1
|
Abstract
Initial events in double-strand break repair by homologous recombination in vivo involve homology searching, 3' strand invasion, and new DNA synthesis. While studies in yeast have contributed much to our knowledge of these processes, in comparison, little is known of the early events in the integrated mammalian system. In this study, a sensitive PCR procedure was developed to detect the new DNA synthesis that accompanies mammalian homologous recombination. The test system exploits a well-characterized gene targeting assay in which the transfected vector bears a gap in the region of homology to the single-copy chromosomal immunoglobulin mu heavy chain gene in mouse hybridoma cells. New DNA synthesis primed by invading 3' vector ends copies chromosomal mu-gene template sequences excluded by the vector-borne double-stranded gap. Following electroporation, specific 3' extension products from each vector end are detected with rapid kinetics: they appear after 0.5 hr, peak at 3-6 hr, and then decline, likely as a result of the combined effects of susceptibility to degradation and cell division. New DNA synthesis from each vector 3' end extends at least approximately 1000 nucleotides into the gapped region, but the efficiency declines markedly within the first approximately 200 nucleotides. Over this short distance, an average frequency of 3' extension for the two invading vector ends is approximately 0.007 events/vector backbone. DNA sequencing reveals precise copying of the cognate chromosomal mu-gene template. In unsynchronized cells, 3' extension is sensitive to aphidicolin supporting involvement of a replicative polymerase. Analysis suggests that the vast majority of 3' extensions reside on linear plasmid molecules.
Collapse
|
2
|
Zhang W, Sun X, Yuan H, Araki H, Wang J, Tian D. The pattern of insertion/deletion polymorphism in Arabidopsis thaliana. Mol Genet Genomics 2008; 280:351-61. [PMID: 18690477 DOI: 10.1007/s00438-008-0370-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 07/24/2008] [Indexed: 10/21/2022]
Abstract
Little is known about variation of nucleotide insertion/deletions (indels) within species. In Arabidopsis thaliana, we investigated indel polymorphism patterns between two genome sequences and among 96 accessions at 1215 loci. Our study identified patterns in the variation of indel density, size, GC content and distribution, and a correlation between indels and substitutions. We found that the GC content in indel sequences was lower than that in non-indel sequences and that indels typically occur in regions with lower GC content. Patterns of indel frequency distribution among populations were more consistent with neutral expectation than substitution patterns. We also found that the local level of substitutions is positively correlated with indel density and negatively correlated with their distance to the closed indel, suggesting that indels play an important role in nucleotide variation.
Collapse
Affiliation(s)
- Wen Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biology, Nanjing University, 210093 Nanjing, China
| | | | | | | | | | | |
Collapse
|
3
|
Read LR, Raynard SJ, Rukść A, Baker MD. Gene repeat expansion and contraction by spontaneous intrachromosomal homologous recombination in mammalian cells. Nucleic Acids Res 2004; 32:1184-96. [PMID: 14978260 PMCID: PMC373412 DOI: 10.1093/nar/gkh280] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Revised: 01/22/2004] [Accepted: 01/22/2004] [Indexed: 01/17/2023] Open
Abstract
Homologous recombination (HR) is important in repairing errors of replication and other forms of DNA damage. In mammalian cells, potential templates include the homologous chromosome, and after DNA replication, the sister chromatid. Previous work has shown that the mammalian recombination machinery is organized to suppress interchromosomal recombination while preserving intrachromosomal HR. In the present study, we investigated spontaneous intrachromosomal HR in mouse hybridoma cell lines in which variously numbered tandem repeats of the mu heavy chain constant (C mu) region reside at the haploid, chromosomal immunoglobulin mu heavy chain locus. This organization provides the opportunity to investigate recombination between homologous gene repeats in a well-defined chromosomal locus under conditions in which recombinants are conveniently recovered. This system revealed several features about the mammalian intrachromosomal HR process: (i) the frequency of HR was high (recombinants represented as much as several percent of the total of recombinants and non-recombinants); (ii) the recombination process appeared to be predominantly non-reciprocal, consistent with the possibility of gene conversion; (iii) putative gene conversion tracts were long (up to 13.4 kb); (iv) the recombination process occurred with precision, initiating and terminating within regions of shared homology. The results are discussed with respect to mammalian intrachromosomal HR involving interactions both within and between sister chromatids.
Collapse
Affiliation(s)
- Leah R Read
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
4
|
Baker MD, Read LR, Beatty BG, Ng P. Requirements for ectopic homologous recombination in mammalian somatic cells. Mol Cell Biol 1996; 16:7122-32. [PMID: 8943368 PMCID: PMC231716 DOI: 10.1128/mcb.16.12.7122] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Ectopic recombination occurs between DNA sequences that are not in equivalent positions on homologous chromosomes and has beneficial as well as potentially deleterious consequences for the eukaryotic genome. In the present study, we have examined ectopic recombination in mammalian somatic (murine hybridoma) cells in which a deletion in the mu gene constant (Cmu) region of the endogenous chromosomal immunoglobulin mu gene is corrected by using as a donor an ectopic wild-type Cmu region. Ectopic recombination restores normal immunoglobulin M production in hybridomas. We show that (i) chromosomal mu gene deletions of 600 bp and 4 kb are corrected less efficiently than a deletion of only 2 bp, (ii) the minimum amount of homology required to mediate ectopic recombination is between 1.9 and 4.3 kb, (iii) the frequency of ectopic recombination does not depend on donor copy number, and (iv) the frequency of ectopic recombination in hybridoma lines in which the donor and recipient Cmu regions are physically connected to each other on the same chromosome can be as much as 4 orders of magnitude higher than it is for the same sequences located on homologous or nonhomologous chromosomes. The results are discussed in terms of a model for ectopic recombination in mammalian somatic cells in which the scanning mechanism that is used to locate a homologous partner operates preferentially in cis.
Collapse
Affiliation(s)
- M D Baker
- Department of Pathobiology, University of Guelph, Ontario, Canada.
| | | | | | | |
Collapse
|
5
|
Kardinal C, Selmayr M, Mocikat R. Genetic stability of gene targeted immunoglobulin loci. I. Heavy chain isotype exchange induced by a universal gene replacement vector. Immunology 1996; 89:309-15. [PMID: 8958041 PMCID: PMC1456542 DOI: 10.1046/j.1365-2567.1996.d01-752.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Gene targeting at the immunoglobulin loci of B cells is an efficient tool for studying immunoglobulin expression or generating chimeric antibodies. We have shown that vector integration induced by human immunoglobulin G1 (IgG1) insertion vectors results in subsequent vector excision mediated by the duplicated target sequence, whereas replacement events which could be induced by the same constructs remain stable. We could demonstrate that the distribution of the vector homology strongly influences the genetic stability obtained. To this end we developed a novel type of a heavy chain replacement vector making use of the heavy chain class switch recombination sequence. Despite the presence of a two-sided homology this construct is universally applicable irrespective of the constant gene region utilized by the B cell. In comparison to an integration vector the frequency of stable incorporation was strongly increased, but we still observed vector excision, although at a markedly reduced rate. The latter events even occurred with circular constructs. Linearization of the construct at various sites and the comparison with an integration vector that carries the identical homology sequence, but differs in the distribution of homology, revealed the following features of homologous recombination of immunoglobulin genes: (i) the integration frequency is only determined by the length of the homology flank where the cross-over takes place; (ii) a 5' flank that does not meet the minimum requirement of homology length cannot be complemented by a sufficient 3' flank; (iii) free vector ends play a role for integration as well as for replacement targeting; (iv) truncating recombination events are suppressed in the presence of two flanks. Furthermore, we show that the switch region that was used as 3' flank is non-functional in an inverted orientation.
Collapse
Affiliation(s)
- C Kardinal
- GSF-Institut für Immunologie, München, Germany
| | | | | |
Collapse
|
6
|
Baker MD, Read LR. High-frequency gene conversion between repeated C mu sequences integrated at the chromosomal immunoglobulin mu locus in mouse hybridoma cells. Mol Cell Biol 1995; 15:766-71. [PMID: 7823944 PMCID: PMC231946 DOI: 10.1128/mcb.15.2.766] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The occurrence of mitotic recombination between repeated immunoglobulin mu gene constant (C mu) region sequences stably integrated at the haploid chromosomal immunoglobulin mu locus in murine hybridoma cells was investigated. Recombination events are detected as changes in hapten-specific immunoglobulin M production. Recombination occurs with high frequency (0.5 to 0.8%) by a mechanism consistent with gene conversion. A double-strand break repair-like mechanism is suggested by the finding that repair of a 2-bp deletion mutation and a 2-bp insertion mutation occurs with parity in a donor-directed manner. The results also suggest that the gene conversion process is directional in that the 5' C mu region sequence is preferentially converted.
Collapse
Affiliation(s)
- M D Baker
- Department of Veterinary Microbiology, University of Guelph, Ontario, Canada
| | | |
Collapse
|
7
|
Ectopic recombination within homologous immunoglobulin mu gene constant regions in a mouse hybridoma cell line. Mol Cell Biol 1992. [PMID: 1406631 DOI: 10.1128/mcb.12.10.4422] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have transferred a pSV2neo vector containing the wild-type constant region of the immunoglobulin mu gene (C mu) into the mutant hybridoma igm482, which bears a 2-bp deletion in the third constant-region exon of its haploid chromosomal mu gene (C mu 3). Independent igm482 transformants contain the wild-type immunoglobulin C mu region stably integrated in ectopic chromosomal positions. We report here that the wild-type immunoglobulin C mu region can function as the donor sequence in a gene conversion event which corrects the 2-bp deletion in the mutant igm482 chromosomal C mu 3 exon. The homologous recombination event restores normal immunoglobulin M production in the mutant cell.
Collapse
|
8
|
Baker MD, Read LR. Ectopic recombination within homologous immunoglobulin mu gene constant regions in a mouse hybridoma cell line. Mol Cell Biol 1992; 12:4422-32. [PMID: 1406631 PMCID: PMC360366 DOI: 10.1128/mcb.12.10.4422-4432.1992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have transferred a pSV2neo vector containing the wild-type constant region of the immunoglobulin mu gene (C mu) into the mutant hybridoma igm482, which bears a 2-bp deletion in the third constant-region exon of its haploid chromosomal mu gene (C mu 3). Independent igm482 transformants contain the wild-type immunoglobulin C mu region stably integrated in ectopic chromosomal positions. We report here that the wild-type immunoglobulin C mu region can function as the donor sequence in a gene conversion event which corrects the 2-bp deletion in the mutant igm482 chromosomal C mu 3 exon. The homologous recombination event restores normal immunoglobulin M production in the mutant cell.
Collapse
Affiliation(s)
- M D Baker
- Department of Molecular Biology and Genetics, University of Guelph, Ontario, Canada
| | | |
Collapse
|
9
|
X rays induce interallelic homologous recombination at the human thymidine kinase gene. Mol Cell Biol 1992. [PMID: 1350323 DOI: 10.1128/mcb.12.6.2730] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We have developed a human lymphoblast cell line for the study of interchromosomal homologous recombination at the endogenous thymidine kinase (tk) gene on chromosome 17 (M. B. Benjamin, H. Potter, D. W. Yandell, and J. B. Little, Proc. Natl. Acad. Sci. USA 88:6652-6656, 1991). This cell line (designated 6:86) carries unique heterozygous frameshift mutations in exons 4 and 7 of its endogenous tk alleles and can revert to TK+ by frame-restoring mutations, gene conversion, or reciprocal recombination. Line 6:86 reverts spontaneously to TK+ at a frequency of 10(-7) to 10(-8), and exposures to X-irradiation or the frameshift mutagen ICR-191 induce increased reversion frequencies in a dose-dependent manner. Another cell line (designated 4:2) carries a homozygous exon 7 frameshift and is not expected to revert through mechanisms other than frame-restoring mutation. Line 4:2 reverts to TK+ at a lower spontaneous frequency than does 6:86 but can be induced with similar kinetics by ICR-191. In contrast to line 6:86, however, X rays did not induce detectable reversion of line 4:2. We have characterized a number of 6:86-derived revertants by means of restriction fragment length polymorphism analysis at tk and linked loci, single-strand conformation polymorphisms, and direct transcript sequencing. For X rays, most revertants retain both original mutations in the genomic DNA, and a subset of these frameshift-retaining revertants produce frameshift-free message, indicating that reversion is the result of reciprocal recombination within the tk gene. Frame-restoring point mutations, restoration of original sequences, and phenocopy reversion by acquisition of aminopterin resistance were also found among X-ray-induced revertants, whereas the ICR-191-induced revertants examined show only loss of the exon 7 frameshift.
Collapse
|
10
|
Benjamin MB, Little JB. X rays induce interallelic homologous recombination at the human thymidine kinase gene. Mol Cell Biol 1992; 12:2730-8. [PMID: 1350323 PMCID: PMC364467 DOI: 10.1128/mcb.12.6.2730-2738.1992] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We have developed a human lymphoblast cell line for the study of interchromosomal homologous recombination at the endogenous thymidine kinase (tk) gene on chromosome 17 (M. B. Benjamin, H. Potter, D. W. Yandell, and J. B. Little, Proc. Natl. Acad. Sci. USA 88:6652-6656, 1991). This cell line (designated 6:86) carries unique heterozygous frameshift mutations in exons 4 and 7 of its endogenous tk alleles and can revert to TK+ by frame-restoring mutations, gene conversion, or reciprocal recombination. Line 6:86 reverts spontaneously to TK+ at a frequency of 10(-7) to 10(-8), and exposures to X-irradiation or the frameshift mutagen ICR-191 induce increased reversion frequencies in a dose-dependent manner. Another cell line (designated 4:2) carries a homozygous exon 7 frameshift and is not expected to revert through mechanisms other than frame-restoring mutation. Line 4:2 reverts to TK+ at a lower spontaneous frequency than does 6:86 but can be induced with similar kinetics by ICR-191. In contrast to line 6:86, however, X rays did not induce detectable reversion of line 4:2. We have characterized a number of 6:86-derived revertants by means of restriction fragment length polymorphism analysis at tk and linked loci, single-strand conformation polymorphisms, and direct transcript sequencing. For X rays, most revertants retain both original mutations in the genomic DNA, and a subset of these frameshift-retaining revertants produce frameshift-free message, indicating that reversion is the result of reciprocal recombination within the tk gene. Frame-restoring point mutations, restoration of original sequences, and phenocopy reversion by acquisition of aminopterin resistance were also found among X-ray-induced revertants, whereas the ICR-191-induced revertants examined show only loss of the exon 7 frameshift.
Collapse
Affiliation(s)
- M B Benjamin
- Department of Cancer Biology, Harvard School of Public Health, Boston, Massachusetts 02115
| | | |
Collapse
|
11
|
Abstract
Homologous recombination is now routinely used in mammalian cells to replace endogenous chromosomal sequences with transferred DNA. Vectors for this purpose are traditionally constructed so that the replacement segment is flanked on both sides by DNA sequences which are identical to sequences in the chromosomal target gene. To test the importance of bilateral regions of homology, we measured recombination between transferred and chromosomal immunoglobulin genes when the transferred segment was homologous to the chromosomal gene only on the 3' side. In each of the four recombinants analyzed, the 5' junction was unique, suggesting that it was formed by nonhomologous, i.e., random or illegitimate, recombination. In two of the recombinants, the 3' junction was apparently formed by homologous recombination, while in the other two recombinants, the 3' junction as well as the 5' junction might have involved a nonhomologous crossover. As reported previously, we found that the frequency of gene targeting increases monotonically with the length of the region of homology. Our results also indicate that targeting with fragments bearing one-sided homology can be as efficient as with fragments with bilateral homology, provided that the overall length of homology is comparable. The frequency of these events suggests that the immunoglobulin locus is particularly susceptible to nonhomologous recombination. Vectors designed for one-sided homologous recombination might be advantageous for some applications in genetic engineering.
Collapse
|
12
|
Berinstein N, Pennell N, Ottaway CA, Shulman MJ. Gene replacement with one-sided homologous recombination. Mol Cell Biol 1992; 12:360-7. [PMID: 1729610 PMCID: PMC364128 DOI: 10.1128/mcb.12.1.360-367.1992] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Homologous recombination is now routinely used in mammalian cells to replace endogenous chromosomal sequences with transferred DNA. Vectors for this purpose are traditionally constructed so that the replacement segment is flanked on both sides by DNA sequences which are identical to sequences in the chromosomal target gene. To test the importance of bilateral regions of homology, we measured recombination between transferred and chromosomal immunoglobulin genes when the transferred segment was homologous to the chromosomal gene only on the 3' side. In each of the four recombinants analyzed, the 5' junction was unique, suggesting that it was formed by nonhomologous, i.e., random or illegitimate, recombination. In two of the recombinants, the 3' junction was apparently formed by homologous recombination, while in the other two recombinants, the 3' junction as well as the 5' junction might have involved a nonhomologous crossover. As reported previously, we found that the frequency of gene targeting increases monotonically with the length of the region of homology. Our results also indicate that targeting with fragments bearing one-sided homology can be as efficient as with fragments with bilateral homology, provided that the overall length of homology is comparable. The frequency of these events suggests that the immunoglobulin locus is particularly susceptible to nonhomologous recombination. Vectors designed for one-sided homologous recombination might be advantageous for some applications in genetic engineering.
Collapse
Affiliation(s)
- N Berinstein
- Department of Medicine, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
13
|
Wood CR, Morris GE, Alderman EM, Fouser L, Kaufman RJ. An internal ribosome binding site can be used to select for homologous recombinants at an immunoglobulin heavy-chain locus. Proc Natl Acad Sci U S A 1991; 88:8006-10. [PMID: 1654552 PMCID: PMC52434 DOI: 10.1073/pnas.88.18.8006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The encephalomyocarditis virus (EMCV) leader sequence is responsible for efficient, cap-independent translation initiation from the viral RNA. It has been used to increase the expression of internal coding regions on polycistronic mRNA encoded by recombinant DNA constructs. We have designed a sequence-replacement-type vector for targeting to immunoglobulin heavy-chain loci in hybridoma cells. Homologous recombination of this vector introduces a human gamma 1 constant-region sequence linked to the EMCV leader and a neomycin phosphotransferase (neo) gene. The resulting cells express a bicistronic mRNA encoding at the 5' end a chimeric murine VDJH-human C gamma 1 heavy chain, followed by neo linked to the internal ribosome binding site provided by the EMCV leader. These homologous recombinants express the chimeric heavy chain at levels equivalent to the heavy chain in the parental hybridoma. This strategy of using an EMCV-neo cassette to obtain efficient selectable marker gene expression has potential application to a range of gene targeting vectors.
Collapse
Affiliation(s)
- C R Wood
- Genetics Institute, Cambridge, MA 02140
| | | | | | | | | |
Collapse
|
14
|
Abstract
We have investigated cotransformation in mammalian cells and its potential for identifying cells that have been modified by gene targeting. Selectable genes on separate DNA fragments were simultaneously introduced into cells by coelectroporation. When the introduced fragments were scored for random integration, 75% of the transformed cells integrated both fragments within the genome of the same cell. When one of the cointroduced fragments was scored for integration at a specific locus by gene targeting, only 4% of the targeted cells cointegrated the second fragment. Apparently, cells that have been modified by gene targeting with one DNA fragment rarely incorporate a second DNA fragment. Despite this limitation, we were able to use the cotransformation protocol to identify targeted cells by screening populations of colonies that had been transformed with a cointroduced selectable gene. When hypoxanthine phosphoribosyltransferase (hprt) targeting DNA was coelectroporated with a selectable neomycin phosphotransferase (neo) gene into embryonic stem (ES) cells, hprt-targeted colonies were isolated from the population of neo transformants at a frequency of 1 per 70 G418-resistant colonies. In parallel experiments with the same targeting construct, hprt-targeted cells were found at a frequency of 1 per 5,500 nonselected colonies. Thus, an 80-fold enrichment for targeted cells was observed within the population of colonies transformed with the cointroduced DNA compared with the population of nonselected colonies. This enrichment for targeted cells after cotransformation should be useful in the isolation of colonies that contain targeted but nonselectable gene alterations.
Collapse
|
15
|
Reid LH, Shesely EG, Kim HS, Smithies O. Cotransformation and gene targeting in mouse embryonic stem cells. Mol Cell Biol 1991; 11:2769-77. [PMID: 1850104 PMCID: PMC360052 DOI: 10.1128/mcb.11.5.2769-2777.1991] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have investigated cotransformation in mammalian cells and its potential for identifying cells that have been modified by gene targeting. Selectable genes on separate DNA fragments were simultaneously introduced into cells by coelectroporation. When the introduced fragments were scored for random integration, 75% of the transformed cells integrated both fragments within the genome of the same cell. When one of the cointroduced fragments was scored for integration at a specific locus by gene targeting, only 4% of the targeted cells cointegrated the second fragment. Apparently, cells that have been modified by gene targeting with one DNA fragment rarely incorporate a second DNA fragment. Despite this limitation, we were able to use the cotransformation protocol to identify targeted cells by screening populations of colonies that had been transformed with a cointroduced selectable gene. When hypoxanthine phosphoribosyltransferase (hprt) targeting DNA was coelectroporated with a selectable neomycin phosphotransferase (neo) gene into embryonic stem (ES) cells, hprt-targeted colonies were isolated from the population of neo transformants at a frequency of 1 per 70 G418-resistant colonies. In parallel experiments with the same targeting construct, hprt-targeted cells were found at a frequency of 1 per 5,500 nonselected colonies. Thus, an 80-fold enrichment for targeted cells was observed within the population of colonies transformed with the cointroduced DNA compared with the population of nonselected colonies. This enrichment for targeted cells after cotransformation should be useful in the isolation of colonies that contain targeted but nonselectable gene alterations.
Collapse
Affiliation(s)
- L H Reid
- Department of Pathology, University of North Carolina, Chapel Hill 27599
| | | | | | | |
Collapse
|
16
|
Testing an "in-out" targeting procedure for making subtle genomic modifications in mouse embryonic stem cells. Mol Cell Biol 1991. [PMID: 1996101 DOI: 10.1128/mcb.11.3.1402] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have introduced a 4-bp insertion into the hypoxanthine phosphoribosyltransferase (HPRT) gene of a mouse embryonic stem (ES) cell line by using an "in-out" targeting procedure. During the in step, a homologous integration reaction, we targeted a correcting plasmid to a partially deleted hprt- locus by using an integrating vector that carried a 4-bp insertion in the region of DNA homologous to the target locus. HPRT+ recombinants were isolated by direct selection in hypoxanthine-aminopterin-thymidine (HAT) medium. The HATr cell lines were then grown in medium containing 6-thioguanine (6-TG) to select for hprt- revertants resulting from the excision of the integrated vector sequences. The revertants were examined by Southern blot hybridization to determine the accuracy of this out reaction and the frequency of retaining the 4-bp modification in the genome. Of the 6-TGr colonies examined, 88% had accurately excised the integrated vector sequences; 19 of 20 accurate revertants retained the 4-bp insertion in the resulting hprt- gene. We suggest a scheme for making the in-out targeting procedure generally useful to modify the mammalian genome.
Collapse
|
17
|
Testing an "in-out" targeting procedure for making subtle genomic modifications in mouse embryonic stem cells. Mol Cell Biol 1991; 11:1402-8. [PMID: 1996101 PMCID: PMC369413 DOI: 10.1128/mcb.11.3.1402-1408.1991] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have introduced a 4-bp insertion into the hypoxanthine phosphoribosyltransferase (HPRT) gene of a mouse embryonic stem (ES) cell line by using an "in-out" targeting procedure. During the in step, a homologous integration reaction, we targeted a correcting plasmid to a partially deleted hprt- locus by using an integrating vector that carried a 4-bp insertion in the region of DNA homologous to the target locus. HPRT+ recombinants were isolated by direct selection in hypoxanthine-aminopterin-thymidine (HAT) medium. The HATr cell lines were then grown in medium containing 6-thioguanine (6-TG) to select for hprt- revertants resulting from the excision of the integrated vector sequences. The revertants were examined by Southern blot hybridization to determine the accuracy of this out reaction and the frequency of retaining the 4-bp modification in the genome. Of the 6-TGr colonies examined, 88% had accurately excised the integrated vector sequences; 19 of 20 accurate revertants retained the 4-bp insertion in the resulting hprt- gene. We suggest a scheme for making the in-out targeting procedure generally useful to modify the mammalian genome.
Collapse
|