25078989 PMCID: PMC4117452 DOI: 10.1371/journal.pntd.0003051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 06/16/2014] [Indexed: 11/19/2022] Open
Abstract
Schistosomiasis is a chronically debilitating disease caused by parasitic worms of the genus Schistosoma, and it is a global problem affecting over 240 million people. Little is known about the regulatory proteins and mechanisms that control schistosome host invasion, gene expression, and development. Schistosome larvae, cercariae, are transiently free-swimming organisms and infectious to man. Cercariae penetrate human host skin directly using proteases that degrade skin connective tissue. These proteases are secreted from anucleate acetabular glands that contain many proteins, including heat shock proteins. Heat shock transcription factors are strongly conserved activators that play crucial roles in the maintenance of cell homeostasis by transcriptionally regulating heat shock protein expression. In this study, we clone and characterize the schistosome Heat shock factor 1 gene (SmHSF1). We verify its ability to activate transcription using a modified yeast one-hybrid system, and we show that it can bind to the heat shock binding element (HSE) consensus DNA sequence. Our quantitative RT-PCR analysis shows that SmHSF1 is expressed throughout several life-cycle stages from sporocyst to adult worm. Interestingly, using immunohistochemistry, a polyclonal antibody raised against an Hsf1-peptide demonstrates a novel localization for this conserved, stress-modulating activator. Our analysis suggests that schistosome Heat shock factor 1 may be localized to the acetabular glands of infective cercariae. Schistosome parasites are the cause of human schistosomiasis and infect more than 240 million people worldwide. Schistosome larvae, termed cercariae, are a free-swimming mobile developmental stage responsible for host infection. These larvae produce enzymes that degrade human skin, allowing them to pass into the human host. After invasion, they continue to evade the immune system and develop into adult worms. The transition from free-swimming larvae in freshwater to invasion into a warm-blooded saline environment requires that the parasite regulate genes to adapt to these changes. Heat shock factor 1 is a well-characterized activator of stress and heat response that functions in cellular nuclei. Using immunohistochemistry, we observed non-nuclear localization for anti-Heat shock factor 1 signal in the secretory glands necessary for the invasive function of schistosome larvae. This observation expands the potential mechanistic roles for Heat shock factor 1 and may aid in our understanding of schistosome host invasion and early development.
Collapse
Affiliation(s)
- Kenji Ishida
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Melissa Varrecchia
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Giselle M. Knudsen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Emmitt R. Jolly
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
41
|
Yang C, Wang L, Wang J, Jiang Q, Qiu L, Zhang H, Song L. The polymorphism in the promoter of HSP70 gene is associated with heat tolerance of two congener endemic bay scallops (Argopecten irradians irradians and A. i. concentricus). PLoS One 2014; 9:e102332. [PMID: 25028964 PMCID: PMC4100766 DOI: 10.1371/journal.pone.0102332] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/17/2014] [Indexed: 11/18/2022] Open
Abstract
Background The heat shock protein 70 (HSP70) is one kind of molecular chaperones, which plays a key role in protein metabolism under normal and stress conditions. Methodology In the present study, the mRNA expressions of HSP70 under normal physiological condition and after acute heat stress were investigated in gills of two bay scallop populations (Argopecten irradians irradians and A. i. concentricus). The heat resistant scallops A. i. concentricus showed significantly lower basal level and higher induction of HSP70 compared with that of the heat sensitive scallops A. i. irradians. The promoter sequence of HSP70 gene from bay scallop (AiHSP70) was cloned and the polymorphisms within this region were investigated to analyze their association with heat tolerance. Totally 11 single nucleotide polymorphisms (SNPs) were identified, and four of them (−967, −480, −408 and −83) were associated with heat tolerance after HWE analysis and association analysis. Based on the result of linkage disequilibrium analysis, the in vitro transcriptional activities of AiHSP70 promoters with different genotype were further determined, and the results showed that promoter from A. i. concentricus exhibited higher transcriptional activity than that from A. i. irradians (P<0.05). Conclusions The results provided insights into the molecular mechanisms underlying the thermal adaptation of different congener endemic bay scallops, which suggested that the increased heat tolerance of A. i. concentricus (compared with A. i. irradians) was associated with the higher expression of AiHSP70. Meanwhile, the −967 GG, −480 AA, −408 TT and −83 AG genotypes could be potential markers for scallop selection breeding with higher heat tolerance.
Collapse
Affiliation(s)
- Chuanyan Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail: (LW); (LS)
| | - Jingjing Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Agricultural University, Qingdao, China
| | - Qiufen Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail: (LW); (LS)
| |
Collapse
|
42
|
Heat shock protein 72 expressing stress in sepsis: unbridgeable gap between animal and human studies--a hypothetical "comparative" study. BIOMED RESEARCH INTERNATIONAL 2014; 2014:101023. [PMID: 24524071 PMCID: PMC3912989 DOI: 10.1155/2014/101023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 10/05/2013] [Indexed: 01/30/2023]
Abstract
Heat shock protein 72 (Hsp72) exhibits a protective role during times of increased risk of pathogenic challenge and/or tissue damage. The aim of the study was to ascertain Hsp72 protective effect differences between animal and human studies in sepsis using a hypothetical “comparative study” model.
Forty-one in vivo (56.1%), in vitro (17.1%), or combined (26.8%) animal and 14 in vivo (2) or in vitro (12) human Hsp72 studies (P < 0.0001) were enrolled in the analysis. Of the 14 human studies, 50% showed a protective Hsp72 effect compared to 95.8% protection shown in septic animal studies (P < 0.0001). Only human studies reported Hsp72-associated mortality (21.4%) or infection (7.1%) or reported results (14.3%) to be nonprotective (P < 0.001). In animal models, any Hsp72 induction method tried increased intracellular Hsp72 (100%), compared to 57.1% of human studies (P < 0.02), reduced proinflammatory cytokines (28/29), and enhanced survival (18/18). Animal studies show a clear Hsp72 protective effect in sepsis. Human studies are inconclusive, showing either protection or a possible relation to mortality and infections. This might be due to the fact that using evermore purified target cell populations in animal models, a lot of clinical information regarding the net response that occurs in sepsis is missing.
Collapse
|
43
|
Zhang H, Zhang L, Yu F, Liu Y, Liang Q, Deng G, Chen G, Liu M, Xiao X. HSF1 is a transcriptional activator of IL-10 gene expression in RAW264.7 macrophages. Inflammation 2013; 35:1558-66. [PMID: 22549481 DOI: 10.1007/s10753-012-9471-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The heat shock transcription factor (HSF) is an important transactivator of the heat shock genes. Recent studies have shown that HSF1 acts as a repressor of non-heat shock genes to protect against endotoxemia. In this study, we found that heat shock treatment and HSF1 over-expression augmented the induction of interleukin (IL)-10 mRNA. Computational analysis of the mouse IL-10 promoter region showed that three potential heat shock elements (HSEs) were located at mouse IL-10 gene promoter, among which only the -387/-360 probe formed a complex with HSF1. The lack of binding of the other two HSEs to HSF1 suggested the critical role of the flanking sequences in the binding specificity of HSE to HSF1. Moreover, we showed that HSF1 overexpression transactivated mouse IL-10 gene promoter and this transcriptional activation was inhibited by the mutation of HSE in the -387/-360 region of IL-10 gene promoter using luciferase reporter assay. These findings indicate that HSF1 is a transcriptional activator of anti-inflammatory mediator IL-10 gene in RAW264.7 macrophages.
Collapse
Affiliation(s)
- Huali Zhang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Swan CL, Evans TG, Sylvain N, Krone PH. Zebrafish HSF4: a novel protein that shares features of both HSF1 and HSF4 of mammals. Cell Stress Chaperones 2012; 17:623-37. [PMID: 22528049 PMCID: PMC3535164 DOI: 10.1007/s12192-012-0337-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 03/19/2012] [Accepted: 03/21/2012] [Indexed: 12/21/2022] Open
Abstract
Heat-shock proteins (hsps) have important roles in the development of the eye lens. We previously demonstrated that knockdown of hsp70 gene expression using morpholino antisense technology resulted in an altered lens phenotype in zebrafish embryos. A less severe phenotype was seen with knockdown of heat-shock factor 1 (HSF1), suggesting that, while it likely plays a role in hsp70 regulation during lens formation, other regulatory factors are also involved. Heat-shock factor 4 plays an important role in mammalian lens development, and an expressed sequence tag encoding zebrafish HSF4 has been identified. The deduced amino acid sequence shares structural similarities with mammalian HSF4 including the lack of an HR-C domain. However, the HR-C domain is absent due to a severe C-terminal truncation within zebrafish HSF4 (zHSF4) relative to the mammalian protein. Surprisingly, the amino acid composition of the zHSF4 DNA binding domain shares a greater degree of identity with HSF1 proteins than it does with mammalian HSF4 proteins. Consistent with this, the binding affinity of in vitro synthesized zHSF4 for discontinuous heat-shock response element sequences is more limited, similar to what has been previously observed for HSF1 proteins. Hsf4 mRNA is expressed in zebrafish adult eye tissue but is only observed in developing embryonic tissue at 60 h post-fertilization or later. This, together with the lack of an observable phenotype following morpholino-based antisense knockdown of hsf4, suggests that zHSF4 is unlikely to play a role in regulating early embryonic lens development.
Collapse
Affiliation(s)
- Cynthia L. Swan
- />Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, 104 Wiggins Road, Saskatoon, SK S7N 5E5 Canada
| | - Tyler G. Evans
- />Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, 104 Wiggins Road, Saskatoon, SK S7N 5E5 Canada
- />Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106 USA
| | - Nicole Sylvain
- />Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, 104 Wiggins Road, Saskatoon, SK S7N 5E5 Canada
| | - Patrick H. Krone
- />Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, 104 Wiggins Road, Saskatoon, SK S7N 5E5 Canada
| |
Collapse
|
45
|
West JD, Wang Y, Morano KA. Small molecule activators of the heat shock response: chemical properties, molecular targets, and therapeutic promise. Chem Res Toxicol 2012; 25:2036-53. [PMID: 22799889 DOI: 10.1021/tx300264x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
All cells have developed various mechanisms to respond and adapt to a variety of environmental challenges, including stresses that damage cellular proteins. One such response, the heat shock response (HSR), leads to the transcriptional activation of a family of molecular chaperone proteins that promote proper folding or clearance of damaged proteins within the cytosol. In addition to its role in protection against acute insults, the HSR also regulates lifespan and protects against protein misfolding that is associated with degenerative diseases of aging. As a result, identifying pharmacological regulators of the HSR has become an active area of research in recent years. Here, we review progress made in identifying small molecule activators of the HSR, what cellular targets these compounds interact with to drive response activation, and how such molecules may ultimately be employed to delay or reverse protein misfolding events that contribute to a number of diseases.
Collapse
Affiliation(s)
- James D West
- Biochemistry and Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, Ohio 44691, USA.
| | | | | |
Collapse
|
46
|
Li Q, An J, Liu X, Zhang M, Ling Y, Wang C, Zhao J, Yu L. SNIP1: a new activator of HSE signaling pathway. Mol Cell Biochem 2011; 362:1-6. [PMID: 22020748 DOI: 10.1007/s11010-011-1120-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 10/07/2011] [Indexed: 01/15/2023]
Abstract
In the last 10 years, more and more attention has been focused on SNIP1 (Smad nuclear interacting protein 1), which functions as a transcriptional coactivator. We report here that through quantitative real-time PCR analysis in 18 different human tissues, SNIP1 was found to be expressed ubiquitously. When overexpressed in HeLa cells, SNIP1-EGFP fused protein exhibited a nuclear localization with a characteristic subnuclear distribution in speckles or formed larger discrete nuclear bodies in some cells. Reporter gene assay showed that overexpression of SNIP1 in HEK 293 cells or H1299 cells strongly activated the HSE signaling pathway. Moreover, SNIP1 could selectively regulate the transcription of HSP70A1A and HSP27. Taken together, our findings suggest that SNIP1 might also be a positive regulator of HSE signaling pathway.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Zorzi E, Bonvini P. Inducible hsp70 in the regulation of cancer cell survival: analysis of chaperone induction, expression and activity. Cancers (Basel) 2011; 3:3921-56. [PMID: 24213118 PMCID: PMC3763403 DOI: 10.3390/cancers3043921] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/26/2011] [Accepted: 10/10/2011] [Indexed: 12/31/2022] Open
Abstract
Understanding the mechanisms that control stress is central to realize how cells respond to environmental and physiological insults. All the more important is to reveal how tumour cells withstand their harsher growth conditions and cope with drug-induced apoptosis, since resistance to chemotherapy is the foremost complication when curing cancer. Intensive research on tumour biology over the past number of years has provided significant insights into the molecular events that occur during oncogenesis, and resistance to anti-cancer drugs has been shown to often rely on stress response and expression of inducible heat shock proteins (HSPs). However, with respect to the mechanisms guarding cancer cells against proteotoxic stresses and the modulatory effects that allow their survival, much remains to be defined. Heat shock proteins are molecules responsible for folding newly synthesized polypeptides under physiological conditions and misfolded proteins under stress, but their role in maintaining the transformed phenotype often goes beyond their conventional chaperone activity. Expression of inducible HSPs is known to correlate with limited sensitivity to apoptosis induced by diverse cytotoxic agents and dismal prognosis of several tumour types, however whether cancer cells survive because of the constitutive expression of heat shock proteins or the ability to induce them when adapting to the hostile microenvironment remains to be elucidated. Clear is that tumours appear nowadays more "addicted" to heat shock proteins than previously envisaged, and targeting HSPs represents a powerful approach and a future challenge for sensitizing tumours to therapy. This review will focus on the anti-apoptotic role of heat shock 70kDa protein (Hsp70), and how regulatory factors that control inducible Hsp70 synthesis, expression and activity may be relevant for response to stress and survival of cancer cells.
Collapse
Affiliation(s)
- Elisa Zorzi
- OncoHematology Clinic of Pediatrics, University-Hospital of Padova, 35100 Padova, Italy; E-Mail:
| | - Paolo Bonvini
- OncoHematology Clinic of Pediatrics, University-Hospital of Padova, 35100 Padova, Italy; E-Mail:
- Fondazione Città della Speranza, 36030 Monte di Malo, Vicenza, Italy
| |
Collapse
|
48
|
Rawat P, Mitra D. Cellular heat shock factor 1 positively regulates human immunodeficiency virus-1 gene expression and replication by two distinct pathways. Nucleic Acids Res 2011; 39:5879-92. [PMID: 21459854 PMCID: PMC3152347 DOI: 10.1093/nar/gkr198] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) infection leads to changes in cellular gene expression, which in turn tend to modulate viral gene expression and replication. Cellular heat shock proteins (HSPs) are induced upon heat shock, UV irradiation and microbial or viral infections. We have reported earlier Nef-dependent induction of HSP40 leading to increased HIV-1 gene expression; however, the mechanism of induction remained to be elucidated. As expression of HSPs is regulated by heat shock factors (HSFs), we have now studied the role of HSF1 not only in Nef-dependent HSP40 induction but also in HIV-1 gene expression. Our results show that HSF1 is also induced during HIV-1 infection and it positively regulates HIV-1 gene expression by two distinct pathways. First, along with Nef it activates HSP40 promoter which in turn leads to increased HIV-1 gene expression. Second, HSF1 directly interacts with newly identified HSF1 binding sequence on HIV-1 LTR promoter and induces viral gene expression and replication. Thus, the present work not only identifies a molecular basis for HSF1-mediated enhancement of viral replication but also provides another example of how HIV-1 uses host cell machinery for its successful replication in the host.
Collapse
Affiliation(s)
- Pratima Rawat
- National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | | |
Collapse
|
49
|
Gonsalves SE, Moses AM, Razak Z, Robert F, Westwood JT. Whole-genome analysis reveals that active heat shock factor binding sites are mostly associated with non-heat shock genes in Drosophila melanogaster. PLoS One 2011; 6:e15934. [PMID: 21264254 PMCID: PMC3021535 DOI: 10.1371/journal.pone.0015934] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 12/01/2010] [Indexed: 11/19/2022] Open
Abstract
During heat shock (HS) and other stresses, HS gene transcription in eukaryotes is up-regulated by the transcription factor heat shock factor (HSF). While the identities of the major HS genes have been known for more than 30 years, it has been suspected that HSF binds to numerous other genes and potentially regulates their transcription. In this study, we have used a chromatin immunoprecipitation and microarray (ChIP-chip) approach to identify 434 regions in the Drosophila genome that are bound by HSF. We have also performed a transcript analysis of heat shocked Kc167 cells and third instar larvae and compared them to HSF binding sites. The heat-induced transcription profiles were quite different between cells and larvae and surprisingly only about 10% of the genes associated with HSF binding sites show changed transcription. There were also genes that showed changes in transcript levels that did not appear to correlate with HSF binding sites. Analysis of the locations of the HSF binding sites revealed that 57% were contained within genes with approximately 2/3rds of these sites being in introns. We also found that the insulator protein, BEAF, has enriched binding prior to HS to promoters of genes that are bound by HSF upon HS but that are not transcriptionally induced during HS. When the genes associated with HSF binding sites in promoters were analyzed for gene ontology terms, categories such as stress response and transferase activity were enriched whereas analysis of genes having HSF binding sites in introns identified those categories plus ones related to developmental processes and reproduction. These results suggest that Drosophila HSF may be regulating many genes besides the known HS genes and that some of these genes may be regulated during non-stress conditions.
Collapse
Affiliation(s)
- Sarah E. Gonsalves
- Department of Cell and Systems Biology, University of Toronto, Mississauga, Canada
| | - Alan M. Moses
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| | - Zak Razak
- Department of Cell and Systems Biology, University of Toronto, Mississauga, Canada
| | - Francois Robert
- Institut de Recherches Cliniques de Montréal, Montréal, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - J. Timothy Westwood
- Department of Cell and Systems Biology, University of Toronto, Mississauga, Canada
- * E-mail:
| |
Collapse
|
50
|
Finka A, Mattoo RUH, Goloubinoff P. Meta-analysis of heat- and chemically upregulated chaperone genes in plant and human cells. Cell Stress Chaperones 2011; 16:15-31. [PMID: 20694844 PMCID: PMC3024091 DOI: 10.1007/s12192-010-0216-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 07/16/2010] [Accepted: 07/19/2010] [Indexed: 12/18/2022] Open
Abstract
Molecular chaperones are central to cellular protein homeostasis. In mammals, protein misfolding diseases and aging cause inflammation and progressive tissue loss, in correlation with the accumulation of toxic protein aggregates and the defective expression of chaperone genes. Bacteria and non-diseased, non-aged eukaryotic cells effectively respond to heat shock by inducing the accumulation of heat-shock proteins (HSPs), many of which molecular chaperones involved in protein homeostasis, in reducing stress damages and promoting cellular recovery and thermotolerance. We performed a meta-analysis of published microarray data and compared expression profiles of HSP genes from mammalian and plant cells in response to heat or isothermal treatments with drugs. The differences and overlaps between HSP and chaperone genes were analyzed, and expression patterns were clustered and organized in a network. HSPs and chaperones only partly overlapped. Heat-shock induced a subset of chaperones primarily targeted to the cytoplasm and organelles but not to the endoplasmic reticulum, which organized into a network with a central core of Hsp90s, Hsp70s, and sHSPs. Heat was best mimicked by isothermal treatments with Hsp90 inhibitors, whereas less toxic drugs, some of which non-steroidal anti-inflammatory drugs, weakly expressed different subsets of Hsp chaperones. This type of analysis may uncover new HSP-inducing drugs to improve protein homeostasis in misfolding and aging diseases.
Collapse
Affiliation(s)
- Andrija Finka
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Rayees U. H. Mattoo
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|