1
|
Wan JS, Mann RK, Grunstein M. Yeast histone H3 and H4 N termini function through different GAL1 regulatory elements to repress and activate transcription. Proc Natl Acad Sci U S A 1995; 92:5664-8. [PMID: 7777566 PMCID: PMC41757 DOI: 10.1073/pnas.92.12.5664] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Previous work has shown that N-terminal deletions of yeast histone H3 cause a 2- to 4-fold increase in the induction of GAL1 and a number of other genes involved in galactose metabolism. In contrast, deletions at the H4 N terminus cause a 10- to 20-fold decrease in the induction of these same GAL genes. However, H3 and H4 N-terminal deletions each decrease PHO5 induction only 2- to 4-fold. To define the GAL1 gene regulatory elements through which the histone N termini activate or repress transcription, fusions were made between GAL1 and PHO5 promoter elements attached to a beta-galactosidase reporter gene. We show here that GAL1 hyperactivation caused by the H3 N-terminal deletion delta 4-15 is linked to the upstream activation sequence. Conversely, the relative decrease in GAL1 induction caused by the H4N-terminal deletion delta 4-28 is linked to the downstream promoter which contains the TATA element. These data indicate that the H3 N terminus is required for the repression of the GAL1 upstream element, whereas the H4N terminus is required for the activation of the GAL1 downstream promoter element.
Collapse
Affiliation(s)
- J S Wan
- Department of Biological Chemistry, School of Medicine, University of California, Los Angeles 90095, USA
| | | | | |
Collapse
|
2
|
Yao B, Sollitti P, Zhang X, Marmur J. Shared control of maltose induction and catabolite repression of the MAL structural genes in Saccharomyces. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:622-30. [PMID: 8028578 DOI: 10.1007/bf00279571] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Maltose utilization in yeast requires the presence of any one of the five unlinked, homologous MAL loci. Transcription of the two structural genes MALT (permease) and MALS (maltase) is induced by maltose and catabolite-repressed by glucose. MAL6T and MAL6S share a common 5' intergenic sequence; deletion studies within this sequence revealed a bi-directionally functioning upstream activation sequence (UASM) consisting of four 11 bp homologous sites. Activation of these sites by the MALR protein results in the coordinate expression of MAL6T and MAL6S. The basal promoter activates MALS expression to a greater extent than MALT and is located in a region that overlaps UASM. Deletion of several subsites within the UASM has an asymmetric effect on MAL gene expression, having a greater affect on MALT than on MALS. Catabolite repression of MAL6T and MAL6S by glucose is controlled at several levels. Using disruption mutants, the positively acting MAL1R protein was also found to play a role in catabolite repression of MAL6T and MAL6S.
Collapse
Affiliation(s)
- B Yao
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | | | | |
Collapse
|
3
|
TSF3, a global regulatory protein that silences transcription of yeast GAL genes, also mediates repression by alpha 2 repressor and is identical to SIN4. Mol Cell Biol 1993. [PMID: 8423805 DOI: 10.1128/mcb.13.2.831] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TSF3 encodes one of six (TSF1 to TSF6) recently identified global negative regulators of transcription in Saccharomyces cerevisiae. Mutant tsf3 strains exhibit defects in transcriptional silencing of the GAL1 promoter, allow expression from upstream activation sequence-less promoters, and exhibit pleiotropic defects in cell growth and development. Here we show that TSF3 is involved in transcriptional silencing mediated by the alpha 2 repressor and demonstrate that specific systems of transcriptional silencing may depend on the more global role of TSF3. Cloning and sequencing of TSF3 allowed us to predict a 974-amino-acid gene product identical to SIN4, a negative regulator of transcription of the HO (homothallism) mating type switching endonuclease. TSF3 disruptions are not lethal but result in phenotypes similar to those of the originally isolated alleles. Our results, together with those of Y. W. Jiang and D. J. Stillman (Mol. Cell. Biol. 12:4503-4514, 1992), suggest that TSF3 (SIN4) affects the function of the basal transcription apparatus, and this effect in turn alters the manner in which the latter responds to upstream regulatory proteins.
Collapse
|
4
|
Chen S, West RW, Johnson SL, Gans H, Kruger B, Ma J. TSF3, a global regulatory protein that silences transcription of yeast GAL genes, also mediates repression by alpha 2 repressor and is identical to SIN4. Mol Cell Biol 1993; 13:831-40. [PMID: 8423805 PMCID: PMC358966 DOI: 10.1128/mcb.13.2.831-840.1993] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
TSF3 encodes one of six (TSF1 to TSF6) recently identified global negative regulators of transcription in Saccharomyces cerevisiae. Mutant tsf3 strains exhibit defects in transcriptional silencing of the GAL1 promoter, allow expression from upstream activation sequence-less promoters, and exhibit pleiotropic defects in cell growth and development. Here we show that TSF3 is involved in transcriptional silencing mediated by the alpha 2 repressor and demonstrate that specific systems of transcriptional silencing may depend on the more global role of TSF3. Cloning and sequencing of TSF3 allowed us to predict a 974-amino-acid gene product identical to SIN4, a negative regulator of transcription of the HO (homothallism) mating type switching endonuclease. TSF3 disruptions are not lethal but result in phenotypes similar to those of the originally isolated alleles. Our results, together with those of Y. W. Jiang and D. J. Stillman (Mol. Cell. Biol. 12:4503-4514, 1992), suggest that TSF3 (SIN4) affects the function of the basal transcription apparatus, and this effect in turn alters the manner in which the latter responds to upstream regulatory proteins.
Collapse
Affiliation(s)
- S Chen
- Department of Biochemistry and Molecular Biology, State University of New York Health Science Center, Syracuse 13210
| | | | | | | | | | | |
Collapse
|
5
|
Opposing regulatory functions of positive and negative elements in UASG control transcription of the yeast GAL genes. Mol Cell Biol 1990. [PMID: 2122231 DOI: 10.1128/mcb.10.11.5663] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast GAL1 and GAL10 genes are transcribed at a remarkably low basal level when galactose is unavailable and are induced by over 4 orders of magnitude when it becomes available. Approximately six negative control elements (designated GAL operators GALO1 to GALO6) are located adjacent to or overlapping four binding sites for the transcription activator GAL4 in the GAL upstream activating sequence UASG. The negative control elements contribute to the broad range of inducibility of GAL1 and GAL10 by inhibiting two GAL4/galactose-independent activating elements (GAE1 and GAE2) in UASG. In turn, multiple GAL4-binding sites in UASG are necessary for GAL4 to overcome repression by the negative control elements under fully inducing conditions. When glucose in addition to galactose is available (repressing conditions), the ability of GAL4 to activate transcription is diminished as a result of its reduced affinity for DNA and the reduced availability of inducer. Under these conditions, the negative control elements inhibit transcriptional activation from the glucose-attenuated GAL4 sites, thus accounting at least in part for glucose repression acting in cis. A normal part of transcriptional regulation of the GAL1 and GAL10 genes, therefore, appears to involve a balance between the opposing functions of positive and negative control elements.
Collapse
|
6
|
Finley RL, Chen S, Ma J, Byrne P, West RW. Opposing regulatory functions of positive and negative elements in UASG control transcription of the yeast GAL genes. Mol Cell Biol 1990; 10:5663-70. [PMID: 2122231 PMCID: PMC361331 DOI: 10.1128/mcb.10.11.5663-5670.1990] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The yeast GAL1 and GAL10 genes are transcribed at a remarkably low basal level when galactose is unavailable and are induced by over 4 orders of magnitude when it becomes available. Approximately six negative control elements (designated GAL operators GALO1 to GALO6) are located adjacent to or overlapping four binding sites for the transcription activator GAL4 in the GAL upstream activating sequence UASG. The negative control elements contribute to the broad range of inducibility of GAL1 and GAL10 by inhibiting two GAL4/galactose-independent activating elements (GAE1 and GAE2) in UASG. In turn, multiple GAL4-binding sites in UASG are necessary for GAL4 to overcome repression by the negative control elements under fully inducing conditions. When glucose in addition to galactose is available (repressing conditions), the ability of GAL4 to activate transcription is diminished as a result of its reduced affinity for DNA and the reduced availability of inducer. Under these conditions, the negative control elements inhibit transcriptional activation from the glucose-attenuated GAL4 sites, thus accounting at least in part for glucose repression acting in cis. A normal part of transcriptional regulation of the GAL1 and GAL10 genes, therefore, appears to involve a balance between the opposing functions of positive and negative control elements.
Collapse
Affiliation(s)
- R L Finley
- Department of Biochemistry and Molecular Biology, State University of New York Health Science Center, Syracuse 13210
| | | | | | | | | |
Collapse
|
7
|
REB1, a yeast DNA-binding protein with many targets, is essential for growth and bears some resemblance to the oncogene myb. Mol Cell Biol 1990. [PMID: 2204808 DOI: 10.1128/mcb.10.10.5226] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
REB1 is a DNA-binding protein that recognizes sites within both the enhancer and the promoter of rRNA transcription as well as upstream of many genes transcribed by RNA polymerase II. We report here the cloning of the gene for REB1 by screening a yeast genomic lambda gt11 library with specific oligonucleotides containing the REB1 binding site consensus sequence. The REB1 gene was sequenced, revealing an open reading frame encoding 809 amino acids. The predicted protein was highly hydrophilic, with numerous OH-containing amino acids and glutamines, features common to many of the general DNA-binding proteins of Saccharomyces cerevisiae, such as ABF1, RAP1, GCN4, and HSF1. There was some homology between a portion of REB1 and the DNA-binding domain of the oncogene myb. REB1 is an essential gene that maps on chromosome II. However, the physiological role that it plays in the cell has yet to be established.
Collapse
|
8
|
Ju QD, Morrow BE, Warner JR. REB1, a yeast DNA-binding protein with many targets, is essential for growth and bears some resemblance to the oncogene myb. Mol Cell Biol 1990; 10:5226-34. [PMID: 2204808 PMCID: PMC361205 DOI: 10.1128/mcb.10.10.5226-5234.1990] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
REB1 is a DNA-binding protein that recognizes sites within both the enhancer and the promoter of rRNA transcription as well as upstream of many genes transcribed by RNA polymerase II. We report here the cloning of the gene for REB1 by screening a yeast genomic lambda gt11 library with specific oligonucleotides containing the REB1 binding site consensus sequence. The REB1 gene was sequenced, revealing an open reading frame encoding 809 amino acids. The predicted protein was highly hydrophilic, with numerous OH-containing amino acids and glutamines, features common to many of the general DNA-binding proteins of Saccharomyces cerevisiae, such as ABF1, RAP1, GCN4, and HSF1. There was some homology between a portion of REB1 and the DNA-binding domain of the oncogene myb. REB1 is an essential gene that maps on chromosome II. However, the physiological role that it plays in the cell has yet to be established.
Collapse
Affiliation(s)
- Q D Ju
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | |
Collapse
|
9
|
A nucleosome-positioning sequence is required for GCN4 to activate transcription in the absence of a TATA element. Mol Cell Biol 1990. [PMID: 2196450 DOI: 10.1128/mcb.10.8.4256] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the gal-his3 hybrid promoter his3-GG1, the yeast upstream activator protein GCN4 stimulates transcription when bound at the position normally occupied by the TATA element. This TATA-independent activation by GCN4 requires two additional elements in the gal enhancer region that are distinct from those involved in normal galactose induction. Both additional elements appear to be functionally distinct from a classical TATA element because they cannot be replaced by the TFIID-binding sequence TATAAA. One of these elements, termed Q, is essential for GCN4-activated transcription and contains the sequence GTCAC CCG, which overlaps (but is distinct from) a GAL4 binding site. Surprisingly, relatively small increases in the distance between Q and the GCN4 binding site significantly reduce the level of transcription. The Q element specifically interacts with a yeast protein (Q-binding protein [QBP]) that may be equivalent to Y, a protein that binds at a sequence that forms a constraint to nucleosome positioning. Analysis of various deletion mutants indicates that the sequence requirements for binding by QBP in vitro are indistinguishable from those necessary for Q activity in vivo, strongly suggesting that QBP is required for the function of this TATA-independent promoter. These results support the view that transcriptional activation can occur by an alternative mechanism in which the TATA-binding factor TFIID either is not required or is not directly bound to DNA. In addition, they suggest a potential role of nucleosome positioning for the activity of a promoter.
Collapse
|
10
|
Brandl CJ, Struhl K. A nucleosome-positioning sequence is required for GCN4 to activate transcription in the absence of a TATA element. Mol Cell Biol 1990; 10:4256-65. [PMID: 2196450 PMCID: PMC360965 DOI: 10.1128/mcb.10.8.4256-4265.1990] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the gal-his3 hybrid promoter his3-GG1, the yeast upstream activator protein GCN4 stimulates transcription when bound at the position normally occupied by the TATA element. This TATA-independent activation by GCN4 requires two additional elements in the gal enhancer region that are distinct from those involved in normal galactose induction. Both additional elements appear to be functionally distinct from a classical TATA element because they cannot be replaced by the TFIID-binding sequence TATAAA. One of these elements, termed Q, is essential for GCN4-activated transcription and contains the sequence GTCAC CCG, which overlaps (but is distinct from) a GAL4 binding site. Surprisingly, relatively small increases in the distance between Q and the GCN4 binding site significantly reduce the level of transcription. The Q element specifically interacts with a yeast protein (Q-binding protein [QBP]) that may be equivalent to Y, a protein that binds at a sequence that forms a constraint to nucleosome positioning. Analysis of various deletion mutants indicates that the sequence requirements for binding by QBP in vitro are indistinguishable from those necessary for Q activity in vivo, strongly suggesting that QBP is required for the function of this TATA-independent promoter. These results support the view that transcriptional activation can occur by an alternative mechanism in which the TATA-binding factor TFIID either is not required or is not directly bound to DNA. In addition, they suggest a potential role of nucleosome positioning for the activity of a promoter.
Collapse
Affiliation(s)
- C J Brandl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|