1
|
Talyzina A, Han Y, Banerjee C, Fishbain S, Reyes A, Vafabakhsh R, He Y. Structural basis of TFIIIC-dependent RNA Polymerase III transcription initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.540967. [PMID: 37292922 PMCID: PMC10245719 DOI: 10.1101/2023.05.16.540967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
RNA Polymerase III (Pol III) is responsible for transcribing 5S ribosomal RNA (5S rRNA), tRNAs, and other short non-coding RNAs. Its recruitment to the 5S rRNA promoter requires transcription factors TFIIIA, TFIIIC, and TFIIIB. Here we use cryo-electron microscopy to visualize the S. cerevisiae complex of TFIIIA and TFIIIC bound to the promoter. Brf1-TBP binding further stabilizes the DNA, resulting in the full-length 5S rRNA gene wrapping around the complex. Our smFRET study reveals that the DNA undergoes both sharp bending and partial dissociation on a slow timescale, consistent with the model predicted from our cryo-EM results. Our findings provide new insights into the mechanism of how the transcription initiation complex assembles on the 5S rRNA promoter, a crucial step in Pol III transcription regulation.
Collapse
Affiliation(s)
- Anna Talyzina
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States
| | - Yan Han
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
| | - Chiranjib Banerjee
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
| | - Susan Fishbain
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
| | - Alexis Reyes
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, Chicago, IL, United States
- Lead contact
| |
Collapse
|
2
|
Structure of the TFIIIC subcomplex τA provides insights into RNA polymerase III pre-initiation complex formation. Nat Commun 2020; 11:4905. [PMID: 32999288 PMCID: PMC7528018 DOI: 10.1038/s41467-020-18707-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/08/2020] [Indexed: 01/05/2023] Open
Abstract
Transcription factor (TF) IIIC is a conserved eukaryotic six-subunit protein complex with dual function. It serves as a general TF for most RNA polymerase (Pol) III genes by recruiting TFIIIB, but it is also involved in chromatin organization and regulation of Pol II genes through interaction with CTCF and condensin II. Here, we report the structure of the S. cerevisiae TFIIIC subcomplex τA, which contains the most conserved subunits of TFIIIC and is responsible for recruitment of TFIIIB and transcription start site (TSS) selection at Pol III genes. We show that τA binding to its promoter is auto-inhibited by a disordered acidic tail of subunit τ95. We further provide a negative-stain reconstruction of τA bound to the TFIIIB subunits Brf1 and TBP. This shows that a ruler element in τA achieves positioning of TFIIIB upstream of the TSS, and suggests remodeling of the complex during assembly of TFIIIB by TFIIIC.
Collapse
|
3
|
Begovich K, Wilhelm JE. An In Vitro Assembly System Identifies Roles for RNA Nucleation and ATP in Yeast Stress Granule Formation. Mol Cell 2020; 79:991-1007.e4. [PMID: 32780990 DOI: 10.1016/j.molcel.2020.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/22/2020] [Accepted: 07/17/2020] [Indexed: 01/08/2023]
Abstract
Stress granules (SGs) are condensates of mRNPs that form in response to stress. SGs arise by multivalent protein-protein, protein-RNA, and RNA-RNA interactions. However, the role of RNA-RNA interactions in SG assembly remains understudied. Here, we describe a yeast SG reconstitution system that faithfully recapitulates SG assembly in response to trigger RNAs. SGs assembled by stem-loop RNA triggers are ATP-sensitive, regulated by helicase/chaperone activity, and exhibit the hallmarks of maturation observed for SG proteins that phase-separate in vitro. Additionally, the fraction of total RNA that phase-separates in vitro is sufficient to trigger SG formation. However, condensation of NFT1 mRNA, an enriched transcript in this population, can only assemble an incomplete SG. These results suggest that networks of distinct transcripts are required to form a canonical SG and provide a platform for dissecting the interplay between the transcriptome and ATP-dependent remodeling in SG formation.
Collapse
Affiliation(s)
- Kyle Begovich
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute (HHMI) Summer Institute Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - James E Wilhelm
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute (HHMI) Summer Institute Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
4
|
Inhibition of tRNA Gene Transcription by the Immunosuppressant Mycophenolic Acid. Mol Cell Biol 2019; 40:MCB.00294-19. [PMID: 31658995 PMCID: PMC6908259 DOI: 10.1128/mcb.00294-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
Mycophenolic acid (MPA) is the active metabolite of mycophenolate mofetil, a drug that is widely used for immunosuppression in organ transplantation and autoimmune diseases, as well as anticancer chemotherapy. It inhibits IMP dehydrogenase, a rate-limiting enzyme in de novo synthesis of guanidine nucleotides. Mycophenolic acid (MPA) is the active metabolite of mycophenolate mofetil, a drug that is widely used for immunosuppression in organ transplantation and autoimmune diseases, as well as anticancer chemotherapy. It inhibits IMP dehydrogenase, a rate-limiting enzyme in de novo synthesis of guanidine nucleotides. MPA treatment interferes with transcription elongation, resulting in a drastic reduction of pre-rRNA and pre-tRNA synthesis, the disruption of the nucleolus, and consequently cell cycle arrest. Here, we investigated the mechanism whereby MPA inhibits RNA polymerase III (Pol III) activity, in both yeast and mammalian cells. We show that MPA rapidly inhibits Pol III by depleting GTP. Although MPA treatment can activate p53, this is not required for Pol III transcriptional inhibition. The Pol III repressor MAF1 is also not responsible for inhibiting Pol III in response to MPA treatment. We show that upon MPA treatment, the levels of selected Pol III subunits decrease, but this is secondary to transcriptional inhibition. Chromatin immunoprecipitation (ChIP) experiments show that Pol III does not fully dissociate from tRNA genes in yeast treated with MPA, even though there is a sharp decrease in the levels of newly transcribed tRNAs. We propose that in yeast, GTP depletion may lead to Pol III stalling.
Collapse
|
5
|
Di Pascale F, Nama S, Muhuri M, Quah S, Ismail HM, Chan XHD, Sundaram GM, Ramalingam R, Burke B, Sampath P. C/EBPβ mediates RNA polymerase III-driven transcription of oncomiR-138 in malignant gliomas. Nucleic Acids Res 2019; 46:336-349. [PMID: 29136251 PMCID: PMC5758869 DOI: 10.1093/nar/gkx1105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022] Open
Abstract
MicroRNA-138 (miR-138) is a pro-survival oncomiR for glioma stem cells. In malignant gliomas, dysregulated expression of microRNAs, such as miR-138, promotes Tumour initiation and progression. Here, we identify the ancillary role of the CCAAT/enhancer binding protein β (C/EBPβ) as a transcriptional activator of miR-138. We demonstrate that a short 158 bp DNA sequence encoding the precursor of miR-138-2 is essential and sufficient for transcription of miR-138. This short sequence includes the A-box and B-box elements characteristic of RNA Polymerase III (Pol III) promoters, and is also directly bound by C/EBPβ via an embedded 'C/EBPβ responsive element' (CRE). CRE and the Pol III B-box element overlap, suggesting that C/EBPβ and transcription factor 3C (TFIIIC) interact at the miR-138-2 locus. We propose that this interaction is essential for the recruitment of the RNA Pol III initiation complex and associated transcription of the oncomiR, miR-138 in malignant gliomas.
Collapse
Affiliation(s)
- Federica Di Pascale
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore 138648, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Srikanth Nama
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore 138648, Singapore
| | - Manish Muhuri
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore 138648, Singapore
| | - Shan Quah
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore 138648, Singapore
| | - Hisyam M Ismail
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore 138648, Singapore
| | - Xin Hui Derryn Chan
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore 138648, Singapore
| | - Gopinath M Sundaram
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore 138648, Singapore
| | - Rajkumar Ramalingam
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore 138648, Singapore
| | - Brian Burke
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore 138648, Singapore
| | - Prabha Sampath
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore 138648, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
6
|
Khoo SK, Wu CC, Lin YC, Chen HT. The TFIIE-related Rpc82 subunit of RNA polymerase III interacts with the TFIIB-related transcription factor Brf1 and the polymerase cleft for transcription initiation. Nucleic Acids Res 2019; 46:1157-1166. [PMID: 29177422 PMCID: PMC5814912 DOI: 10.1093/nar/gkx1179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 11/16/2017] [Indexed: 11/13/2022] Open
Abstract
Rpc82 is a TFIIE-related subunit of the eukaryotic RNA polymerase III (pol III) complex. Rpc82 contains four winged-helix (WH) domains and a C-terminal coiled-coil domain. Structural resolution of the pol III complex indicated that Rpc82 anchors on the clamp domain of the pol III cleft to interact with the duplex DNA downstream of the transcription bubble. However, whether Rpc82 interacts with a transcription factor is still not known. Here, we report that a structurally disordered insertion in the third WH domain of Rpc82 is important for cell growth and in vitro transcription activity. Site-specific photo-crosslinking analysis indicated that the WH3 insertion interacts with the TFIIB-related transcription factor Brf1 within the pre-initiation complex (PIC). Moreover, crosslinking and hydroxyl radical probing analyses revealed Rpc82 interactions with the upstream DNA and the protrusion and wall domains of the pol III cleft. Our genetic and biochemical analyses thus provide new molecular insights into the function of Rpc82 in pol III transcription.
Collapse
Affiliation(s)
- Seok-Kooi Khoo
- Institute of Molecular Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Taipei 115, Taiwan, R.O.C
| | - Chih-Chien Wu
- Institute of Molecular Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Taipei 115, Taiwan, R.O.C
| | - Yu-Chun Lin
- Institute of Molecular Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Taipei 115, Taiwan, R.O.C
| | - Hung-Ta Chen
- Institute of Molecular Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Taipei 115, Taiwan, R.O.C
| |
Collapse
|
7
|
Patterson K, Shavarebi F, Magnan C, Chang I, Qi X, Baldi P, Bilanchone V, Sandmeyer SB. Local features determine Ty3 targeting frequency at RNA polymerase III transcription start sites. Genome Res 2019; 29:1298-1309. [PMID: 31249062 PMCID: PMC6673722 DOI: 10.1101/gr.240861.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 06/12/2019] [Indexed: 12/27/2022]
Abstract
Retroelement integration into host genomes affects chromosome structure and function. A goal of a considerable number of investigations is to elucidate features influencing insertion site selection. The Saccharomyces cerevisiae Ty3 retrotransposon inserts proximal to the transcription start sites (TSS) of genes transcribed by RNA polymerase III (RNAP3). In this study, differential patterns of insertion were profiled genome-wide using a random barcode-tagged Ty3. Saturation transposition showed that tRNA genes (tDNAs) are targeted at widely different frequencies even within isoacceptor families. Ectopic expression of Ty3 integrase (IN) showed that it localized to targets independent of other Ty3 proteins and cDNA. IN, RNAP3, and transcription factor Brf1 were enriched at tDNA targets with high frequencies of transposition. To examine potential effects of cis-acting DNA features on transposition, targeting was tested on high-copy plasmids with restricted amounts of 5′ flanking sequence plus tDNA. Relative activity of targets was reconstituted in these constructions. Weighting of genomic insertions according to frequency identified an A/T-rich sequence followed by C as the dominant site of strand transfer. This site lies immediately adjacent to the adenines previously implicated in the RNAP3 TSS motif (CAA). In silico DNA structural analysis upstream of this motif showed that targets with elevated DNA curvature coincide with reduced integration. We propose that integration mediated by the Ty3 intasome complex (IN and cDNA) is subject to inputs from a combination of host factor occupancy and insertion site architecture, and that this results in the wide range of Ty3 targeting frequencies.
Collapse
Affiliation(s)
- Kurt Patterson
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | - Farbod Shavarebi
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | - Christophe Magnan
- School of Information and Computer Sciences, University of California, Irvine, Irvine, California 92697, USA
| | - Ivan Chang
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | - Xiaojie Qi
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | - Pierre Baldi
- School of Information and Computer Sciences, University of California, Irvine, Irvine, California 92697, USA
| | - Virginia Bilanchone
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | - Suzanne B Sandmeyer
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| |
Collapse
|
8
|
Transcription initiation factor TBP: old friend new questions. Biochem Soc Trans 2019; 47:411-423. [DOI: 10.1042/bst20180623] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 12/14/2022]
Abstract
Abstract
In all domains of life, the regulation of transcription by DNA-dependent RNA polymerases (RNAPs) is achieved at the level of initiation to a large extent. Whereas bacterial promoters are recognized by a σ-factor bound to the RNAP, a complex set of transcription factors that recognize specific promoter elements is employed by archaeal and eukaryotic RNAPs. These initiation factors are of particular interest since the regulation of transcription critically relies on initiation rates and thus formation of pre-initiation complexes. The most conserved initiation factor is the TATA-binding protein (TBP), which is of crucial importance for all archaeal-eukaryotic transcription initiation complexes and the only factor required to achieve full rates of initiation in all three eukaryotic and the archaeal transcription systems. Recent structural, biochemical and genome-wide mapping data that focused on the archaeal and specialized RNAP I and III transcription system showed that the involvement and functional importance of TBP is divergent from the canonical role TBP plays in RNAP II transcription. Here, we review the role of TBP in the different transcription systems including a TBP-centric discussion of archaeal and eukaryotic initiation complexes. We furthermore highlight questions concerning the function of TBP that arise from these findings.
Collapse
|
9
|
Sethy I, Willis IM. Recessive mutations in the second largest subunit of TFIIIC suggest a new step in RNA polymerase III transcription. Gene Expr 2018; 5:35-47. [PMID: 7488859 PMCID: PMC6138035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An analysis of mutant S. cerevisiae strains selected for their ability to increase transcription by RNA polymerase (pol) III has identified 14 isolates in which this phenotype is recessive. Genetic linkage and complementation studies suggest that all 14 isolates contain recessive alleles of PCF1. PCF1 encodes the 131-kDa subunit of transcription factor IIIC (TFIIIC131) and was identified previously by dominant mutations that also increased transcription by pol III. The recessive mutation, pcf1-3, results in a conservative substitution (R728-->K) towards the carboxyl-terminus of the protein. This position is distinct from the site of the dominant mutation PCF1-1 (H190-->Y), which maps to a tetratricopeptide repeat (TPR). Site-directed mutagenesis at amino acid 728 generated one allele, pcf1-4, with a stronger phenotype than pcf1-3. Extracts from pcf1-3 and pcf1-4 strains increase pol III transcription two- to threefold and ninefold, respectively, over wild-type under conditions that permit either single or multiple rounds of initiation. The entire effect of these mutations in vitro can be accounted for by an increase in the amount of transcriptionally active TFIIIB. In contrast, PCF1-1 primarily affects the rate of preinitiation complex assembly. The genetic, molecular, and biochemical data suggest that amino acid 728 in TFIIIC131 constitutes part of a structural domain in this protein that affects TFIIIB activity by influencing a previously undefined step in transcription. This step is suggested to occur after the recruitment of TFIIIB to DNA.
Collapse
Affiliation(s)
- I Sethy
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
10
|
Ramsay EP, Vannini A. Structural rearrangements of the RNA polymerase III machinery during tRNA transcription initiation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:285-294. [PMID: 29155071 DOI: 10.1016/j.bbagrm.2017.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/07/2017] [Accepted: 11/11/2017] [Indexed: 01/03/2023]
Abstract
RNA polymerase III catalyses the synthesis of tRNAs in eukaryotic organisms. Through combined biochemical and structural characterisation, multiple auxiliary factors have been identified alongside RNA Polymerase III as critical in both facilitating and regulating transcription. Together, this machinery forms dynamic multi-protein complexes at tRNA genes which are required for polymerase recruitment, DNA opening and initiation and elongation of the tRNA transcripts. Central to the function of these complexes is their ability to undergo multiple conformational changes and rearrangements that regulate each step. Here, we discuss the available biochemical and structural data on the structural plasticity of multi-protein complexes involved in RNA Polymerase III transcriptional initiation and facilitated re-initiation during tRNA synthesis. Increasingly, structural information is becoming available for RNA polymerase III and its functional complexes, allowing for a deeper understanding of tRNA transcriptional initiation. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
MESH Headings
- Animals
- Eukaryotic Cells/metabolism
- Humans
- Models, Genetic
- Multiprotein Complexes/metabolism
- Promoter Regions, Genetic/genetics
- Protein Subunits
- RNA Polymerase III/chemistry
- RNA Polymerase III/metabolism
- RNA, Transfer/biosynthesis
- RNA, Transfer/genetics
- RNA, Transfer, Amino Acid-Specific/biosynthesis
- RNA, Transfer, Amino Acid-Specific/genetics
- Transcription Elongation, Genetic
- Transcription Factors/genetics
- Transcription Initiation, Genetic
Collapse
|
11
|
Arimbasseri AG, Rijal K, Maraia RJ. Comparative overview of RNA polymerase II and III transcription cycles, with focus on RNA polymerase III termination and reinitiation. Transcription 2015; 5:e27639. [PMID: 25764110 DOI: 10.4161/trns.27369] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In eukaryotes, RNA polymerase (RNAP) III transcribes hundreds of genes for tRNAs and 5S rRNA, among others, which share similar promoters and stable transcription initiation complexes (TIC), which support rapid RNAP III recycling. In contrast, RNAP II transcribes a large number of genes with highly variable promoters and interacting factors, which exert fine regulatory control over TIC lability and modifications of RNAP II at different transitional points in the transcription cycle. We review data that illustrate a relatively smooth continuity of RNAP III initiation-elongation-termination and reinitiation toward its function to produce high levels of tRNAs and other RNAs that support growth and development.
Collapse
Affiliation(s)
- Aneeshkumar G Arimbasseri
- a Intramural Research Program; Eunice Kennedy Shriver National Institute of Child Health and Human Development; National Institutes of Health; Bethesda, MD USA
| | | | | |
Collapse
|
12
|
Dieci G, Fermi B, Bosio MC. Investigating transcription reinitiation through in vitro approaches. Transcription 2015; 5:e27704. [PMID: 25764113 DOI: 10.4161/trns.27704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
By influencing the number of RNA molecules repeatedly synthesized from the same gene, the control of transcription reinitiation has the potential to shape the transcriptome. Transcription reinitiation mechanisms have been mainly addressed in vitro, through approaches based on both crude and reconstituted systems. These studies support the notion that transcription reinitiation and its regulation rely on dedicated networks of molecular interactions within transcription machineries. At the same time, comparison with in vivo transcription rates suggests that additional mechanisms, factors and conditions must exist in the nucleus, whose biochemical elucidation is a fascinating challenge for future in vitro transcription studies.
Collapse
Affiliation(s)
- Giorgio Dieci
- a Dipartimento di Bioscienze; Università degli Studi di Parma; Parma, Italy
| | | | | |
Collapse
|
13
|
Dieci G, Bosio MC, Fermi B, Ferrari R. Transcription reinitiation by RNA polymerase III. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:331-41. [PMID: 23128323 DOI: 10.1016/j.bbagrm.2012.10.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 01/11/2023]
Abstract
The retention of transcription proteins at an actively transcribed gene contributes to maintenance of the active transcriptional state and increases the rate of subsequent transcription cycles relative to the initial cycle. This process, called transcription reinitiation, generates the abundant RNAs in living cells. The persistence of stable preinitiation intermediates on activated genes representing at least a subset of basal transcription components has long been recognized as a shared feature of RNA polymerase (Pol) I, II and III-dependent transcription in eukaryotes. Studies of the Pol III transcription machinery and its target genes in eukaryotic genomes over the last fifteen years, has uncovered multiple details on transcription reinitiation. In addition to the basal transcription factors that recruit the polymerase, Pol III itself can be retained on the same gene through multiple transcription cycles by a facilitated recycling pathway. The molecular bases for facilitated recycling are progressively being revealed with advances in structural and functional studies. At the same time, progress in our understanding of Pol III transcriptional regulation in response to different environmental cues points to the specific mechanism of Pol III reinitiation as a key target of signaling pathway regulation of cell growth. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Giorgio Dieci
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy.
| | | | | | | |
Collapse
|
14
|
Acker J, Conesa C, Lefebvre O. Yeast RNA polymerase III transcription factors and effectors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:283-95. [PMID: 23063749 DOI: 10.1016/j.bbagrm.2012.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/27/2012] [Accepted: 10/03/2012] [Indexed: 12/19/2022]
Abstract
Recent data indicate that the well-defined transcription machinery of RNA polymerase III (Pol III) is probably more complex than commonly thought. In this review, we describe the yeast basal transcription factors of Pol III and their involvements in the transcription cycle. We also present a list of proteins detected on genes transcribed by Pol III (class III genes) that might participate in the transcription process. Surprisingly, several of these proteins are involved in RNA polymerase II transcription. Defining the role of these potential new effectors in Pol III transcription in vivo will be the challenge of the next few years. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Joël Acker
- CEA, iBiTecS, Gif Sur Yvette, F-91191, France
| | | | | |
Collapse
|
15
|
Yukawa Y, Dieci G, Alzapiedi M, Hiraga A, Hirai K, Yamamoto YY, Sugiura M. A common sequence motif involved in selection of transcription start sites of Arabidopsis and budding yeast tRNA genes. Genomics 2010; 97:166-72. [PMID: 21147216 DOI: 10.1016/j.ygeno.2010.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/12/2010] [Accepted: 12/02/2010] [Indexed: 11/28/2022]
Abstract
The transcription start site (TSS) is useful to predict gene and to understand transcription initiation. Although vast data on mRNA TSSs are available, little is known about tRNA genes because of rapid processing. Using a tobacco in vitro transcription system under conditions of impaired 5' end processing, TSSs were determined for 64 Arabidopsis tRNA genes. This analysis revealed multiple TSSs distributed in a region from 10 to 2bp upstream of the mature tRNA coding sequence (-10 to -2). We also analyzed 31 Saccharomyces cerevisiae tRNA genes that showed a smaller number but a broader distribution (-13 to -1) of TSSs. In both cases, transcription was initiated preferentially at adenosine, and a common 'TCAACA' sequence was found spanning the TSSs. In plant, this motif caused multiple TSSs to converge at one site and enhanced transcription. The TATA-like sequence upstream of Arabidopsis tRNA genes also contributed to TSS selection.
Collapse
Affiliation(s)
- Yasushi Yukawa
- Graduate School of Natural Sciences, Nagoya City University, 467-8501 Nagoya, Japan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
This is a memoir of circumstances that have shaped my life as a scientist, some of the questions that have excited my interest, and some of the people with whom I have shared that pursuit. I was introduced to transcription soon after the discovery of RNA polymerase and have been fascinated by questions relating to gene regulation since that time. My account touches on early experiments dealing with the ability of RNA polymerase to selectively transcribe its DNA template. Temporal programs of transcription that control the multiplication cycles of viruses (phages) and the precise mechanisms generating this regulation have been a continuing source of fascination and new challenges. A longtime interest in eukaryotic RNA polymerase III has centered on yeast and on the enumeration and properties of its transcription initiation factors, the architecture of its promoter complexes, and the mechanism of transcriptional initiation. These areas of research are widely regarded as separate, but to my thinking they have posed similar questions, and I have been unwilling or unable to abandon either one for the other. An additional interest in archaeal transcription can be seen as stemming naturally from this point of view.
Collapse
Affiliation(s)
- E Peter Geiduschek
- Division of Biological Sciences, University of California-San Diego, La Jolla, CA 92093-0634, USA.
| |
Collapse
|
17
|
Spitalny P, Thomm M. A polymerase III-like reinitiation mechanism is operating in regulation of histone expression in archaea. Mol Microbiol 2007; 67:958-70. [PMID: 18182021 PMCID: PMC2253867 DOI: 10.1111/j.1365-2958.2007.06084.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An archaeal histone gene from the hyperthermophile Pyrococcus furiosus containing four consecutive putative oligo-dT terminator sequences was used as a model system to investigate termination signals and the mechanism of termination in vitro. The archaeal RNA polymerase terminated with high efficiency at the first terminator at 90°C when it contained five to six T residues, at 80°C readthrough was significantly increased. A putative hairpin structure upstream of the first terminator had no effect on termination efficiency. Template competition experiments starting with RNA polymerase molecules engaged in ternary complexes revealed recycling of RNA polymerase from the terminator to the promoter of the same template. This facilitated reinitiation was dependent upon the presence of a terminator sequence suggesting that pausing at the terminator is required for recycling as in the RNA polymerase III system. Replacement of the sequences immediately downstream of the oligo-dT terminator by an AT-rich segment improved termination efficiency. Both AT-rich and GC-rich downstream sequences seemed to impair the facilitated reinitiation pathway. Our data suggest that recycling is dependent on a subtle interplay of pausing of RNA polymerase at the terminator and RNA polymerase translocation beyond the oligo-dT termination signal that is dramatically affected by downstream sequences.
Collapse
Affiliation(s)
- Patrizia Spitalny
- Department of Microbiology, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | | |
Collapse
|
18
|
Ferrari R, Dieci G. The transcription reinitiation properties of RNA polymerase III in the absence of transcription factors. Cell Mol Biol Lett 2007; 13:112-8. [PMID: 17965971 PMCID: PMC6275715 DOI: 10.2478/s11658-007-0041-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 07/31/2007] [Indexed: 12/04/2022] Open
Abstract
Transcription reinitiation by RNA polymerase (Pol) III proceeds through facilitated recycling, a process by which the terminating Pol III, assisted by the transcription factors TFIIIB and TFIIIC, rapidly reloads onto the same transcription unit. To get further insight into the Pol III transcription mechanism, we analyzed the kinetics of transcription initiation and reinitiation of a simplified in vitro transcription system consisting only of Pol III and template DNA. The data indicates that, in the absence of transcription factors, first-round transcription initiation by Pol III proceeds at a normal rate, while facilitated reinitiation during subsequent cycles is compromised.
Collapse
Affiliation(s)
- Roberto Ferrari
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Viale G.P. Usberti 23/A, 43100 Parma, Italy
| | - Giorgio Dieci
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Viale G.P. Usberti 23/A, 43100 Parma, Italy
| |
Collapse
|
19
|
Chen S, Schultz PG, Brock A. An improved system for the generation and analysis of mutant proteins containing unnatural amino acids in Saccharomyces cerevisiae. J Mol Biol 2007; 371:112-22. [PMID: 17560600 DOI: 10.1016/j.jmb.2007.05.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 05/02/2007] [Accepted: 05/03/2007] [Indexed: 11/19/2022]
Abstract
We have previously described methodology that makes it possible to genetically encode a wide array of unnatural amino acids in both prokaryotic and eukaryotic organisms. Here, we report the systematic optimization of a Saccharomyces cerevisiae expression system for the production of mutant proteins containing unnatural amino acids. Modifications include significant increases in both the expression levels of the orthogonal Escherichia coli amber suppressor tRNA(CUA) and cognate aminoacyl-tRNA synthetase (aaRS) pair, and expression of the target protein gene using a strong transcriptional promoter, optimized codons and elevated plasmid copy numbers. With this new system, a number of unnatural amino acids, including the photocrosslinkers p-benzoylphenylalanine and p-azidophenylalanine, and the chemically reactive amino acids, p-acetylphenylalanine and p-propargyloxyphenylalanine, were incorporated into human superoxide dismutase (hSOD) in yeast in good yields (maximally approximately 6-8 mg/l of culture in most cases). Mass spectrometric analysis of the hSOD mutants was performed with high dynamic range using multiple reaction monitoring that provided new insights into the factors that control the fidelity of unnatural amino acid incorporation.
Collapse
Affiliation(s)
- Shawn Chen
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
20
|
Ducrot C, Lefebvre O, Landrieux E, Guirouilh-Barbat J, Sentenac A, Acker J. Reconstitution of the yeast RNA polymerase III transcription system with all recombinant factors. J Biol Chem 2006; 281:11685-92. [PMID: 16517597 DOI: 10.1074/jbc.m600101200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factor TFIIIC is a multisubunit complex required for promoter recognition and transcriptional activation of class III genes. We describe here the reconstitution of complete recombinant yeast TFIIIC and the molecular characterization of its two DNA-binding domains, tauA and tauB, using the baculovirus expression system. The B block-binding module, rtauB, was reconstituted with rtau138, rtau91, and rtau60 subunits. rtau131, rtau95, and rtau55 formed also a stable complex, rtauA, that displayed nonspecific DNA binding activity. Recombinant rTFIIIC was functionally equivalent to purified yeast TFIIIC, suggesting that the six recombinant subunits are necessary and sufficient to reconstitute a transcriptionally active TFIIIC complex. The formation and the properties of rTFIIIC-DNA complexes were affected by dephosphorylation treatments. The combination of complete recombinant rTFIIIC and rTFIIIB directed a low level of basal transcription, much weaker than with the crude B'' fraction, suggesting the existence of auxiliary factors that could modulate the yeast RNA polymerase III transcription system.
Collapse
Affiliation(s)
- Cécile Ducrot
- Service de Biochimie et de Génétique Moléculaire, Bâtiment 144, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | |
Collapse
|
21
|
Kassavetis GA, Steiner DF. Nhp6 is a transcriptional initiation fidelity factor for RNA polymerase III transcription in vitro and in vivo. J Biol Chem 2006; 281:7445-51. [PMID: 16407207 DOI: 10.1074/jbc.m512810200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The binding of the RNA polymerase III (pol III) transcription factor TFIIIC to the box A intragenic promoter element of tRNA genes specifies the placement of TFIIIB on upstream-lying DNA. In turn, TFIIIB recruits pol III to the promoter and specifies transcription initiating 17-19 base pairs upstream of box A. The resolution of the pol III transcription apparatus into recombinant TFIIIB, highly purified TFIIIC, and pol III is accompanied by a loss of precision in specifying where transcription initiation occurs due to heterogeneous placement of TFIIIB. In this paper we show that Nhp6a, an abundant high mobility group B (HMGB) family, non-sequence-specific DNA-binding protein in Saccharomyces cerevisiae restores transcriptional initiation fidelity to this highly purified in vitro system. Restoration of initiation fidelity requires the presence of Nhp6a prior to TFIIIB-DNA complex formation. Chemical nuclease footprinting of TFIIIC- and TFIIIB-TFIIIC-DNA complexes reveals that Nhp6a markedly alters the TFIIIC footprint over box A and reduces the size of the TFIIIB footprint on upstream DNA sequence. Analyses of unprocessed tRNAs from yeast lacking Nhp6a and its closely related paralogue Nhp6b demonstrate that Nhp6 is required for transcriptional initiation fidelity of some but not all tRNA genes, in vivo.
Collapse
Affiliation(s)
- George A Kassavetis
- Division of Biological Sciences and Center for Molecular Genetics, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | |
Collapse
|
22
|
Parthasarthy A, Gopinathan KP. Transcription of individual tRNAGly1 genes from within a multigene family is regulated by transcription factor TFIIIB. FEBS J 2005; 272:5191-205. [PMID: 16218951 DOI: 10.1111/j.1742-4658.2005.04877.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Members of a multigene family from the silkworm Bombyx mori have been classified based on their transcriptions in homologous nuclear extracts, into three groups of highly, moderately and poorly transcribed genes. Because all these gene copies have identical coding sequences and consequently identical promoter elements (the A and B boxes), the flanking sequences modulate their expression levels. Here we demonstrate the interaction of transcription factor TFIIIB with these genes and its role in regulating differential transcriptions. The binding of TFIIIB to the poorly transcribed gene -6,7 was less stable compared with binding of TFIIIB to the highly expressed copy, -1. The presence of a 5' upstream TATA sequence closer to the coding region in -6,7 suggested that the initial binding of TFIIIC to the A and B boxes sterically hindered anchoring of TFIIIB via direct interactions, leading to lower stability of TFIIIC-B-DNA complexes. Also, the multiple TATATAA sequences present in the flanking regions of this poorly transcribed gene successfully competed for TFIIIB reducing transcription. The transcription level could be enhanced to some extent by supplementation of TFIIIB but not by TATA box binding protein. The poor transcription of -6,7 was thus attributed both to the formation of a less stable transcription complex and the sequestration of TFIIIB. Availability of the transcription factor TFIIIB in excess could serve as a general mechanism to initiate transcription from all the individual members of the gene family as per the developmental needs within the tissue.
Collapse
Affiliation(s)
- Akhila Parthasarthy
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
23
|
Desai N, Lee J, Upadhya R, Chu Y, Moir RD, Willis IM. Two steps in Maf1-dependent repression of transcription by RNA polymerase III. J Biol Chem 2004; 280:6455-62. [PMID: 15590667 DOI: 10.1074/jbc.m412375200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Saccharomyces cerevisiae, Maf1 is essential for mediating the repression of transcription by RNA polymerase (pol) III in response to diverse cellular conditions. These conditions activate distinct signaling pathways that converge at or above Maf1. Thus, Maf1-dependent repression is thought to involve a common set of downstream inhibitory effects on the pol III machinery. Here we provide support for this view and define two steps in Maf1-dependent transcriptional repression. We show that chlorpromazine (CPZ)-induced repression of pol III transcription is achieved by inhibiting de novo assembly of transcription factor (TF) IIIB onto DNA as well as the recruitment of pol III to preassembled TFIIIB.DNA complexes. Additionally Brf1 was identified as a target of repression in extracts of CPZ-treated cells. Maf1-Brf1 and Maf1-pol III interactions were implicated in the inhibition of TFIIIB.DNA complex assembly and polymerase recruitment by recombinant Maf1. Co-immunoprecipitation experiments confirmed these interactions in yeast extracts and demonstrated that Maf1 does not differentially sequester Brf1 or pol III under repressing conditions. The results suggest that Maf1 functions by a non-stoichiometric mechanism to repress pol III transcription.
Collapse
Affiliation(s)
- Neelam Desai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
24
|
Moxley RA, Jarrett HW, Mitra S. Methods for transcription factor separation. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 797:269-88. [PMID: 14630155 DOI: 10.1016/s1570-0232(03)00609-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recent advances in the separation of transcription factors (TFs) are reviewed in this article. An overview of the transcription factor families and their structure is discussed and a computer analysis of their sequences reveals that while they do not differ from other proteins in molecular mass or isoelectric pH, they do differ from other proteins in the abundance of certain amino acids. The chromatographic and electrophoretic methods which have been successfully used for purification and analysis are discussed and recent advances in stationary and mobile phase composition is discussed.
Collapse
Affiliation(s)
- Robert A Moxley
- Department of Biochemistry, 858 Madison Avenue, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | |
Collapse
|
25
|
Giuliodori S, Percudani R, Braglia P, Ferrari R, Guffanti E, Ottonello S, Dieci G. A composite upstream sequence motif potentiates tRNA gene transcription in yeast. J Mol Biol 2003; 333:1-20. [PMID: 14516739 DOI: 10.1016/j.jmb.2003.08.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transcription of eukaryotic tRNA genes relies on the TFIIIC-dependent recruitment of TFIIIB on a approximately 50 bp region upstream of the transcription start site (TSS). TFIIIC specifically interacts with highly conserved, intragenic promoter elements, while the contacts between TFIIIB and the upstream DNA have long been considered as largely non-specific. Through a computer search procedure designed to detect shared, yet degenerate sequence features, we have identified a conserved sequence pattern upstream of Saccharomyces cerevisiae tDNAs. This pattern consists of four regions in which particular sequences are over-represented. The most downstream of these regions surrounds the TSS, while the other three districts of sequence conservation (appearing as a centrally located TATA-like sequence flanked by T-rich elements on both sides) are located across the DNA region known to interact with TFIIIB. Upstream regions whose sequence conforms to this pattern were found to potentiate tRNA gene transcription, both in vitro and in vivo, by enhancing TFIIIB binding. A conserved pattern of DNA bendability was also revealed, with peaks of bending propensity centered on the TATA-like and the TSS regions. Sequence analysis of other eukaryotic genomes further revealed the widespread occurrence of conserved sequence patterns upstream of tDNAs, with striking lineage-specific differences in the number and sequence of conserved motifs. Our data strongly support the notion that tRNA gene transcription in eukaryotes is modulated by composite TFIIIB binding sites that may confer responsiveness to variation in TFIIIB activity and/or concentration.
Collapse
Affiliation(s)
- Silvia Giuliodori
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, Parco Area delle Scienze 23/A, 43100 Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Ishiguro A, Kassavetis GA. A gene-specific effect of an internal deletion in the Bdp1 subunit of the RNA polymerase III transcription initiation factor TFIIIB. FEBS Lett 2003; 548:33-6. [PMID: 12885403 DOI: 10.1016/s0014-5793(03)00724-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Saccharomyces cerevisiae RPR1 gene encodes the RNA subunit of its RNase P, which processes RNA polymerase (pol) III primary transcripts. RPR1, which is transcribed by pol III, has been isolated as a multicopy suppressor of a specific small internal deletion (amino acids 253-269) in the Bdp1 subunit of transcription factor TFIIIB, the core pol III transcription factor. The selective effect of this Bdp1 deletion on RPR1 transcription has been analyzed in vitro. It is shown that TFIIIC-dependent assembly of TFIIIB on the RPR1 promoter is specifically sensitive to this Bdp1 deletion, leading to gene-specifically defective single-round and multiple-round transcription.
Collapse
Affiliation(s)
- Akira Ishiguro
- Division of Biological Sciences and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | |
Collapse
|
27
|
Abstract
The Saccharomyces cerevisiae retrovirus-like element Ty3 inserts specifically into the initiation sites of genes transcribed by RNA polymerase III (pol III). A strain with a disruption of LHP1, which encodes the homologue of autoantigen La protein, was recovered in a screen for mutants defective in Ty3 transposition. Transposition into a target composed of divergent tRNA genes was decreased eightfold. In lhp1 mutants, Ty3 polyproteins were produced at wild-type levels, assembled into virus-like particles (VLPs) and processed efficiently. The amount of cDNA associated with these particles was about half the amount in a wild-type control at early times, but approached the wild-type level after 48 h of induction. Ty3 integration was examined at two genomic tRNA gene families and two plasmid-borne tRNA promoters. Integration was significantly decreased at one of the tRNA gene families, but was only slightly decreased at the second tRNA gene family. These findings suggest that Lhp1p contributes to Ty3 cDNA synthesis, but might also act at a target-specific step, such as integration.
Collapse
Affiliation(s)
- Michael Aye
- Department of Biological Chemistry, University of California, Irvine, CA 92697-1700, USA
| | | |
Collapse
|
28
|
Kassavetis GA, Han S, Naji S, Geiduschek EP. The role of transcription initiation factor IIIB subunits in promoter opening probed by photochemical cross-linking. J Biol Chem 2003; 278:17912-7. [PMID: 12637540 DOI: 10.1074/jbc.m300743200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The core transcription initiation factor (TF) IIIB recruits its conjugate RNA polymerase (pol) III to the promoter and also plays an essential role in promoter opening. TFIIIB assembled with certain deletion mutants of its Brf1 and Bdp1 subunits is competent in pol III recruitment, but the resulting preinitiation complex does not open the promoter. Whether Brf1 and Bdp1 participate in opening the promoter by direct DNA interaction (as sigma subunits of bacterial RNA polymerases do) or indirectly by their action on pol III has been approached by site-specific photochemical protein-DNA cross-linking of TFIIIB-pol III-U6 RNA gene promoter complexes. Brf1, Bdp1, and several pol III subunits can be cross-linked to the nontranscribed strand of the U6 promoter at base pair -9/-8 and +2/+3 (relative to the transcriptional start as +1), respectively the upstream and downstream ends of the DNA segment that opens up into the transcription bubble. Cross-linking of Bdp1 and Brf1 is detected at 0 degrees C in closed preinitiation complexes and at 30 degrees C in complexes that are partly open, but also it is detected in mutant TFIIIB-pol III-DNA complexes that are unable to open the promoter. In contrast, promoter opening-defective TFIIIB mutants generate significant changes of cross-linking of polymerase subunits. The weight of this evidence argues in favor of an indirect mode of action of TFIIIB in promoter opening.
Collapse
Affiliation(s)
- George A Kassavetis
- Division of Biological Sciences and the Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0634, USA.
| | | | | | | |
Collapse
|
29
|
Jourdain S, Acker J, Ducrot C, Sentenac A, Lefebvre O. The tau95 subunit of yeast TFIIIC influences upstream and downstream functions of TFIIIC.DNA complexes. J Biol Chem 2003; 278:10450-7. [PMID: 12533520 DOI: 10.1074/jbc.m213310200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast transcription factor IIIC (TFIIIC) is organized in two distinct multisubunit domains, tauA and tauB, that are respectively responsible for TFIIIB assembly and stable anchoring of TFIIIC on the B block of tRNA genes. Surprisingly, we found that the removal of tauA by mild proteolysis stabilizes the residual tauB.DNA complexes at high temperatures. Focusing on the well conserved tau95 subunit that belongs to the tauA domain, we found that the tau95-E447K mutation has long distance effects on the stability of TFIIIC.DNA complexes and start site selection. Mutant TFIIIC.DNA complexes presented a shift in their 5' border, generated slow-migrating TFIIIB.DNA complexes upon stripping TFIIIC by heparin or heat treatment, and allowed initiation at downstream sites. In addition, mutant TFIIIC.DNA complexes were highly unstable at high temperatures. Coimmunoprecipitation experiments indicated that tau95 participates in the interconnection of tauA with tauB via its contacts with tau138 and tau91 polypeptides. The results suggest that tau95 serves as a scaffold critical for tauA.DNA spatial configuration and tauB.DNA stability.
Collapse
Affiliation(s)
- Sabine Jourdain
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
30
|
Dieci G, Giuliodori S, Catellani M, Percudani R, Ottonello S. Intragenic promoter adaptation and facilitated RNA polymerase III recycling in the transcription of SCR1, the 7SL RNA gene of Saccharomyces cerevisiae. J Biol Chem 2002; 277:6903-14. [PMID: 11741971 DOI: 10.1074/jbc.m105036200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The SCR1 gene, coding for the 7SL RNA of the signal recognition particle, is the last known class III gene of Saccharomyces cerevisiae that remains to be characterized with respect to its mode of transcription and promoter organization. We show here that SCR1 represents a unique case of a non-tRNA class III gene in which intragenic promoter elements (the TFIIIC-binding A- and B-blocks), corresponding to the D and TpsiC arms of mature tRNAs, have been adapted to a structurally different small RNA without losing their transcriptional function. In fact, despite the presence of an upstream canonical TATA box, SCR1 transcription strictly depends on the presence of functional, albeit quite unusual, A- and B-blocks and requires all the basal components of the RNA polymerase III transcription apparatus, including TFIIIC. Accordingly, TFIIIC was found to protect from DNase I digestion an 80-bp region comprising the A- and B-blocks. B-block inactivation completely compromised TFIIIC binding and transcription capacity in vitro and in vivo. An inactivating mutation in the A-block selectively affected TFIIIC binding to this promoter element but resulted in much more dramatic impairment of in vivo than in vitro transcription. Transcriptional competition and nucleosome disruption experiments showed that this stronger in vivo defect is due to a reduced ability of A-block-mutated SCR1 to compete with other genes for TFIIIC binding and to counteract the assembly of repressive chromatin structures through TFIIIC recruitment. A kinetic analysis further revealed that facilitated RNA polymerase III recycling, far from being restricted to typical small sized class III templates, also takes place on the 522-bp-long SCR1 gene, the longest known class III transcriptional unit.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Binding Sites
- Binding, Competitive
- Chromatin/chemistry
- Chromatin/metabolism
- Cloning, Molecular
- Deoxyribonuclease I/metabolism
- Kinetics
- Models, Genetic
- Molecular Sequence Data
- Mutagenesis
- Mutagenesis, Site-Directed
- Mutation
- Nucleosomes/metabolism
- Promoter Regions, Genetic
- Protein Binding
- RNA/metabolism
- RNA Polymerase III/genetics
- RNA, Small Cytoplasmic/metabolism
- RNA, Transfer/metabolism
- Receptors, Complement/genetics
- Receptors, Complement/metabolism
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/metabolism
- Signal Recognition Particle/metabolism
- Transcription Factors, TFIII/genetics
- Transcription Factors, TFIII/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Giorgio Dieci
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, I-43100 Parma, Italy.
| | | | | | | | | |
Collapse
|
31
|
Andrau JC, Werner M. B"-associated factor(s) involved in RNA polymerase III preinitiation complex formation and start-site selection. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5167-75. [PMID: 11589709 DOI: 10.1046/j.0014-2956.2001.02445.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The TFIIIB transcription factor is the central component of the RNA polymerase III transcriptional machinery. In yeast, this factor is composed of three essential polypeptides TBP, TFIIIB70 and TFIIIB90, that are sufficient as recombinant proteins, together with TFIIIC, to promote accurate transcription in vitro. Here we show that a partially purified fraction, named B", that contains the TFIIIB90 subunit, displays properties distinct from recombinant TFIIIB90. This fraction contains at least a component that interacts with DNA*TFIIIC complexes, either alone or in combination with TFIIIB90, and increases the resistance of the complexes to heparin treatment. In addition, primer extension and single round transcriptions experiment reveal a different start-site selection pattern directed by B" or rTFIIIB90. In mixing experiments, we show that an activity in B", distinct from TFIIIB90, can promote transcription initiation at the +1 site without affecting the rate of preinitiation complex formation. Our data suggest the existence of at least one new component that participates in preinitiation complex formation and influences start-site selection by RNA polymerase III.
Collapse
Affiliation(s)
- J C Andrau
- Service de Biochimie et Génétique Moléculaire, Bät. 142, CEA/Saclay, F-91191 Gif-sur-Yvette CEDEX, France
| | | |
Collapse
|
32
|
Ghavidel A, Schultz MC. TATA binding protein-associated CK2 transduces DNA damage signals to the RNA polymerase III transcriptional machinery. Cell 2001; 106:575-84. [PMID: 11551505 DOI: 10.1016/s0092-8674(01)00473-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here we report that RNA polymerase (pol) III transcription is repressed in response to DNA damage by downregulation of TFIIIB, the core component of the pol III transcriptional machinery. Protein kinase CK2 transduces this stress signal to TFIIIB. CK2 associates with and normally activates the TATA binding protein (TBP) subunit of TFIIIB. The beta regulatory subunit of CK2 binds to TBP and is required for high TBP-associated CK2 activity and pol III transcription in unstressed cells. Transcriptional repression induced by DNA damage requires CK2 and coincides with downregulation of TBP-associated CK2 and dissociation of catalytic subunits from TBP-CK2 complexes. Therefore, CK2 is the terminal effector in a signaling pathway that represses pol III transcription when genome integrity is compromised.
Collapse
Affiliation(s)
- A Ghavidel
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | |
Collapse
|
33
|
Affiliation(s)
- E P Geiduschek
- Division of Biology and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | |
Collapse
|
34
|
Kruppa M, Moir RD, Kolodrubetz D, Willis IM. Nhp6, an HMG1 protein, functions in SNR6 transcription by RNA polymerase III in S. cerevisiae. Mol Cell 2001; 7:309-18. [PMID: 11239460 DOI: 10.1016/s1097-2765(01)00179-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nhp6A and Nhp6B are HMG1-like proteins required for the growth of S. cerevisiae at elevated temperatures. We show that the conditional lethality of an nhp6 strain results from defective transcription of SNR6 (U6 snRNA) by RNA polymerase III. Overexpression of U6 snRNA or Brf1, a limiting component of TFIIIB, and an activating mutation (PCF1-1) in TFIIIC were each found to suppress the nhp6 growth defect. Additionally, U6 snRNA levels, which are reduced over 10-fold in nhp6 cells at 37 degrees C, were restored by Brf1 overexpression and by PCF1-1. Nhp6A protein specifically enhanced TFIIIC-dependent, but not TATA box-dependent, SNR6 transcription in vitro by facilitating TFIIIC binding to the SNR6 promoter. Thus, Nhp6 has a direct role in transcription complex assembly at SNR6.
Collapse
MESH Headings
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Gene Expression Regulation, Fungal
- Genes, Fungal/genetics
- Genes, Lethal/genetics
- HMGN Proteins
- High Mobility Group Proteins/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phenotype
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA Polymerase III/chemistry
- RNA Polymerase III/metabolism
- RNA, Fungal/biosynthesis
- RNA, Fungal/genetics
- RNA, Ribosomal, 5S/biosynthesis
- RNA, Ribosomal, 5S/genetics
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Transfer/biosynthesis
- RNA, Transfer/genetics
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/growth & development
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins
- Suppression, Genetic/genetics
- Temperature
- Transcription Factor TFIIIB
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors, TFIII/genetics
- Transcription Factors, TFIII/metabolism
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- M Kruppa
- Department of Microbiology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
35
|
Huang Y, Hamada M, Maraia RJ. Isolation and cloning of four subunits of a fission yeast TFIIIC complex that includes an ortholog of the human regulatory protein TFIIICbeta. J Biol Chem 2000; 275:31480-7. [PMID: 10906331 DOI: 10.1074/jbc.m004635200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic tRNA genes are controlled by proximal and downstream elements that direct transcription by RNA polymerase (pol) III. Transcription factors (TFs) that reside near the initiation site are related in Saccharomyces cerevisiae and humans, while those that reside at or downstream of the B box share no recognizable sequence relatedness. Human TFIIICbeta is a transcriptional regulator that exhibits no homology to S. cerevisiae sequences on its own. We cloned an essential Schizosaccharomyces pombe gene that encodes a protein, Sfc6p, with homology to the S. cerevisiae TFIIIC subunit, TFC6p, that extends to human TFIIICbeta. We also isolated and cloned S. pombe homologs of three other TFIIIC subunits, Sfc3p, Sfc4p, and Sfc1p, the latter two of which are conserved from S. cerevisiae to humans, while the former shares homology with the S. cerevisiae B box-binding homolog only. Sfc6p is a component of a sequence-specific DNA-binding complex that also contains the B box-binding homolog, Sfc3p. Immunoprecipitation of Sfc3p further revealed that Sfc1p, Sfc3p, Sfc4p, and Sfc6p are associated in vivo and that the isolated Sfc3p complex is active for pol III-mediated transcription of a S. pombe tRNA gene in vitro. These results establish a link between the downstream pol III TFs in yeast and humans.
Collapse
Affiliation(s)
- Y Huang
- Laboratory of Molecular Growth Regulation, NICHD, National Institutes of Health, Bethesda, Maryland 20892-2753, USA
| | | | | |
Collapse
|
36
|
Yieh L, Kassavetis G, Geiduschek EP, Sandmeyer SB. The Brf and TATA-binding protein subunits of the RNA polymerase III transcription factor IIIB mediate position-specific integration of the gypsy-like element, Ty3. J Biol Chem 2000; 275:29800-7. [PMID: 10882723 DOI: 10.1074/jbc.m003149200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ty3 integrates into the transcription initiation sites of genes transcribed by RNA polymerase III. It is known that transcription factors (TF) IIIB and IIIC are important for recruiting Ty3 to its sites of integration upstream of tRNA genes, but that RNA polymerase III is not required. In order to investigate the respective roles of TFIIIB and TFIIIC, we have developed an in vitro integration assay in which Ty3 is targeted to the U6 small nuclear RNA gene, SNR6. Because TFIIIB can bind to the TATA box upstream of the U6 gene through contacts mediated by TATA-binding protein (TBP), TFIIIC is dispensable for in vitro transcription. Thus, this system offers an opportunity to test the role of TFIIIB independent of a requirement of TFIIIC. We demonstrate that the recombinant Brf and TBP subunits of TFIIIB, which interact over the SNR6 TATA box, direct integration at the SNR6 transcription initiation site in the absence of detectable TFIIIC or TFIIIB subunit B". These findings suggest that the minimal requirements for pol III transcription and Ty3 integration are very similar.
Collapse
Affiliation(s)
- L Yieh
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California 92697-1700, USA
| | | | | | | |
Collapse
|
37
|
Dieci G, Percudani R, Giuliodori S, Bottarelli L, Ottonello S. TFIIIC-independent in vitro transcription of yeast tRNA genes. J Mol Biol 2000; 299:601-13. [PMID: 10835271 DOI: 10.1006/jmbi.2000.3783] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The most peculiar transcriptional property of eukaryotic tRNA genes, as well as of other genes served by RNA polymerase III, is their complete dependence on the intragenic interaction platform provided by transcription factor IIIC (TFIIIC) for the productive assembly of the TBP-containing initiation factor TFIIIB. The sole exception, in yeast, is the U6 RNA gene, which is able to exploit a TATAAATA element, 30 bp upstream of the transcription start site, for the TFIIIC-independent assembly of TFIIIB. To find out whether this extragenic core promoter organization and autonomous TFIIIB assembly capacity are unique features of the U6 gene or also apply to other genes transcribed by RNA polymerase III, we scanned the 5'-flanking regions (up to position -100) of the entire tRNA gene set of Saccharomyces cerevisiae searching for U6-like TATA motifs. Four tRNA genes harboring such a sequence motif around position -30 were identified and found to be transcribed in vitro by a minimal system only composed of TFIIIB and RNA polymerase III. In this system, start site selection is not at all affected by the absence of TFIIIC, which, when added, significantly stimulates transcription by determining an increase in the number, rather than in the efficiency of utilization, of productive initiation complexes. A specific TBP-TATA element interaction is absolutely required for TFIIIC-independent transcription, but the nearby sequence context also contributes to the efficiency of autonomous TFIIIB assembly. The existence of a TFIIIB assembly pathway leading to the faithful transcription of natural eukaryotic tRNA genes in the absence of TFIIIC provides novel insights into the functional flexibility of the eukaryotic tRNA gene transcription machinery and on its evolution from an ancestral RNA polymerase III system relying on upstream, TATA- centered control elements.
Collapse
MESH Headings
- Base Sequence
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- DNA-Binding Proteins/metabolism
- Evolution, Molecular
- Gene Expression Regulation, Fungal/genetics
- Gene Frequency/genetics
- Genes, Fungal/genetics
- Genes, Plant/genetics
- Kinetics
- Molecular Sequence Data
- Mutation/genetics
- RNA Polymerase III/metabolism
- RNA, Fungal/analysis
- RNA, Fungal/biosynthesis
- RNA, Fungal/genetics
- RNA, Small Nuclear/genetics
- RNA, Transfer/analysis
- RNA, Transfer/biosynthesis
- RNA, Transfer/genetics
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- TATA Box/genetics
- TATA-Box Binding Protein
- Templates, Genetic
- Transcription Factor TFIIIB
- Transcription Factors/metabolism
- Transcription Factors, TFIII/physiology
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- G Dieci
- Institute of Biochemical Sciences, University of Parma, Parma, I-43100, Italy.
| | | | | | | | | |
Collapse
|
38
|
Yukawa Y, Sugita M, Choisne N, Small I, Sugiura M. The TATA motif, the CAA motif and the poly(T) transcription termination motif are all important for transcription re-initiation on plant tRNA genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 22:439-47. [PMID: 10849359 DOI: 10.1046/j.1365-313x.2000.00752.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The effect of alteration of 5' and 3' flanking sequences on the transcription of plant tRNA genes was analysed using an RNA polymerase III-dependent in vitro transcription system derived from nuclei of cultured tobacco cells. A TATA-like sequence and the CAA motif frequently observed upstream of plant tRNA genes, and the poly(T) stretch usually present downstream, were shown to be necessary for efficient re-initiation of transcription. The CAA motif was shown to be a transcription initiation site. Introduction of the CAA and TATA-like motifs into a gene naturally lacking them greatly enhanced transcription by promoting efficient re-initiation.
Collapse
Affiliation(s)
- Y Yukawa
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
39
|
Nguyen LH, Barsky D, Erzberger JP, Wilson DM. Mapping the protein-DNA interface and the metal-binding site of the major human apurinic/apyrimidinic endonuclease. J Mol Biol 2000; 298:447-59. [PMID: 10772862 DOI: 10.1006/jmbi.2000.3653] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apurinic/apyrimidinic (AP) endonuclease Ape1 is a key enzyme in the mammalian base excision repair pathway that corrects AP sites in the genome. Ape1 cleaves the phosphodiester bond immediately 5' to AP sites through a hydrolytic reaction involving a divalent metal co-factor. Here, site-directed mutagenesis, chemical footprinting techniques, and molecular dynamics simulations were employed to gain insights into how Ape1 interacts with its metal cation and AP DNA. It was found that Ape1 binds predominantly to the minor groove of AP DNA, and that residues R156 and Y128 contribute to protein-DNA complex stability. Furthermore, the Ape1-AP DNA footprint does not change along its reaction pathway upon active-site coordination of Mg(2+) or in the presence of DNA polymerase beta (polbeta), an interactive protein partner in AP site repair. The DNA region immediately 5' to the abasic residue was determined to be in close proximity to the Ape1 metal-binding site. Experimental evidence is provided that amino acid residues E96, D70, and D308 of Ape1 are involved in metal coordination. Molecular dynamics simulations, starting from the active site of the Ape1 crystal structure, suggest that D70 and E96 bind directly to the metal, while D308 coordinates the cation through the first hydration shell. These studies define the Ape1-AP DNA interface, determine the effect of polbeta on the Ape1-DNA interaction, and reveal new insights into the Ape1 active site and overall protein dynamics.
Collapse
Affiliation(s)
- L H Nguyen
- Molecular and Structural Biology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94551, USA
| | | | | | | |
Collapse
|
40
|
Shah SM, Kumar A, Geiduschek EP, Kassavetis GA. Alignment of the B" subunit of RNA polymerase III transcription factor IIIB in its promoter complex. J Biol Chem 1999; 274:28736-44. [PMID: 10497245 DOI: 10.1074/jbc.274.40.28736] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TFIIIB, the central transcription initiation factor of the eukaryotic nuclear RNA polymerase (pol) III is composed of three subunits: the TATA-binding protein; Brf, the TFIIB-related subunit; and B", the Saccharomyces cerevisiae, TFC5 gene product. The orientation of the B" subunit within the TFIIIB-DNA complex has been analyzed at two promoters by two approaches that involve site-specific photochemical protein-DNA cross-linking: a collection of B" internal and external deletion proteins has been surveyed for those deletions that alter the interaction of B" with DNA or change the orientation of B" relative to DNA; a method for regionally mapping cross-links between specific DNA sites and (32)P-end-labeled protein has also been applied. The results map an N-proximal segment of B" to the upstream end of the TFIIIB-DNA complex and amino acids 299-315 to the principal DNA-contact site, approximately 8 base pairs upstream of the TATA box. The analysis also indicates that a segment comprising amino acids 316-434 loops away from DNA, and locates the C-proximal 170 amino acids of B" downstream of the TATA box. Examination of two-cross-link products formed by DNA with adjacent and nearby photoactive nucleotides supports the conclusion that Brf and B" share an extended interface along the length of the TFIIIB-DNA complex.
Collapse
Affiliation(s)
- S M Shah
- Department of Biology, Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0634, USA.
| | | | | | | |
Collapse
|
41
|
Bhargava P, Kassavetis GA. Abortive initiation by Saccharomyces cerevisiae RNA polymerase III. J Biol Chem 1999; 274:26550-6. [PMID: 10473618 DOI: 10.1074/jbc.274.37.26550] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Promoter escape can be rate-limiting for transcription by bacterial RNA polymerases and RNA polymerase II of higher eukaryotes. Formation of a productive elongation complex requires disengagement of RNA polymerase from promoter-bound eukaryotic transcription factors or bacterial sigma factors. RNA polymerase III (pol III) stably associates with the TFIIIB-DNA complex even in the absence of localized DNA unwinding associated with the open promoter complex. To explore the role that release of pol III from the TFIIIB-DNA complex plays in limiting the overall rate of transcription, we have examined the early steps of RNA synthesis. We find that, on average, only three rounds of abortive initiation precede the formation of each elongation complex and that nearly all pol III molecules escape the abortive initiation phase of transcription without significant pausing or arrest. However, when elongation is limited to 5 nucleotides, the intrinsic exoribonuclease activity of pol III cleaves 5-mer RNA at a rate considerably faster than product release or reinitiation. This cleavage also occurs in the normal process of forming a productive elongation complex. The possible role of nucleolytic retraction in disengaging pol III from TFIIIB is discussed.
Collapse
Affiliation(s)
- P Bhargava
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0634, USA.
| | | |
Collapse
|
42
|
Kumar A, Grove A, Kassavetis GA, Geiduschek EP. Transcription factor IIIB: the architecture of its DNA complex, and its roles in initiation of transcription by RNA polymerase III. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:121-9. [PMID: 10384276 DOI: 10.1101/sqb.1998.63.121] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- A Kumar
- Department of Biology, University of California, San Diego, La Jolla 92093-0634, USA
| | | | | | | |
Collapse
|
43
|
Chédin S, Ferri ML, Peyroche G, Andrau JC, Jourdain S, Lefebvre O, Werner M, Carles C, Sentenac A. The yeast RNA polymerase III transcription machinery: a paradigm for eukaryotic gene activation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:381-9. [PMID: 10384303 DOI: 10.1101/sqb.1998.63.381] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- S Chédin
- Service de Biochimie et Génétique Moléculaire, CEA/Saclay, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Grove A, Kassavetis GA, Johnson TE, Geiduschek EP. The RNA polymerase III-recruiting factor TFIIIB induces a DNA bend between the TATA box and the transcriptional start site. J Mol Biol 1999; 285:1429-40. [PMID: 9917387 DOI: 10.1006/jmbi.1998.2347] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TFIIIB, the RNA polymerase III-recruiting factor of Saccharomyces cerevisiae, may be assembled upstream of the transcriptional start site, either through the interaction of its constituent TATA-binding protein (TBP) with a strong TATA-box, or by means of the multisubunit assembly factor, TFIIIC. Missing nucleoside interference analysis of TFIIIC-dependent TFIIIB-DNA complex formation revealed enhanced complex formation at 0 degreesC when the DNA is missing nucleosides in two broad 7-10 bp regions centered around base-pairs -17 and -3 relative to the transcriptional start site; no effect of missing nucleosides was evident at 20 degreesC. The implication of these results for required DNA flexure in TFIIIC-mediated TFIIIB-DNA complex formation was pursued in a TFIIIC-independent context, using DNA with a suboptimal 6 bp TATA box (TATAAA). A unique missing nucleoside at the downstream end of the TATA box, corresponding to the position of one of two TBP-mediated DNA kinks, significantly enhances TBP-DNA complex formation. In contrast, TFIIIB displays a broad preference for missing nucleosides within an approximately 15 bp region immediately downstream of the TATA box. Consecutive mismatches (4-nt loops), either at the sites of TBP-mediated DNA kinking at both ends of the TATA box or within the identified region where missing nucleosides promote TFIIIB-DNA complex formation, also result in enhanced and specific TFIIIB assembly; 4-nt loops further downstream do not lead to preferential placement of TFIIIB. We conclude that TFIIIB induces an additional DNA deformation between the TATA box and the start site of transcription that is likely to be more extended than the sharp kinks generated by TBP.
Collapse
Affiliation(s)
- A Grove
- Department of Biology and Center for Molecular Genetics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0634, USA.
| | | | | | | |
Collapse
|
45
|
Ghavidel A, Hockman DJ, Schultz MC. A review of progress towards elucidating the role of protein kinase CK2 in polymerase III transcription: regulation of the TATA binding protein. Mol Cell Biochem 1999; 191:143-8. [PMID: 10094403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
We have investigated the molecular basis of the requirement for protein kinase CK2 in nuclear transcription in Saccharomyces cerevisiae. In vivo and in vitro analysis has demonstrated that CK2 is required for efficient transcription of the tRNA and 55 rRNA genes by RNA polymerase III. This suggests that a component of the pol III transcription machinery is regulated by CK2. We tested this possibility by a biochemical complementation approach in which components of the pol III transcription machinery from wild type cells were tested for their ability to rescue transcription in extract from a conditionally CK2-deficient mutant. We found that pol III transcription initiation factor IIIB (TFIIIB) fully restores transcription in CK2-deficient extract. Further in vitro studies revealed that TFIIIB must be phosphorylated to be active, that a single subunit of wild type TFIIIB, the TATA binding protein (TBP), is efficiently phosphorylated by CK2, and that recombinant TBP and a limiting amount of CK2 rescues transcription in CK2-deficient extract. We conclude that TBP is the physiological target of CK2 among the components of the pol III transcription machinery. The implications of this result are discussed in the context of previous data concerning the regulation of TFIIIB.
Collapse
Affiliation(s)
- A Ghavidel
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
46
|
Grove A, Galeone A, Yu E, Mayol L, Geiduschek EP. Affinity, stability and polarity of binding of the TATA binding protein governed by flexure at the TATA Box. J Mol Biol 1998; 282:731-9. [PMID: 9743622 DOI: 10.1006/jmbi.1998.2058] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The TATA binding protein (TBP), which plays a central role in gene regulation as an essential component of all three nuclear transcription systems, sharply kinks the TATA box at two sites and severely contorts the intervening DNA segment. DNA constructs with precisely localized flexure have been used to investigate the special repertoire of mechanisms and properties that arise from TBP interacting with the TATA box. DNA flexure precisely localized to the sites of TBP-mediated DNA kinking increases the affinity of TBP more than 100-fold; unexpectedly, this increase in affinity is achieved almost exclusively by increasing the stability of the TBP-DNA complex rather than the rate of its formation. In vitro transcription with RNA polymerase III provides a first demonstration that the orientation of TBP on the TATA box is governed by DNA deformability, its C-proximal repeat contacting the more flexible end of the TATA box. Exceptionally stable TBP-DNA complexes reach their orientational equilibrium very slowly; in these circumstances, assembly of stable ("committed") transcription initiation complexes can freeze far-from-equilibrium orientations of TBP on the TATA box, causing transcription polarity to be determined by a kinetic trapping mechanism.
Collapse
Affiliation(s)
- A Grove
- Department of Biology and Center for Molecular Genetics, University of California, 9500 Gilman Drive, San Diego, CA, 92093-0634, USA
| | | | | | | | | |
Collapse
|
47
|
Bojanowski K, Maniotis AJ, Plisov S, Larsen AK, Ingber DE. DNA topoisomerase II can drive changes in higher order chromosome architecture without enzymatically modifying DNA. J Cell Biochem 1998; 69:127-42. [PMID: 9548561 DOI: 10.1002/(sici)1097-4644(19980501)69:2<127::aid-jcb4>3.0.co;2-u] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Topoisomerase II has been suggested to play a major role in chromosome organization based on its DNA decatenating activity and its ability to mediate direct binding interactions between DNA and nuclear matrix. However, this latter point remains controversial. Here we address the question of whether the chromatin binding activity of Topoisomerase II is sufficient to modify chromosome form using whole mammalian chromosomes in vitro. Intact chromosomes were microsurgically removed from living cells and disassembled by treatment with protease or heparin. When these disassembled chromosomes were incubated with recombinant human Topoisomerase II, the enzyme became incorporated into chromatin and reassembly resulted, leading to almost complete restoration of pre-existing chromosome shape and position within minutes. Chromosome reconstitution by Topoisomerase II was dose-dependent, saturable, and appeared to be controlled stoichiometrically, rather than enzymatically. Similar reassembly was observed in the absence of ATP and when a catalytically inactive thermosensitive Topoisomerase II mutant was used at the restrictive temperature. Chromosome recondensation also could be induced after the strand-passing activity of Topoisomerase II was blocked by treatment with an inhibitor of its catalytic activity, amsacrine. When a non-hydrolyzable beta,gamma-imido analog of ATP (AMP-PNP) was used to physiologically fix bound Topoisomerase II enzyme in a closed form around DNA, subsequent chromosome disassembly was prevented in the presence of high salt. These data suggest that Topoisomerase II may control higher order chromatin architecture through direct binding interactions, independently of its well-known catalytic activity.
Collapse
Affiliation(s)
- K Bojanowski
- Department of Surgery, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
48
|
Tate JJ, Persinger J, Bartholomew B. Survey of four different photoreactive moieties for DNA photoaffinity labeling of yeast RNA polymerase III transcription complexes. Nucleic Acids Res 1998; 26:1421-6. [PMID: 9490787 PMCID: PMC147414 DOI: 10.1093/nar/26.6.1421] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In order to optimize the detection of protein-DNA contacts by DNA photoaffinity labeling, we attached four different photoreactive groups to DNA and examined their ability to crosslink yeast RNA polymerase III (Pol III) transcription complexes. Photoreactive nucleotides containing an aryl azide (AB-dUMP), benzophenone (BP-dUMP), perfluorinated aryl azide (FAB-dUMP) or diazirine (DB-dUMP) coupled to 5-aminoallyl deoxyuridine were incorporated into the SUP4 tRNATyr gene at bp -3/-2 or +11. Photo-crosslinking with diazirine revealed contacts of Pol III with DNA that are not detected by DNA photoaffinity labeling using an aryl azide, fluorinated aryl azide or benzophenone group attached to DNA. These novel contacts were of the 82 kDa subunit of Pol III with DNA at bp -3/-2 in the initiation complex and of the 82, 40(37) and 31 kDa subunits of Pol III with DNA at bp +11 in elongation complexes stalled at bp +17. These results provide evidence for the subcomplex of the 82, 34 and 31 kDa subunits of Pol III being positioned near the transcription bubble of actively transcribing Pol III, as all three proteins were crosslinked at bp +11 of the stalled transcription complex.
Collapse
Affiliation(s)
- J J Tate
- Department of Medical Biochemistry, School of Medicine, Southern Illinois University at Carbondale, Carbondale, IL 62901-4413, USA
| | | | | |
Collapse
|
49
|
Luukkonen BG, Séraphin B. Construction of an in vivo-regulated U6 snRNA transcription unit as a tool to study U6 function. RNA (NEW YORK, N.Y.) 1998; 4:231-238. [PMID: 9570323 PMCID: PMC1369612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
U6 snRNA is the only spliceosomal snRNA transcribed by RNA polymerase III in yeast. We have constructed a regulated U6 snRNA transcription unit by introducing the binding site for the Escherichia coli lacI repressor protein in the U6 snRNA promoter. GAL-induced expression of lacI protein led to a decrease in U6 snRNA levels and blocked cell growth. lacI dissociation from the promoter, and consequent U6 snRNA transcription, could be induced by addition of IPTG and repression of lacI transcription. To test the usefulness of this system in studying spliceosomal U6 snRNA function, we conditionally expressed U6 snRNAs with a single base substitution in position A51. We demonstrate that expression of the U6-A51 mutations confers a strong dominant negative phenotype as shown by severe reductions in growth rate. In these strains, splicing of endogenous pre-mRNAs was blocked before the second step.
Collapse
Affiliation(s)
- B G Luukkonen
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
50
|
Dildine SL, Sandmeyer SB. Integration of the yeast retrovirus-like element Ty3 upstream of a human tRNA gene expressed in yeast. Gene 1997; 194:227-33. [PMID: 9272864 DOI: 10.1016/s0378-1119(97)00167-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The retrovirus-like element Ty3 of Saccharomyces cerevisae integrates into the yeast genomic DNA in a position specific manner. Ty3 integrates within 1-2 base pairs of the site of transcription initiation by RNA polymerase III. The human tRNA(Lys)3 gene was used as a target for transposition in a plasmid-based assay to determine whether Ty3 integration can be targeted to a human tRNA gene. Each transposition event observed was adjacent to the site of initiation of transcription of the human tRNA gene. Therefore, heterologous tRNA genes can serve as targets for Ty3 in yeast. This is a first step toward development of a system for targeted integrations in heterologous organisms.
Collapse
Affiliation(s)
- S L Dildine
- Department of Microbiology and Molecular Genetics, University of California-Irvine, 92697, USA
| | | |
Collapse
|