1
|
Andrzejewska-Romanowska A, Gumna J, Tykwińska E, Pachulska-Wieczorek K. Mapping the structural landscape of the yeast Ty3 retrotransposon RNA genome. Nucleic Acids Res 2024; 52:9821-9837. [PMID: 38864374 PMCID: PMC11381356 DOI: 10.1093/nar/gkae494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
Long terminal repeat (LTR)-retrotransposons are significant contributors to the evolution and diversity of eukaryotic genomes. Their RNA genomes (gRNA) serve as a template for protein synthesis and reverse transcription to a DNA copy, which can integrate into the host genome. Here, we used the SHAPE-MaP strategy to explore Ty3 retrotransposon gRNA structure in yeast and under cell-free conditions. Our study reveals the structural dynamics of Ty3 gRNA and the well-folded core, formed independently of the cellular environment. Based on the detailed map of Ty3 gRNA structure, we characterized the structural context of cis-acting sequences involved in reverse transcription and frameshifting. We also identified a novel functional sequence as a potential initiator for Ty3 gRNA dimerization. Our data indicate that the dimer is maintained by direct interaction between short palindromic sequences at the 5' ends of the two Ty3 gRNAs, resembling the model characteristic for other retroelements like HIV-1 and Ty1. This work points out a range of cell-dependent and -independent Ty3 gRNA structural changes that provide a solid background for studies on RNA structure-function relationships important for retroelement biology.
Collapse
Affiliation(s)
- Angelika Andrzejewska-Romanowska
- Department of RNA Structure and Function, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Julita Gumna
- Department of RNA Structure and Function, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Ewa Tykwińska
- Department of RNA Structure and Function, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Katarzyna Pachulska-Wieczorek
- Department of RNA Structure and Function, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
2
|
Grandgenett DP, Engelman AN. Brief Histories of Retroviral Integration Research and Associated International Conferences. Viruses 2024; 16:604. [PMID: 38675945 PMCID: PMC11054761 DOI: 10.3390/v16040604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The field of retroviral integration research has a long history that started with the provirus hypothesis and subsequent discoveries of the retroviral reverse transcriptase and integrase enzymes. Because both enzymes are essential for retroviral replication, they became valued targets in the effort to discover effective compounds to inhibit HIV-1 replication. In 2007, the first integrase strand transfer inhibitor was licensed for clinical use, and subsequently approved second-generation integrase inhibitors are now commonly co-formulated with reverse transcriptase inhibitors to treat people living with HIV. International meetings specifically focused on integrase and retroviral integration research first convened in 1995, and this paper is part of the Viruses Special Issue on the 7th International Conference on Retroviral Integration, which was held in Boulder Colorado in the summer of 2023. Herein, we overview key historical developments in the field, especially as they pertain to the development of the strand transfer inhibitor drug class. Starting from the mid-1990s, research advancements are presented through the lens of the international conferences. Our overview highlights the impact that regularly scheduled, subject-specific international meetings can have on community-building and, as a result, on field-specific collaborations and scientific advancements.
Collapse
Affiliation(s)
- Duane P. Grandgenett
- Department of Molecular Microbiology and Immunology, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Madigan V, Zhang Y, Raghavan R, Wilkinson ME, Faure G, Puccio E, Segel M, Lash B, Macrae RK, Zhang F. Human paraneoplastic antigen Ma2 (PNMA2) forms icosahedral capsids that can be engineered for mRNA delivery. Proc Natl Acad Sci U S A 2024; 121:e2307812120. [PMID: 38437549 PMCID: PMC10945824 DOI: 10.1073/pnas.2307812120] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/20/2023] [Indexed: 03/06/2024] Open
Abstract
A number of endogenous genes in the human genome encode retroviral gag-like proteins, which were domesticated from ancient retroelements. The paraneoplastic Ma antigen (PNMA) family members encode a gag-like capsid domain, but their ability to assemble as capsids and traffic between cells remains mostly uncharacterized. Here, we systematically investigate human PNMA proteins and find that a number of PNMAs are secreted by human cells. We determine that PNMA2 forms icosahedral capsids efficiently but does not naturally encapsidate nucleic acids. We resolve the cryoelectron microscopy (cryo-EM) structure of PNMA2 and leverage the structure to design engineered PNMA2 (ePNMA2) particles with RNA packaging abilities. Recombinantly purified ePNMA2 proteins package mRNA molecules into icosahedral capsids and can function as delivery vehicles in mammalian cell lines, demonstrating the potential for engineered endogenous capsids as a nucleic acid therapy delivery modality.
Collapse
Affiliation(s)
- Victoria Madigan
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| | - Yugang Zhang
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| | - Rumya Raghavan
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| | - Max E. Wilkinson
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| | - Guilhem Faure
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| | - Elena Puccio
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| | - Michael Segel
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| | - Blake Lash
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| | - Rhiannon K. Macrae
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| | - Feng Zhang
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| |
Collapse
|
4
|
Hannon-Hatfield JA, Chen J, Bergman CM, Garfinkel DJ. Evolution of a Restriction Factor by Domestication of a Yeast Retrotransposon. Mol Biol Evol 2024; 41:msae050. [PMID: 38442736 PMCID: PMC10951436 DOI: 10.1093/molbev/msae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Transposable elements drive genome evolution in all branches of life. Transposable element insertions are often deleterious to their hosts and necessitate evolution of control mechanisms to limit their spread. The long terminal repeat retrotransposon Ty1 prime (Ty1'), a subfamily of the Ty1 family, is present in many Saccharomyces cerevisiae strains, but little is known about what controls its copy number. Here, we provide evidence that a novel gene from an exapted Ty1' sequence, domesticated restriction of Ty1' relic 2 (DRT2), encodes a restriction factor that inhibits Ty1' movement. DRT2 arose through domestication of a Ty1' GAG gene and contains the C-terminal domain of capsid, which in the related Ty1 canonical subfamily functions as a self-encoded restriction factor. Bioinformatic analysis reveals the widespread nature of DRT2, its evolutionary history, and pronounced structural variation at the Ty1' relic 2 locus. Ty1' retromobility analyses demonstrate DRT2 restriction factor functionality, and northern blot and RNA-seq analysis indicate that DRT2 is transcribed in multiple strains. Velocity cosedimentation profiles indicate an association between Drt2 and Ty1' virus-like particles or assembly complexes. Chimeric Ty1' elements containing DRT2 retain retromobility, suggesting an ancestral role of productive Gag C-terminal domain of capsid functionality is present in the sequence. Unlike Ty1 canonical, Ty1' retromobility increases with copy number, suggesting that C-terminal domain of capsid-based restriction is not limited to the Ty1 canonical subfamily self-encoded restriction factor and drove the endogenization of DRT2. The discovery of an exapted Ty1' restriction factor provides insight into the evolution of the Ty1 family, evolutionary hot-spots, and host-transposable element interactions.
Collapse
Affiliation(s)
- J Adam Hannon-Hatfield
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Jingxuan Chen
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Casey M Bergman
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - David J Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
5
|
Sun B, Kim H, Mello CC, Priess JR. The CERV protein of Cer1, a C. elegans LTR retrotransposon, is required for nuclear export of viral genomic RNA and can form giant nuclear rods. PLoS Genet 2023; 19:e1010804. [PMID: 37384599 PMCID: PMC10309623 DOI: 10.1371/journal.pgen.1010804] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Retroviruses and closely related LTR retrotransposons export full-length, unspliced genomic RNA (gRNA) for packaging into virions and to serve as the mRNA encoding GAG and POL polyproteins. Because gRNA often includes splice acceptor and donor sequences used to splice viral mRNAs, retroelements must overcome host mechanisms that retain intron-containing RNAs in the nucleus. Here we examine gRNA expression in Cer1, an LTR retrotransposon in C. elegans which somehow avoids silencing and is highly expressed in germ cells. Newly exported Cer1 gRNA associates rapidly with the Cer1 GAG protein, which has structural similarity with retroviral GAG proteins. gRNA export requires CERV (C. elegans regulator of viral expression), a novel protein encoded by a spliced Cer1 mRNA. CERV phosphorylation at S214 is essential for gRNA export, and phosphorylated CERV colocalizes with nuclear gRNA at presumptive sites of transcription. By electron microscopy, tagged CERV proteins surround clusters of distinct, linear fibrils that likely represent gRNA molecules. Single fibrils, or groups of aligned fibrils, also localize near nuclear pores. During the C. elegans self-fertile period, when hermaphrodites fertilize oocytes with their own sperm, CERV concentrates in two nuclear foci that are coincident with gRNA. However, as hermaphrodites cease self-fertilization, and can only produce cross-progeny, CERV undergoes a remarkable transition to form giant nuclear rods or cylinders that can be up to 5 microns in length. We propose a novel mechanism of rod formation, in which stage-specific changes in the nucleolus induce CERV to localize to the nucleolar periphery in flattened streaks of protein and gRNA; these streaks then roll up into cylinders. The rods are a widespread feature of Cer1 in wild strains of C. elegans, but their function is not known and might be limited to cross-progeny. We speculate that the adaptive strategy Cer1 uses for the identical self-progeny of a host hermaphrodite might differ for heterozygous cross-progeny sired by males. For example, mating introduces male chromosomes which can have different, or no, Cer1 elements.
Collapse
Affiliation(s)
- Bing Sun
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester,United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Haram Kim
- Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Craig C. Mello
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester,United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - James R. Priess
- Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
6
|
Ding P, Summers MF. Sequestering the 5′‐cap for viral RNA packaging. Bioessays 2022; 44:e2200104. [PMID: 36101513 DOI: 10.1002/bies.202200104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 11/11/2022]
Abstract
Many viruses evolved mechanisms for capping the 5'-ends of their plus-strand RNAs as a means of hijacking the eukaryotic messenger RNA (mRNA) splicing/translation machinery. Although capping is critical for replication, the RNAs of these viruses have other essential functions including their requirement to be packaged as either genomes or pre-genomes into progeny viruses. Recent studies indicate that human immunodeficiency virus type-1 (HIV-1) RNAs are segregated between splicing/translation and packaging functions by a mechanism that involves structural sequestration of the 5'-cap. Here, we examined studies reported for other viruses and retrotransposons that require both selective packaging of their RNAs and 5'-RNA capping for host-mediated translation. Our findings suggest that viruses and retrotransposons have evolved multiple mechanisms to control 5'-cap accessibility, consistent with the hypothesis that removal or sequestration of the 5' cap enables packageable RNAs to avoid capture by the cellular RNA processing and translation machinery.
Collapse
Affiliation(s)
- Pengfei Ding
- Department of Chemistry and Biochemistry and Howard Hughes Medical Institute University of Maryland Baltimore County Baltimore Maryland USA
| | - Michael F. Summers
- Department of Chemistry and Biochemistry and Howard Hughes Medical Institute University of Maryland Baltimore County Baltimore Maryland USA
| |
Collapse
|
7
|
Abstract
Here, we report an essentially complete genome assembly for the Ty1-less Saccharomyces paradoxus strain DG1768 (derivative of strain 337) based on PacBio and Illumina shotgun sequence data. We also document the genetic alterations that make this yeast strain a key resource for Ty1 mobility studies.
Collapse
|
8
|
Abascal-Palacios G, Jochem L, Pla-Prats C, Beuron F, Vannini A. Structural basis of Ty3 retrotransposon integration at RNA Polymerase III-transcribed genes. Nat Commun 2021; 12:6992. [PMID: 34848735 PMCID: PMC8632968 DOI: 10.1038/s41467-021-27338-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022] Open
Abstract
Retrotransposons are endogenous elements that have the ability to mobilise their DNA between different locations in the host genome. The Ty3 retrotransposon integrates with an exquisite specificity in a narrow window upstream of RNA Polymerase (Pol) III-transcribed genes, representing a paradigm for harmless targeted integration. Here we present the cryo-EM reconstruction at 4.0 Å of an active Ty3 strand transfer complex bound to TFIIIB transcription factor and a tRNA gene. The structure unravels the molecular mechanisms underlying Ty3 targeting specificity at Pol III-transcribed genes and sheds light into the architecture of retrotransposon machinery during integration. Ty3 intasome contacts a region of TBP, a subunit of TFIIIB, which is blocked by NC2 transcription regulator in RNA Pol II-transcribed genes. A newly-identified chromodomain on Ty3 integrase interacts with TFIIIB and the tRNA gene, defining with extreme precision the integration site position.
Collapse
Affiliation(s)
| | - Laura Jochem
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Carlos Pla-Prats
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Fabienne Beuron
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Alessandro Vannini
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK.
- Human Technopole, 20157, Milan, Italy.
| |
Collapse
|
9
|
Long Terminal Repeat Retrotransposon Afut4 Promotes Azole Resistance of Aspergillus fumigatus by Enhancing the Expression of sac1 Gene. Antimicrob Agents Chemother 2021; 65:e0029121. [PMID: 34516252 DOI: 10.1128/aac.00291-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus fumigatus causes a series of invasive diseases, including the high-mortality invasive aspergillosis, and has been a serious global health threat because of its increased resistance to the first-line clinical triazoles. We analyzed the whole-genome sequence of 15 A. fumigatus strains from China and found that long terminal repeat retrotransposons (LTR-RTs), including Afut1, Afut2, Afut3, and Afut4, are most common and have the largest total nucleotide length among all transposable elements in A. fumigatus. Deleting one of the most enriched Afut4977-sac1 in azole-resistant strains decreased azole resistance and downregulated its nearby gene, sac1, but it did not significantly affect the expression of genes of the ergosterol synthesis pathway. We then discovered that 5'LTR of Afut4977-sac1 had promoter activity and enhanced the adjacent sac1 gene expression. We found that sac1 is important to A. fumigatus, and the upregulated sac1 caused elevated resistance of A. fumigatus to azoles. Finally, we showed that Afut4977-sac1 has an evolution pattern similar to that of the whole genome of azole-resistant strains due to azoles; phylogenetic analysis of both the whole genome and Afut4977-sac1 suggests that the insertion of Afut4977-sac1 might have preceded the emergence of azole-resistant strains. Taking these data together, we found that the Afut4977-sac1 LTR-RT might be involved in the regulation of azole resistance of A. fumigatus by upregulating its nearby sac1 gene.
Collapse
|
10
|
Characterization of the Mycovirome from the Plant-Pathogenic Fungus Cercospora beticola. Viruses 2021; 13:v13101915. [PMID: 34696345 PMCID: PMC8537984 DOI: 10.3390/v13101915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 12/25/2022] Open
Abstract
Cercospora leaf spot (CLS) caused by Cercospora beticola is a devastating foliar disease of sugar beet (Beta vulgaris), resulting in high yield losses worldwide. Mycoviruses are widespread fungi viruses and can be used as a potential biocontrol agent for fugal disease management. To determine the presence of mycoviruses in C. beticola, high-throughput sequencing analysis was used to determine the diversity of mycoviruses in 139 C. beticola isolates collected from major sugar beet production areas in China. The high-throughput sequencing reads were assembled and searched against the NCBI database using BLASTn and BLASTx. The results showed that the obtained 93 contigs were derived from eight novel mycoviruses, which were grouped into 3 distinct lineages, belonging to the families Hypoviridae, Narnaviridae and Botourmiaviridae, as well as some unclassified (−)ssRNA viruses in the order Bunyavirales and Mononegavirales. To the best of our knowledge, this is the first identification of highly diverse mycoviruses in C. beticola. The novel mycoviruses explored in this study will provide new viral materials to biocontrol Cercospora diseases. Future studies of these mycoviruses will aim to assess the roles of each mycovirus in biological function of C. beticola in the future.
Collapse
|
11
|
Abstract
Retrotransposons provide both threats and evolutionary opportunities for their hosts. In this issue of Developmental Cell, Laureau et al. describe a fascinating host-retrotransposon relationship that may lead to retrotransposon domestication: Ty3/Gypsy exploit meiosis networks to sustain their transcription, while the host deploys RNA-binding proteins to prevent their translation.
Collapse
|
12
|
Andrzejewska A, Zawadzka M, Gumna J, Garfinkel DJ, Pachulska-Wieczorek K. In vivo structure of the Ty1 retrotransposon RNA genome. Nucleic Acids Res 2021; 49:2878-2893. [PMID: 33621339 PMCID: PMC7969010 DOI: 10.1093/nar/gkab090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/25/2022] Open
Abstract
Long terminal repeat (LTR)-retrotransposons constitute a significant part of eukaryotic genomes and influence their function and evolution. Like other RNA viruses, LTR-retrotransposons efficiently utilize their RNA genome to interact with host cell machinery during replication. Here, we provide the first genome-wide RNA secondary structure model for a LTR-retrotransposon in living cells. Using SHAPE probing, we explore the secondary structure of the yeast Ty1 retrotransposon RNA genome in its native in vivo state and under defined in vitro conditions. Comparative analyses reveal the strong impact of the cellular environment on folding of Ty1 RNA. In vivo, Ty1 genome RNA is significantly less structured and more dynamic but retains specific well-structured regions harboring functional cis-acting sequences. Ribosomes participate in the unfolding and remodeling of Ty1 RNA, and inhibition of translation initiation stabilizes Ty1 RNA structure. Together, our findings support the dual role of Ty1 genomic RNA as a template for protein synthesis and reverse transcription. This study also contributes to understanding how a complex multifunctional RNA genome folds in vivo, and strengthens the need for studying RNA structure in its natural cellular context.
Collapse
Affiliation(s)
- Angelika Andrzejewska
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Małgorzata Zawadzka
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Julita Gumna
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - David J Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Katarzyna Pachulska-Wieczorek
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
13
|
Maxwell PH. Diverse transposable element landscapes in pathogenic and nonpathogenic yeast models: the value of a comparative perspective. Mob DNA 2020; 11:16. [PMID: 32336995 PMCID: PMC7175516 DOI: 10.1186/s13100-020-00215-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Genomics and other large-scale analyses have drawn increasing attention to the potential impacts of transposable elements (TEs) on their host genomes. However, it remains challenging to transition from identifying potential roles to clearly demonstrating the level of impact TEs have on genome evolution and possible functions that they contribute to their host organisms. I summarize TE content and distribution in four well-characterized yeast model systems in this review: the pathogens Candida albicans and Cryptococcus neoformans, and the nonpathogenic species Saccharomyces cerevisiae and Schizosaccharomyces pombe. I compare and contrast their TE landscapes to their lifecycles, genomic features, as well as the presence and nature of RNA interference pathways in each species to highlight the valuable diversity represented by these models for functional studies of TEs. I then review the regulation and impacts of the Ty1 and Ty3 retrotransposons from Saccharomyces cerevisiae and Tf1 and Tf2 retrotransposons from Schizosaccharomyces pombe to emphasize parallels and distinctions between these well-studied elements. I propose that further characterization of TEs in the pathogenic yeasts would enable this set of four yeast species to become an excellent set of models for comparative functional studies to address outstanding questions about TE-host relationships.
Collapse
|
14
|
Evolution of Ty1 copy number control in yeast by horizontal transfer and recombination. PLoS Genet 2020; 16:e1008632. [PMID: 32084126 PMCID: PMC7055915 DOI: 10.1371/journal.pgen.1008632] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/04/2020] [Accepted: 01/27/2020] [Indexed: 01/04/2023] Open
Abstract
Transposable elements constitute a large fraction of most eukaryotic genomes. Insertion of mobile DNA sequences typically has deleterious effects on host fitness, and thus diverse mechanisms have evolved to control mobile element proliferation. Mobility of the Ty1 retrotransposon in Saccharomyces yeasts is regulated by copy number control (CNC) mediated by a self-encoded restriction factor derived from the Ty1 gag capsid gene that inhibits virus-like particle function. Here, we survey a panel of wild and human-associated strains of S. cerevisiae and S. paradoxus to investigate how genomic Ty1 content influences variation in Ty1 mobility. We observe high levels of mobility for a tester element with a gag sequence from the canonical Ty1 subfamily in permissive strains that either lack full-length Ty1 elements or only contain full-length copies of the Ty1' subfamily that have a divergent gag sequence. In contrast, low levels of canonical Ty1 mobility are observed in restrictive strains carrying full-length Ty1 elements containing a canonical gag sequence. Phylogenomic analysis of full-length Ty1 elements revealed that Ty1' is the ancestral subfamily present in wild strains of S. cerevisiae, and that canonical Ty1 in S. cerevisiae is a derived subfamily that acquired gag from S. paradoxus by horizontal transfer and recombination. Our results provide evidence that variation in the ability of S. cerevisiae and S. paradoxus strains to repress canonical Ty1 transposition via CNC is regulated by the genomic content of different Ty1 subfamilies, and that self-encoded forms of transposon control can spread across species boundaries by horizontal transfer.
Collapse
|
15
|
Gumna J, Purzycka KJ, Ahn HW, Garfinkel DJ, Pachulska-Wieczorek K. Retroviral-like determinants and functions required for dimerization of Ty1 retrotransposon RNA. RNA Biol 2019; 16:1749-1763. [PMID: 31469343 PMCID: PMC6844567 DOI: 10.1080/15476286.2019.1657370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
During replication of long terminal repeat (LTR)-retrotransposons, their proteins and genome (g) RNA assemble into virus-like particles (VLPs) that are not infectious but functionally related to retroviral virions. Both virions and VLPs contain gRNA in a dimeric form, but contrary to retroviruses, little is known about how gRNA dimerization and packaging occurs in LTR-retrotransposons. The LTR-retrotransposon Ty1 from Saccharomyces cerevisiae is an informative model for studying LTR-retrotransposon and retrovirus replication. Using structural, mutational and functional analyses, we explored dimerization of Ty1 genomic RNA. We provide direct evidence that interactions of self-complementary PAL1 and PAL2 palindromic sequences localized within the 5′UTR are essential for Ty1 gRNA dimer formation. Mutations disrupting PAL1-PAL2 complementarity restricted RNA dimerization in vitro and Ty1 mobility in vivo. Although dimer formation and mobility of these mutants was inhibited, our work suggests that Ty1 RNA can dimerize via alternative contact points. In contrast to previous studies, we cannot confirm a role for PAL3, tRNAiMet as well as recently proposed initial kissing-loop interactions in dimer formation. Our data also supports the critical role of Ty1 Gag in RNA dimerization. Mature Ty1 Gag binds in the proximity of sequences involved in RNA dimerization and tRNAiMet annealing, but the 5′ pseudoknot in Ty1 RNA may constitute a preferred Gag-binding site. Taken together, these results expand our understanding of genome dimerization and packaging strategies utilized by LTR-retroelements.
Collapse
Affiliation(s)
- Julita Gumna
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Katarzyna J Purzycka
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Hyo Won Ahn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - David J Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Katarzyna Pachulska-Wieczorek
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
16
|
Patterson K, Shavarebi F, Magnan C, Chang I, Qi X, Baldi P, Bilanchone V, Sandmeyer SB. Local features determine Ty3 targeting frequency at RNA polymerase III transcription start sites. Genome Res 2019; 29:1298-1309. [PMID: 31249062 PMCID: PMC6673722 DOI: 10.1101/gr.240861.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 06/12/2019] [Indexed: 12/27/2022]
Abstract
Retroelement integration into host genomes affects chromosome structure and function. A goal of a considerable number of investigations is to elucidate features influencing insertion site selection. The Saccharomyces cerevisiae Ty3 retrotransposon inserts proximal to the transcription start sites (TSS) of genes transcribed by RNA polymerase III (RNAP3). In this study, differential patterns of insertion were profiled genome-wide using a random barcode-tagged Ty3. Saturation transposition showed that tRNA genes (tDNAs) are targeted at widely different frequencies even within isoacceptor families. Ectopic expression of Ty3 integrase (IN) showed that it localized to targets independent of other Ty3 proteins and cDNA. IN, RNAP3, and transcription factor Brf1 were enriched at tDNA targets with high frequencies of transposition. To examine potential effects of cis-acting DNA features on transposition, targeting was tested on high-copy plasmids with restricted amounts of 5′ flanking sequence plus tDNA. Relative activity of targets was reconstituted in these constructions. Weighting of genomic insertions according to frequency identified an A/T-rich sequence followed by C as the dominant site of strand transfer. This site lies immediately adjacent to the adenines previously implicated in the RNAP3 TSS motif (CAA). In silico DNA structural analysis upstream of this motif showed that targets with elevated DNA curvature coincide with reduced integration. We propose that integration mediated by the Ty3 intasome complex (IN and cDNA) is subject to inputs from a combination of host factor occupancy and insertion site architecture, and that this results in the wide range of Ty3 targeting frequencies.
Collapse
Affiliation(s)
- Kurt Patterson
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | - Farbod Shavarebi
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | - Christophe Magnan
- School of Information and Computer Sciences, University of California, Irvine, Irvine, California 92697, USA
| | - Ivan Chang
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | - Xiaojie Qi
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | - Pierre Baldi
- School of Information and Computer Sciences, University of California, Irvine, Irvine, California 92697, USA
| | - Virginia Bilanchone
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | - Suzanne B Sandmeyer
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| |
Collapse
|
17
|
Dodonova SO, Prinz S, Bilanchone V, Sandmeyer S, Briggs JAG. Structure of the Ty3/Gypsy retrotransposon capsid and the evolution of retroviruses. Proc Natl Acad Sci U S A 2019; 116:10048-10057. [PMID: 31036670 PMCID: PMC6525542 DOI: 10.1073/pnas.1900931116] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Retroviruses evolved from long terminal repeat (LTR) retrotransposons by acquisition of envelope functions, and subsequently reinvaded host genomes. Together, endogenous retroviruses and LTR retrotransposons represent major components of animal, plant, and fungal genomes. Sequences from these elements have been exapted to perform essential host functions, including placental development, synaptic communication, and transcriptional regulation. They encode a Gag polypeptide, the capsid domains of which can oligomerize to form a virus-like particle. The structures of retroviral capsids have been extensively described. They assemble an immature viral particle through oligomerization of full-length Gag. Proteolytic cleavage of Gag results in a mature, infectious particle. In contrast, the absence of structural data on LTR retrotransposon capsids hinders our understanding of their function and evolutionary relationships. Here, we report the capsid morphology and structure of the archetypal Gypsy retrotransposon Ty3. We performed electron tomography (ET) of immature and mature Ty3 particles within cells. We found that, in contrast to retroviruses, these do not change size or shape upon maturation. Cryo-ET and cryo-electron microscopy of purified, immature Ty3 particles revealed an irregular fullerene geometry previously described for mature retrovirus core particles and a tertiary and quaternary arrangement of the capsid (CA) C-terminal domain within the assembled capsid that is conserved with mature HIV-1. These findings provide a structural basis for studying retrotransposon capsids, including those domesticated in higher organisms. They suggest that assembly via a structurally distinct immature capsid is a later retroviral adaptation, while the structure of mature assembled capsids is conserved between LTR retrotransposons and retroviruses.
Collapse
Affiliation(s)
- Svetlana O Dodonova
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Gottingen, Germany
| | - Simone Prinz
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Virginia Bilanchone
- Department of Biological Chemistry, University of California, Irvine, CA 92697
| | - Suzanne Sandmeyer
- Department of Biological Chemistry, University of California, Irvine, CA 92697
| | - John A G Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, CB2 0QH Cambridge, United Kingdom
| |
Collapse
|
18
|
Flasch DA, Macia Á, Sánchez L, Ljungman M, Heras SR, García-Pérez JL, Wilson TE, Moran JV. Genome-wide de novo L1 Retrotransposition Connects Endonuclease Activity with Replication. Cell 2019; 177:837-851.e28. [PMID: 30955886 DOI: 10.1016/j.cell.2019.02.050] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/10/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022]
Abstract
L1 retrotransposon-derived sequences comprise approximately 17% of the human genome. Darwinian selective pressures alter L1 genomic distributions during evolution, confounding the ability to determine initial L1 integration preferences. Here, we generated high-confidence datasets of greater than 88,000 engineered L1 insertions in human cell lines that act as proxies for cells that accommodate retrotransposition in vivo. Comparing these insertions to a null model, in which L1 endonuclease activity is the sole determinant dictating L1 integration preferences, demonstrated that L1 insertions are not significantly enriched in genes, transcribed regions, or open chromatin. By comparison, we provide compelling evidence that the L1 endonuclease disproportionately cleaves predominant lagging strand DNA replication templates, while lagging strand 3'-hydroxyl groups may prime endonuclease-independent L1 retrotransposition in a Fanconi anemia cell line. Thus, acquisition of an endonuclease domain, in conjunction with the ability to integrate into replicating DNA, allowed L1 to become an autonomous, interspersed retrotransposon.
Collapse
Affiliation(s)
- Diane A Flasch
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA.
| | - Ángela Macia
- Department of Genomic Medicine, GENYO: Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), PTS Granada, 18016, Spain
| | - Laura Sánchez
- Department of Genomic Medicine, GENYO: Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), PTS Granada, 18016, Spain
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Translational Oncology Program and Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, 48109, USA; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Sara R Heras
- Department of Genomic Medicine, GENYO: Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), PTS Granada, 18016, Spain
| | - José L García-Pérez
- Department of Genomic Medicine, GENYO: Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), PTS Granada, 18016, Spain; Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Thomas E Wilson
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA.
| | - John V Moran
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
19
|
Esnault C, Lee M, Ham C, Levin HL. Transposable element insertions in fission yeast drive adaptation to environmental stress. Genome Res 2018; 29:85-95. [PMID: 30541785 PMCID: PMC6314160 DOI: 10.1101/gr.239699.118] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/15/2018] [Indexed: 01/06/2023]
Abstract
Cells are regularly exposed to a range of naturally occurring stress that can restrict growth or cause lethality. In response, cells activate expression networks with hundreds of genes that together increase resistance to common environmental insults. However, stress response networks can be insufficient to ensure survival, which raises the question of whether cells possess genetic programs that can promote adaptation to novel forms of stress. We found transposable element (TE) mobility in Schizosaccharomyces pombe was greatly increased when cells were exposed to unusual forms of stress such as heavy metals, caffeine, and the plasticizer phthalate. By subjecting TE-tagged cells to CoCl2, we found the TE integration provided the major path to resistance. Groups of insertions that provided resistance were linked to TOR regulation and metal response genes. We extended our study of adaptation by analyzing TE positions in 57 genetically distinct wild strains. The genomic positions of 1048 polymorphic LTRs were strongly associated with a range of stress response genes, indicating TE integration promotes adaptation in natural conditions. These data provide strong support for the idea, first proposed by Barbara McClintock, that TEs provide a system to modify the genome in response to stress.
Collapse
Affiliation(s)
- Caroline Esnault
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michael Lee
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chloe Ham
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Henry L Levin
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
20
|
Ni JZ, Kalinava N, Mendoza SG, Gu SG. The spatial and temporal dynamics of nuclear RNAi-targeted retrotransposon transcripts in Caenorhabditis elegans. Development 2018; 145:dev167346. [PMID: 30254142 PMCID: PMC6215403 DOI: 10.1242/dev.167346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/17/2018] [Indexed: 02/03/2023]
Abstract
Nuclear RNA interference provides a unique approach to the study of RNA-mediated transgenerational epigenetic inheritance. A paradox in the field is that expression of target loci is necessary for the initiation and maintenance of their silencing. How expression and repression are coordinated during animal development is poorly understood. To resolve this gap, we took imaging, deep-sequencing and genetic approaches towards delineating the developmental regulation and subcellular localization of RNA transcripts of two representative endogenous targets, the LTR retrotransposons Cer3 and Cer8. By examining wild-type worms and a collection of mutant strains, we found that the expression and silencing cycle of Cer3 and Cer8 is coupled with embryonic and germline development. Strikingly, endogenous targets exhibit a hallmark of nuclear enrichment of their RNA transcripts. In addition, germline and somatic repressions of Cer3 have different genetic requirements for three heterochromatin enzymes, MET-2, SET-25 and SET-32, in conjunction with the nuclear Argonaute protein HRDE-1. These results provide the first comprehensive cellular and developmental characterization of nuclear RNAi activities throughout the animal reproductive cycle.
Collapse
Affiliation(s)
- Julie Zhouli Ni
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Natallia Kalinava
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Sofia Galindo Mendoza
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Sam Guoping Gu
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
21
|
Krupovic M, Blomberg J, Coffin JM, Dasgupta I, Fan H, Geering AD, Gifford R, Harrach B, Hull R, Johnson W, Kreuze JF, Lindemann D, Llorens C, Lockhart B, Mayer J, Muller E, Olszewski NE, Pappu HR, Pooggin MM, Richert-Pöggeler KR, Sabanadzovic S, Sanfaçon H, Schoelz JE, Seal S, Stavolone L, Stoye JP, Teycheney PY, Tristem M, Koonin EV, Kuhn JH. Ortervirales: New Virus Order Unifying Five Families of Reverse-Transcribing Viruses. J Virol 2018; 92:e00515-18. [PMID: 29618642 PMCID: PMC5974489 DOI: 10.1128/jvi.00515-18] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Mart Krupovic
- Department of Microbiology, Institut Pasteur, Paris, France
| | - Jonas Blomberg
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Hung Fan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Andrew D Geering
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
| | - Robert Gifford
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Balázs Harrach
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Roger Hull
- Child Okeford, Blandford Forum, Dorset, United Kingdom
| | - Welkin Johnson
- Biology Department, Boston College, Chestnut Hill, Massachusetts, USA
| | - Jan F Kreuze
- Crop and System Sciences Division, International Potato Center (CIP), Lima, Peru
| | - Dirk Lindemann
- Institute of Virology, Technische Universität Dresden, Dresden, Germany
| | - Carlos Llorens
- Biotechvana, Parc Cientific, Universitat de Valencia, Valencia, Spain
| | - Ben Lockhart
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Jens Mayer
- Institute of Human Genetics, University of Saarland, Homburg, Germany
| | - Emmanuelle Muller
- CIRAD, UMR BGPI, Montpellier, France
- BGPI, Université Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Neil E Olszewski
- Department of Microbial and Plant Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA
| | | | - Katja R Richert-Pöggeler
- Julius Kühn-Institut, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Hélène Sanfaçon
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC, Canada
| | - James E Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, USA
| | - Susan Seal
- Natural Resources Institute, University of Greenwich, Chatham, Kent, United Kingdom
| | - Livia Stavolone
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Bari, Italy
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Jonathan P Stoye
- The Francis Crick Institute and Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Pierre-Yves Teycheney
- CIRAD, UMR AGAP, Capesterre Belle Eau, Guadeloupe, France
- AGAP, Université Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Michael Tristem
- Imperial College London, Silwood Park Campus, Ascot, Berkshire, United Kingdom
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| |
Collapse
|
22
|
Cheung S, Manhas S, Measday V. Retrotransposon targeting to RNA polymerase III-transcribed genes. Mob DNA 2018; 9:14. [PMID: 29713390 PMCID: PMC5911963 DOI: 10.1186/s13100-018-0119-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/16/2018] [Indexed: 12/20/2022] Open
Abstract
Retrotransposons are genetic elements that are similar in structure and life cycle to retroviruses by replicating via an RNA intermediate and inserting into a host genome. The Saccharomyces cerevisiae (S. cerevisiae) Ty1-5 elements are long terminal repeat (LTR) retrotransposons that are members of the Ty1-copia (Pseudoviridae) or Ty3-gypsy (Metaviridae) families. Four of the five S. cerevisiae Ty elements are inserted into the genome upstream of RNA Polymerase (Pol) III-transcribed genes such as transfer RNA (tRNA) genes. This particular genomic locus provides a safe environment for Ty element insertion without disruption of the host genome and is a targeting strategy used by retrotransposons that insert into compact genomes of hosts such as S. cerevisiae and the social amoeba Dictyostelium. The mechanism by which Ty1 targeting is achieved has been recently solved due to the discovery of an interaction between Ty1 Integrase (IN) and RNA Pol III subunits. We describe the methods used to identify the Ty1-IN interaction with Pol III and the Ty1 targeting consequences if the interaction is perturbed. The details of Ty1 targeting are just beginning to emerge and many unexplored areas remain including consideration of the 3-dimensional shape of genome. We present a variety of other retrotransposon families that insert adjacent to Pol III-transcribed genes and the mechanism by which the host machinery has been hijacked to accomplish this targeting strategy. Finally, we discuss why retrotransposons selected Pol III-transcribed genes as a target during evolution and how retrotransposons have shaped genome architecture.
Collapse
Affiliation(s)
- Stephanie Cheung
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Savrina Manhas
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Vivien Measday
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, Room 325-2205 East Mall, Vancouver, British Columbia V6T 1Z4 Canada
| |
Collapse
|
23
|
Rowley PA, Patterson K, Sandmeyer SB, Sawyer SL. Control of yeast retrotransposons mediated through nucleoporin evolution. PLoS Genet 2018; 14:e1007325. [PMID: 29694349 PMCID: PMC5918913 DOI: 10.1371/journal.pgen.1007325] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Yeasts serve as hosts to several types of genetic parasites. Few studies have addressed the evolutionary trajectory of yeast genes that control the stable co-existence of these parasites with their host cell. In Saccharomyces yeasts, the retrovirus-like Ty retrotransposons must access the nucleus. We show that several genes encoding components of the yeast nuclear pore complex have experienced natural selection for substitutions that change the encoded protein sequence. By replacing these S. cerevisiae genes with orthologs from other Saccharomyces species, we discovered that natural sequence changes have affected the mobility of Ty retrotransposons. Specifically, changing the genetic sequence of NUP84 or NUP82 to match that of other Saccharomyces species alters the mobility of S. cerevisiae Ty1 and Ty3. Importantly, all tested housekeeping functions of NUP84 and NUP82 remained equivalent across species. Signatures of natural selection, resulting in altered interactions with viruses and parasitic genetic elements, are common in host defense proteins. Yet, few instances have been documented in essential housekeeping proteins. The nuclear pore complex is the gatekeeper of the nucleus. This study shows how the evolution of this large, ubiquitous eukaryotic complex can alter the replication of a molecular parasite, but concurrently maintain essential host functionalities regarding nucleocytoplasmic trafficking.
Collapse
Affiliation(s)
- Paul A. Rowley
- BioFrontiers Institute, Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States of America
| | - Kurt Patterson
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, United States of America
| | - Suzanne B. Sandmeyer
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, United States of America
| | - Sara L. Sawyer
- BioFrontiers Institute, Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| |
Collapse
|
24
|
Rai SK, Sangesland M, Lee M, Esnault C, Cui Y, Chatterjee AG, Levin HL. Host factors that promote retrotransposon integration are similar in distantly related eukaryotes. PLoS Genet 2017; 13:e1006775. [PMID: 29232693 PMCID: PMC5741268 DOI: 10.1371/journal.pgen.1006775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/22/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
Retroviruses and Long Terminal Repeat (LTR)-retrotransposons have distinct patterns of integration sites. The oncogenic potential of retrovirus-based vectors used in gene therapy is dependent on the selection of integration sites associated with promoters. The LTR-retrotransposon Tf1 of Schizosaccharomyces pombe is studied as a model for oncogenic retroviruses because it integrates into the promoters of stress response genes. Although integrases (INs) encoded by retroviruses and LTR-retrotransposons are responsible for catalyzing the insertion of cDNA into the host genome, it is thought that distinct host factors are required for the efficiency and specificity of integration. We tested this hypothesis with a genome-wide screen of host factors that promote Tf1 integration. By combining an assay for transposition with a genetic assay that measures cDNA recombination we could identify factors that contribute differentially to integration. We utilized this assay to test a collection of 3,004 S. pombe strains with single gene deletions. Using these screens and immunoblot measures of Tf1 proteins, we identified a total of 61 genes that promote integration. The candidate integration factors participate in a range of processes including nuclear transport, transcription, mRNA processing, vesicle transport, chromatin structure and DNA repair. Two candidates, Rhp18 and the NineTeen complex were tested in two-hybrid assays and were found to interact with Tf1 IN. Surprisingly, a number of pathways we identified were found previously to promote integration of the LTR-retrotransposons Ty1 and Ty3 in Saccharomyces cerevisiae, indicating the contribution of host factors to integration are common in distantly related organisms. The DNA repair factors are of particular interest because they may identify the pathways that repair the single stranded gaps flanking the sites of strand transfer following integration of LTR retroelements. Retroviruses and retrotransposons are genetic elements that propagate by integrating into chromosomes of eukaryotic cells. Genetic disorders are being treated with retrovirus-based vectors that integrate corrective genes into the chromosomes of patients. Unfortunately, the vectors can alter expression of adjacent genes and depending on the position of integration, cancer genes can be induced. It is therefore essential that we understand how integration sites are selected. Interestingly, different retroviruses and retrotransposons have different profiles of integration sites. While specific proteins have been identified that select target sites, it’s not known what other cellular factors promote integration. In this paper, we report a comprehensive screen of host factors that promote LTR-retrotransposon integration in the widely-studied yeast, Schizosaccharomyces pombe. Unexpectedly, we found a wide range of pathways and host factors participate in integration. And importantly, we found the cellular processes that promote integration relative to recombination in S. pombe are the same that drive integration of LTR-retrotransposons in the distantly related yeast Saccharomyces cerevisiae. This suggests a specific set of cellular pathways are responsible for integration in a wide range of eukaryotic hosts.
Collapse
Affiliation(s)
- Sudhir Kumar Rai
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Maya Sangesland
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Michael Lee
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Caroline Esnault
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Yujin Cui
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Atreyi Ghatak Chatterjee
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Henry L. Levin
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
25
|
Reverse Transcription in the Saccharomyces cerevisiae Long-Terminal Repeat Retrotransposon Ty3. Viruses 2017; 9:v9030044. [PMID: 28294975 PMCID: PMC5371799 DOI: 10.3390/v9030044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
Converting the single-stranded retroviral RNA into integration-competent double-stranded DNA is achieved through a multi-step process mediated by the virus-coded reverse transcriptase (RT). With the exception that it is restricted to an intracellular life cycle, replication of the Saccharomyces cerevisiae long terminal repeat (LTR)-retrotransposon Ty3 genome is guided by equivalent events that, while generally similar, show many unique and subtle differences relative to the retroviral counterparts. Until only recently, our knowledge of RT structure and function was guided by a vast body of literature on the human immunodeficiency virus (HIV) enzyme. Although the recently-solved structure of Ty3 RT in the presence of an RNA/DNA hybrid adds little in terms of novelty to the mechanistic basis underlying DNA polymerase and ribonuclease H activity, it highlights quite remarkable topological differences between retroviral and LTR-retrotransposon RTs. The theme of overall similarity but distinct differences extends to the priming mechanisms used by Ty3 RT to initiate (−) and (+) strand DNA synthesis. The unique structural organization of the retrotransposon enzyme and interaction with its nucleic acid substrates, with emphasis on polypurine tract (PPT)-primed initiation of (+) strand synthesis, is the subject of this review.
Collapse
|
26
|
Integration site selection by retroviruses and transposable elements in eukaryotes. Nat Rev Genet 2017; 18:292-308. [PMID: 28286338 DOI: 10.1038/nrg.2017.7] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transposable elements and retroviruses are found in most genomes, can be pathogenic and are widely used as gene-delivery and functional genomics tools. Exploring whether these genetic elements target specific genomic sites for integration and how this preference is achieved is crucial to our understanding of genome evolution, somatic genome plasticity in cancer and ageing, host-parasite interactions and genome engineering applications. High-throughput profiling of integration sites by next-generation sequencing, combined with large-scale genomic data mining and cellular or biochemical approaches, has revealed that the insertions are usually non-random. The DNA sequence, chromatin and nuclear context, and cellular proteins cooperate in guiding integration in eukaryotic genomes, leading to a remarkable diversity of insertion site distribution and evolutionary strategies.
Collapse
|
27
|
Magnan C, Yu J, Chang I, Jahn E, Kanomata Y, Wu J, Zeller M, Oakes M, Baldi P, Sandmeyer S. Sequence Assembly of Yarrowia lipolytica Strain W29/CLIB89 Shows Transposable Element Diversity. PLoS One 2016; 11:e0162363. [PMID: 27603307 PMCID: PMC5014426 DOI: 10.1371/journal.pone.0162363] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/22/2016] [Indexed: 12/27/2022] Open
Abstract
Yarrowia lipolytica, an oleaginous yeast, is capable of accumulating significant cellular mass in lipid making it an important source of biosustainable hydrocarbon-based chemicals. In spite of a similar number of protein-coding genes to that in other Hemiascomycetes, the Y. lipolytica genome is almost double that of model yeasts. Despite its economic importance and several distinct strains in common use, an independent genome assembly exists for only one strain. We report here a de novo annotated assembly of the chromosomal genome of an industrially-relevant strain, W29/CLIB89, determined by hybrid next-generation sequencing. For the first time, each Y. lipolytica chromosome is represented by a single contig. The telomeric rDNA repeats were localized by Irys long-range genome mapping and one complete copy of the rDNA sequence is reported. Two large structural variants and retroelement differences with reference strain CLIB122 including a full-length, novel Ty3/Gypsy long terminal repeat (LTR) retrotransposon and multiple LTR-like sequences are described. Strikingly, several of these are adjacent to RNA polymerase III-transcribed genes, which are almost double in number in Y. lipolytica compared to other Hemiascomycetes. In addition to previously-reported dimeric RNA polymerase III-transcribed genes, tRNA pseudogenes were identified. Multiple full-length and truncated LINE elements are also present. Therefore, although identified transposons do not constitute a significant fraction of the Y. lipolytica genome, they could have played an active role in its evolution. Differences between the sequence of this strain and of the existing reference strain underscore the utility of an additional independent genome assembly for this economically important organism.
Collapse
Affiliation(s)
- Christophe Magnan
- Department of Computer Science, School of Computer Sciences, University of California Irvine, Irvine, California, United States of America
- Institute for Genomics and Bioinformatics, University of California Irvine, Irvine, California, United States of America
| | - James Yu
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Ivan Chang
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Ethan Jahn
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Yuzo Kanomata
- Department of Computer Science, School of Computer Sciences, University of California Irvine, Irvine, California, United States of America
- Institute for Genomics and Bioinformatics, University of California Irvine, Irvine, California, United States of America
| | - Jenny Wu
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Michael Zeller
- Department of Computer Science, School of Computer Sciences, University of California Irvine, Irvine, California, United States of America
| | - Melanie Oakes
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Pierre Baldi
- Department of Computer Science, School of Computer Sciences, University of California Irvine, Irvine, California, United States of America
- Institute for Genomics and Bioinformatics, University of California Irvine, Irvine, California, United States of America
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Suzanne Sandmeyer
- Institute for Genomics and Bioinformatics, University of California Irvine, Irvine, California, United States of America
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Determinants of Genomic RNA Encapsidation in the Saccharomyces cerevisiae Long Terminal Repeat Retrotransposons Ty1 and Ty3. Viruses 2016; 8:v8070193. [PMID: 27428991 PMCID: PMC4974528 DOI: 10.3390/v8070193] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 12/12/2022] Open
Abstract
Long-terminal repeat (LTR) retrotransposons are transposable genetic elements that replicate intracellularly, and can be considered progenitors of retroviruses. Ty1 and Ty3 are the most extensively characterized LTR retrotransposons whose RNA genomes provide the template for both protein translation and genomic RNA that is packaged into virus-like particles (VLPs) and reverse transcribed. Genomic RNAs are not divided into separate pools of translated and packaged RNAs, therefore their trafficking and packaging into VLPs requires an equilibrium between competing events. In this review, we focus on Ty1 and Ty3 genomic RNA trafficking and packaging as essential steps of retrotransposon propagation. We summarize the existing knowledge on genomic RNA sequences and structures essential to these processes, the role of Gag proteins in repression of genomic RNA translation, delivery to VLP assembly sites, and encapsidation.
Collapse
|
29
|
Cervera A, Urbina D, de la Peña M. Retrozymes are a unique family of non-autonomous retrotransposons with hammerhead ribozymes that propagate in plants through circular RNAs. Genome Biol 2016; 17:135. [PMID: 27339130 PMCID: PMC4918200 DOI: 10.1186/s13059-016-1002-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/07/2016] [Indexed: 11/16/2022] Open
Abstract
Background Catalytic RNAs, or ribozymes, are regarded as fossils of a prebiotic RNA world that have remained in the genomes of modern organisms. The simplest ribozymes are the small self-cleaving RNAs, like the hammerhead ribozyme, which have been historically considered biological oddities restricted to some RNA pathogens. Recent data, however, indicate that small self-cleaving ribozymes are widespread in genomes, although their functions are still unknown. Results We reveal that hammerhead ribozyme sequences in plant genomes form part of a new family of small non-autonomous retrotransposons with hammerhead ribozymes, referred to as retrozymes. These elements contain two long terminal repeats of approximately 350 bp, each harbouring a hammerhead ribozyme that delimitates a variable region of 600–1000 bp with no coding capacity. Retrozymes are actively transcribed, which gives rise to heterogeneous linear and circular RNAs that accumulate differentially depending on the tissue or developmental stage of the plant. Genomic and transcriptomic retrozyme sequences are highly heterogeneous and share almost no sequence homology among species except the hammerhead ribozyme motif and two small conserved domains typical of Ty3-gypsy long terminal repeat retrotransposons. Moreover, we detected the presence of RNAs of both retrozyme polarities, which suggests events of independent RNA-RNA rolling-circle replication and evolution, similarly to that of infectious circular RNAs like viroids and viral satellite RNAs. Conclusions Our work reveals that circular RNAs with hammerhead ribozymes are frequently occurring molecules in plant and, most likely, metazoan transcriptomes, which explains the ubiquity of these genomic ribozymes and suggests a feasible source for the emergence of circular RNA plant pathogens. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1002-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amelia Cervera
- IBMCP (CSIC-UPV). C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Denisse Urbina
- IBMCP (CSIC-UPV). C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Marcos de la Peña
- IBMCP (CSIC-UPV). C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain.
| |
Collapse
|
30
|
Cheung S, Ma L, Chan PHW, Hu HL, Mayor T, Chen HT, Measday V. Ty1 Integrase Interacts with RNA Polymerase III-specific Subcomplexes to Promote Insertion of Ty1 Elements Upstream of Polymerase (Pol) III-transcribed Genes. J Biol Chem 2016; 291:6396-411. [PMID: 26797132 DOI: 10.1074/jbc.m115.686840] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Indexed: 01/01/2023] Open
Abstract
Retrotransposons are eukaryotic mobile genetic elements that transpose by reverse transcription of an RNA intermediate and are derived from retroviruses. The Ty1 retrotransposon of Saccharomyces cerevisiae belongs to the Ty1/Copia superfamily, which is present in every eukaryotic genome. Insertion of Ty1 elements into the S. cerevisiae genome, which occurs upstream of genes transcribed by RNA Pol III, requires the Ty1 element-encoded integrase (IN) protein. Here, we report that Ty1-IN interacts in vivo and in vitro with RNA Pol III-specific subunits to mediate insertion of Ty1 elements upstream of Pol III-transcribed genes. Purification of Ty1-IN from yeast cells followed by mass spectrometry (MS) analysis identified an enrichment of peptides corresponding to the Rpc82/34/31 and Rpc53/37 Pol III-specific subcomplexes. GFP-Trap purification of multiple GFP-tagged RNA Pol III subunits from yeast extracts revealed that the majority of Pol III subunits co-purify with Ty1-IN but not two other complexes required for Pol III transcription, transcription initiation factors (TF) IIIB and IIIC. In vitro binding studies with bacterially purified RNA Pol III proteins demonstrate that Rpc31, Rpc34, and Rpc53 interact directly with Ty1-IN. Deletion of the N-terminal 280 amino acids of Rpc53 abrogates insertion of Ty1 elements upstream of the hot spot SUF16 tRNA locus and abolishes the interaction of Ty1-IN with Rpc37. The Rpc53/37 complex therefore has an important role in targeting Ty1-IN to insert Ty1 elements upstream of Pol III-transcribed genes.
Collapse
Affiliation(s)
- Stephanie Cheung
- From the Department of Biochemistry and Molecular Biology, Wine Research Centre, and
| | | | - Patrick H W Chan
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada and
| | - Hui-Lan Hu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115
| | - Thibault Mayor
- From the Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada and
| | - Hung-Ta Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115
| | - Vivien Measday
- From the Department of Biochemistry and Molecular Biology, Wine Research Centre, and
| |
Collapse
|
31
|
Servant G, Deininger PL. Insertion of Retrotransposons at Chromosome Ends: Adaptive Response to Chromosome Maintenance. Front Genet 2016; 6:358. [PMID: 26779254 PMCID: PMC4700185 DOI: 10.3389/fgene.2015.00358] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/10/2015] [Indexed: 01/30/2023] Open
Abstract
The telomerase complex is a specialized reverse transcriptase (RT) that inserts tandem DNA arrays at the linear chromosome ends and contributes to the protection of the genetic information in eukaryotic genomes. Telomerases are phylogenetically related to retrotransposons, encoding also the RT activity required for the amplification of their sequences throughout the genome. Intriguingly the telomerase gene is lost from the Drosophila genome and tandem retrotransposons replace telomeric sequences at the chromosome extremities. This observation suggests the versatility of RT activity in counteracting the chromosome shortening associated with genome replication and that retrotransposons can provide this activity in case of a dysfunctional telomerase. In this review paper, we describe the major classes of retroelements present in eukaryotic genomes in order to point out the differences and similarities with the telomerase complex. In a second part, we discuss the insertion of retroelements at the ends of chromosomes as an adaptive response for dysfunctional telomeres.
Collapse
Affiliation(s)
| | - Prescott L. Deininger
- Tulane Cancer Center, Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LAUSA
| |
Collapse
|
32
|
Formation of Extrachromosomal Circular DNA from Long Terminal Repeats of Retrotransposons in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2015; 6:453-62. [PMID: 26681518 PMCID: PMC4751563 DOI: 10.1534/g3.115.025858] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Extrachromosomal circular DNA (eccDNA) derived from chromosomal Ty retrotransposons in yeast can be generated in multiple ways. Ty eccDNA can arise from the circularization of extrachromosomal linear DNA during the transpositional life cycle of retrotransposons, or from circularization of genomic Ty DNA. Circularization may happen through nonhomologous end-joining (NHEJ) of long terminal repeats (LTRs) flanking Ty elements, by Ty autointegration, or by LTR–LTR recombination. By performing an in-depth investigation of sequence reads stemming from Ty eccDNAs obtained from populations of Saccharomyces cerevisiae S288c, we find that eccDNAs predominantly correspond to full-length Ty1 elements. Analyses of sequence junctions reveal no signs of NHEJ or autointegration events. We detect recombination junctions that are consistent with yeast Ty eccDNAs being generated through recombination events within the genome. This opens the possibility that retrotransposable elements could move around in the genome without an RNA intermediate directly through DNA circularization.
Collapse
|
33
|
Bilanchone V, Clemens K, Kaake R, Dawson AR, Matheos D, Nagashima K, Sitlani P, Patterson K, Chang I, Huang L, Sandmeyer S. Ty3 Retrotransposon Hijacks Mating Yeast RNA Processing Bodies to Infect New Genomes. PLoS Genet 2015; 11:e1005528. [PMID: 26421679 PMCID: PMC4589538 DOI: 10.1371/journal.pgen.1005528] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/24/2015] [Indexed: 01/15/2023] Open
Abstract
Retrotransposition of the budding yeast long terminal repeat retrotransposon Ty3 is activated during mating. In this study, proteins that associate with Ty3 Gag3 capsid protein during virus-like particle (VLP) assembly were identified by mass spectrometry and screened for roles in mating-stimulated retrotransposition. Components of RNA processing bodies including DEAD box helicases Dhh1/DDX6 and Ded1/DDX3, Sm-like protein Lsm1, decapping protein Dcp2, and 5' to 3' exonuclease Xrn1 were among the proteins identified. These proteins associated with Ty3 proteins and RNA, and were required for formation of Ty3 VLP retrosome assembly factories and for retrotransposition. Specifically, Dhh1/DDX6 was required for normal levels of Ty3 genomic RNA, and Lsm1 and Xrn1 were required for association of Ty3 protein and RNA into retrosomes. This role for components of RNA processing bodies in promoting VLP assembly and retrotransposition during mating in a yeast that lacks RNA interference, contrasts with roles proposed for orthologous components in animal germ cell ribonucleoprotein granules in turnover and epigenetic suppression of retrotransposon RNAs.
Collapse
Affiliation(s)
- Virginia Bilanchone
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, United States of America
| | - Kristina Clemens
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, United States of America
| | - Robyn Kaake
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California, United States of America
| | - Anthony R. Dawson
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, United States of America
| | - Dina Matheos
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, United States of America
| | - Kunio Nagashima
- Electron Microscope Laboratory, NCI-Frederick, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Parth Sitlani
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, United States of America
| | - Kurt Patterson
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, United States of America
| | - Ivan Chang
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, United States of America
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California, United States of America
| | - Suzanne Sandmeyer
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, United States of America
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|