1
|
Maier L, Stein-Thoeringer C, Ley RE, Brötz-Oesterhelt H, Link H, Ziemert N, Wagner S, Peschel A. Integrating research on bacterial pathogens and commensals to fight infections-an ecological perspective. THE LANCET. MICROBE 2024; 5:100843. [PMID: 38608681 DOI: 10.1016/s2666-5247(24)00049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 04/14/2024]
Abstract
The incidence of antibiotic-resistant bacterial infections is increasing, and development of new antibiotics has been deprioritised by the pharmaceutical industry. Interdisciplinary research approaches, based on the ecological principles of bacterial fitness, competition, and transmission, could open new avenues to combat antibiotic-resistant infections. Many facultative bacterial pathogens use human mucosal surfaces as their major reservoirs and induce infectious diseases to aid their lateral transmission to new host organisms under some pathological states of the microbiome and host. Beneficial bacterial commensals can outcompete specific pathogens, thereby lowering the capacity of the pathogens to spread and cause serious infections. Despite the clinical relevance, however, the understanding of commensal-pathogen interactions in their natural habitats remains poor. In this Personal View, we highlight directions to intensify research on the interactions between bacterial pathogens and commensals in the context of human microbiomes and host biology that can lead to the development of innovative and sustainable ways of preventing and treating infectious diseases.
Collapse
Affiliation(s)
- Lisa Maier
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Christoph Stein-Thoeringer
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany; Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Ruth E Ley
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; Max Planck Institute for Biology, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Hannes Link
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Samuel Wagner
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany.
| |
Collapse
|
2
|
Mitchaothai J, Grabowski NT, Lertpatarakomol R, Trairatapiwan T, Lukkananukool A. Bacterial Contamination and Antimicrobial Resistance in Two-Spotted ( Gryllus bimaculatus) and House ( Acheta domesticus) Cricket Rearing and Harvesting Processes. Vet Sci 2024; 11:295. [PMID: 39057979 PMCID: PMC11281677 DOI: 10.3390/vetsci11070295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Food safety for cricket production is a crucial factor in producing edible crickets with safety for consumers and sustainability for two-spotted (Gryllus bimaculatus) as well as house (Acheta domesticus) cricket production. This study was conducted by simultaneously rearing two cricket species, comprising two-spotted crickets (G. bimaculatus) and house crickets (A. domesticus). A total of 16 rearing crates were used for the present study, which were allocated into 8 rearing crates for each studied cricket species, including paper egg cartons. Cricket eggs were incubated in the rearing crates. Once the crickets hatched, tap water and powdered feed were provided ad libitum throughout the experiment. At the end of this study (35 and 42 days for the two-spotted and house crickets, respectively), all crickets were harvested, rinsed in tap water, and boiled in water for 5 min. During the rearing and harvesting processes, samples were collected from various potential contamination points for bacteria, including E. coli and Salmonella spp. There were samples of the initial input (feed, drinking water, and staff hands), rearing environment (water pipe, crate wall, living cartons, frass, and cricket surface), and harvesting crickets (harvested, washed, and boiled crickets), with a 2-week sampling interval, except for the last round of sampling for the two-spotted crickets. Subsequently, all samples were submitted to isolate and identify contaminated bacteria. The samples from the last round of sampling for both kinds of crickets were submitted to quantify the level of contamination for E. coli and Salmonella spp., including antimicrobial resistance by the disk diffusion method for the positive isolate. The results showed that bacterial contamination was found in the rearing of both cricket species, primarily involving Klebsiella spp. and Enterobacter spp., mainly found in prepared drinking water and the water pipes of drinking water supply equipment, which are potential sources of contamination with cricket frass. E. coli was found in 4.8% and 4.3% of the two-spotted and house crickets, respectively, while no presence of Salmonella spp. was detected in any submitted samples. The quantification of E. coli and Salmonella spp. indicated E. coli contamination near the water pipe and the frass of two-spotted crickets, but Salmonella spp. was undetectable in both two-spotted and house crickets. The antimicrobial resistance of isolated E. coli mainly involved penicillin G, amoxicillin, ampicillin, erythromycin, lincomycin, and tiamulin. Thus, good farm management with proper sanitation practices (such as cleaning and keeping the environment dry), as well as boiling crickets during the harvesting process, may help ensure the safety of edible cricket production.
Collapse
Affiliation(s)
- Jamlong Mitchaothai
- Office of Administrative Interdisciplinary Program on Agricultural Technology, School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Bangkok 10520, Thailand
| | - Nils T. Grabowski
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover (TiHo), 30173 Hannover, Germany;
| | - Rachakris Lertpatarakomol
- Faculty of Veterinary Medicine, Mahanakorn University of Technology (MUT), Bangkok 10530, Thailand; (R.L.); (T.T.)
| | - Tassanee Trairatapiwan
- Faculty of Veterinary Medicine, Mahanakorn University of Technology (MUT), Bangkok 10530, Thailand; (R.L.); (T.T.)
| | - Achara Lukkananukool
- Department of Animal Production Technology and Fisheries, School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Bangkok 10520, Thailand;
| |
Collapse
|
3
|
Konsman JP. Expanding the notion of mechanism to further understanding of biopsychosocial disorders? Depression and medically-unexplained pain as cases in point. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2024; 103:123-136. [PMID: 38157672 DOI: 10.1016/j.shpsa.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/24/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Evidence-Based Medicine has little consideration for mechanisms and philosophers of science and medicine have recently made pleas to increase the place of mechanisms in the medical evidence hierarchy. However, in this debate the notions of mechanisms seem to be limited to 'mechanistic processes' and 'complex-systems mechanisms,' understood as 'componential causal systems'. I believe that this will not do full justice to how mechanisms are used in biological, psychological and social sciences and, consequently, in a more biopsychosocial approach to medicine. Here, I propose, following (Kuorikoski, 2009), to pay more attention to 'abstract forms of interaction' mechanisms. The present work scrutinized review articles on depression and medically unexplained pain, which are considered to be of multifactorial pathogenesis, for their use of mechanisms. In review articles on these disorders there seemed to be a range of uses between more 'abstract forms of interaction' and 'componential causal system' mechanisms. I therefore propose to expand the notions of mechanisms considered in medicine to include that of more 'abstract forms of interaction' to better explain and manage biopsychosocial disorders.
Collapse
Affiliation(s)
- Jan Pieter Konsman
- ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, 33076, Bordeaux, France.
| |
Collapse
|
4
|
Zhao K, Yang X, Zeng Q, Zhang Y, Li H, Yan C, Li JS, Liu H, Du L, Wu Y, Huang G, Huang T, Zhang Y, Zhou H, Wang X, Chu Y, Zhou X. Evolution of lasR mutants in polymorphic Pseudomonas aeruginosa populations facilitates chronic infection of the lung. Nat Commun 2023; 14:5976. [PMID: 37749088 PMCID: PMC10519970 DOI: 10.1038/s41467-023-41704-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
Chronic infection with the bacterial pathogen Pseudomonas aeruginosa often leads to coexistence of heterogeneous populations carrying diverse mutations. In particular, loss-of-function mutations affecting the quorum-sensing regulator LasR are often found in bacteria isolated from patients with lung chronic infection and cystic fibrosis. Here, we study the evolutionary dynamics of polymorphic P. aeruginosa populations using isolates longitudinally collected from patients with chronic obstructive pulmonary disease (COPD). We find that isolates deficient in production of different sharable extracellular products are sequentially selected in COPD airways, and lasR mutants appear to be selected first due to their quorum-sensing defects. Polymorphic populations including lasR mutants display survival advantages in animal models of infection and modulate immune responses. Our study sheds light on the multistage evolution of P. aeruginosa populations during their adaptation to host lungs.
Collapse
Affiliation(s)
- Kelei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, 610106, Chengdu, China.
| | - Xiting Yang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, 610106, Chengdu, China
| | - Qianglin Zeng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, 610106, Chengdu, China
| | - Yige Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Heyue Li
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, 610064, Chengdu, China
| | - Chaochao Yan
- Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, China
| | - Jing Shirley Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Huan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Liangming Du
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, 610106, Chengdu, China
| | - Yi Wu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, 610106, Chengdu, China
| | - Gui Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, 610106, Chengdu, China
| | - Ting Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, 610106, Chengdu, China
| | - Yamei Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, 610106, Chengdu, China
| | - Hui Zhou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, 610106, Chengdu, China
| | - Xinrong Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, 610106, Chengdu, China
| | - Yiwen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, 610106, Chengdu, China.
| | - Xikun Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
5
|
Qian X, Tian P, Zhao J, Zhang H, Wang G, Chen W. Quorum Sensing of Lactic Acid Bacteria: Progress and Insights. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xin Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
6
|
Rebuffat S. Ribosomally synthesized peptides, foreground players in microbial interactions: recent developments and unanswered questions. Nat Prod Rep 2021; 39:273-310. [PMID: 34755755 DOI: 10.1039/d1np00052g] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is currently well established that multicellular organisms live in tight association with complex communities of microorganisms including a large number of bacteria. These are immersed in complex interaction networks reflecting the relationships established between them and with host organisms; yet, little is known about the molecules and mechanisms involved in these mutual interactions. Ribosomally synthesized peptides, among which bacterial antimicrobial peptides called bacteriocins and microcins have been identified as contributing to host-microbe interplays, are either unmodified or post-translationally modified peptides. This review will unveil current knowledge on these ribosomal peptide-based natural products, their interplay with the host immune system, and their roles in microbial interactions and symbioses. It will include their major structural characteristics and post-translational modifications, the main rules of their maturation pathways, and the principal ecological functions they ensure (communication, signalization, competition), especially in symbiosis, taking select examples in various organisms. Finally, we address unanswered questions and provide a framework for deciphering big issues inspiring future directions in the field.
Collapse
Affiliation(s)
- Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM, UMR 7245 CNRS-MNHN), National Museum of Natural History (MNHN), National Centre of Scientific Research (CNRS), CP 54, 57 rue Cuvier 75005, Paris, France.
| |
Collapse
|
7
|
Yarlagadda K, Razik I, Malhi RS, Carter GG. Social convergence of gut microbiomes in vampire bats. Biol Lett 2021; 17:20210389. [PMID: 34727703 PMCID: PMC8563296 DOI: 10.1098/rsbl.2021.0389] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
The 'social microbiome' can fundamentally shape the costs and benefits of group-living, but understanding social transmission of microbes in free-living animals is challenging due to confounding effects of kinship and shared environments (e.g. highly associated individuals often share the same spaces, food and water). Here, we report evidence for convergence towards a social microbiome among introduced common vampire bats, Desmodus rotundus, a highly social species in which adults feed only on blood, and engage in both mouth-to-body allogrooming and mouth-to-mouth regurgitated food sharing. Shotgun sequencing of samples from six zoos in the USA, 15 wild-caught bats from a colony in Belize and 31 bats from three colonies in Panama showed that faecal microbiomes were more similar within colonies than between colonies. To assess microbial transmission, we created an experimentally merged group of the Panama bats from the three distant sites by housing these bats together for four months. In this merged colony, we found evidence that dyadic gut microbiome similarity increased with both clustering and oral contact, leading to microbiome convergence among introduced bats. Our findings demonstrate that social interactions shape microbiome similarity even when controlling for past social history, kinship, environment and diet.
Collapse
Affiliation(s)
- Karthik Yarlagadda
- Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Imran Razik
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| | - Ripan S. Malhi
- Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Program in Ecology, Evolution and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gerald G. Carter
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| |
Collapse
|
8
|
Khalid S, Keller NP. Chemical signals driving bacterial-fungal interactions. Environ Microbiol 2021; 23:1334-1347. [PMID: 33511714 DOI: 10.1111/1462-2920.15410] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022]
Abstract
Microorganisms reside in diverse environmental communities where interactions become indispensable due to close physical associations. These interactions are driven by chemical communication among different microbial kingdoms, particularly between fungi and bacteria. Knowledge about these communication signals provides useful information about the nature of microbial interactions and allows predictions of community development in diverse environments. Here, we provide an update on the role of small signalling molecules in fungal-bacterial interactions with focus on agricultural and medicinal environments. This review highlights the range of - and response to - diverse biochemicals produced by both kingdoms with view to harnessing their properties towards drug discovery applications.
Collapse
Affiliation(s)
- Saima Khalid
- Department of Microbiology, Women University Mardan, Mardan, Pakistan
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA.,Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
9
|
Extracellular products-mediated interspecific interaction between Pseudomonas aeruginosa and Escherichia coli. J Microbiol 2020; 59:29-40. [PMID: 33355890 DOI: 10.1007/s12275-021-0478-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 10/22/2022]
Abstract
The Gram-negative pathogen Pseudomonas aeruginosa adopts several elaborate strategies to colonize a wide range of natural or clinical niches and to overcome the neighboring bacterial competitors in polymicrobial communities. However, the relationship and interaction mechanism of P. aeruginosa with other bacterial pathogens remains largely unexplored. Here we explore the interaction dynamics of P. aeruginosa and Escherichia coli, which frequently coinfect the lungs of immunocompromised hosts, by using a series of on-plate proximity assays and RNA-sequencing. We show that the extracellular products of P. aeruginosa can inhibit the growth of neighboring E. coli and induce a large-scale of transcriptional reprogramming of E. coli, especially in terms of cellular respiration-related primary metabolisms and membrane components. In contrast, the presence of E. coli has no significant effect on the growth of P. aeruginosa in short-term culture, but causes a dysregulated expression of genes positively controlled by the quorum-sensing (QS) system of P. aeruginosa during subsequent pairwise culture. We further demonstrate that the divergent QS-regulation of P. aeruginosa may be related to the function of the transcriptional regulator PqsR, which can be enhanced by E. coli culture supernatant to increase the pyocyanin production by P. aeruginosa in the absence of the central las-QS system. Moreover, the extracellular products of E. coli promote the proliferation and lethality of P. aeruginosa in infecting the Caenorhabditis elegans model. The current study provides a general characterization of the extracellular products-mediated interactions between P. aeruginosa and E. coli, and may facilitate the understanding of polymicrobial infections.
Collapse
|
10
|
Abstract
Plant pathogens are a critical component of the microbiome that exist as populations undergoing ecological and evolutionary processes within their host. Many aspects of virulence rely on social interactions mediated through multiple forms of public goods, including quorum-sensing signals, exoenzymes, and effectors. Virulence and disease progression involve life-history decisions that have social implications with large effects on both host and microbe fitness, such as the timing of key transitions. Considering the molecular basis of sequential stages of plant-pathogen interactions highlights many opportunities for pathogens to cheat, and there is evidence for ample variation in virulence. Case studies reveal systems where cheating has been demonstrated and others where it is likely occurring. Harnessing the social interactions of pathogens, along with leveraging novel sensing and -omics technologies to understand microbial fitness in the field, will enable us to better manage plant microbiomes in the interest of plant health.
Collapse
Affiliation(s)
- Maren L Friesen
- Department of Plant Pathology and Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164, USA;
| |
Collapse
|
11
|
Abstract
One of the most important aspects of the scientific endeavour is the definition of specific concepts as precisely as possible. However, it is also important not to lose sight of two facts: (i) we divide the study of nature into manageable parts in order to better understand it owing to our limited cognitive capacities and (ii) definitions are inherently arbitrary and heavily influenced by cultural norms, language, the current political climate, and even personal preferences, among many other factors. As a consequence of these facts, clear-cut definitions, despite their evident importance, are oftentimes quite difficult to formulate. One of the most illustrative examples about the difficulty of articulating precise scientific definitions is trying to define the concept of a brain. Even though the current thinking about the brain is beginning to take into account a variety of organisms, a vertebrocentric bias still tends to dominate the scientific discourse about this concept. Here I will briefly explore the evolution of our 'thoughts about the brain', highlighting the difficulty of constructing a universally (or even a generally) accepted formal definition of it and using planarians as one of the earliest examples of organisms proposed to possess a 'traditional', vertebrate-style brain. I also suggest that the time is right to attempt to expand our view of what a brain is, going beyond exclusively structural and taxa-specific criteria. Thus, I propose a classification that could represent a starting point in an effort to expand our current definitions of the brain, hopefully to help initiate conversations leading to changes of perspective on how we think about this concept. This article is part of the theme issue 'Liquid brains, solid brains: How distributed cognitive architectures process information'.
Collapse
Affiliation(s)
- Oné R Pagán
- Department of Biology, West Chester University , West Chester, PA 19383 , USA
| |
Collapse
|
12
|
Abstract
Bacteria harbor viruses called bacteriophages that, like all viruses, co-opt the host cellular machinery to replicate. Although this relationship is at first glance parasitic, there are social interactions among and between bacteriophages and their bacterial hosts. These social interactions can take on many forms, including cooperation, altruism, and cheating. Such behaviors among individuals in groups of bacteria have been well described. However, the social nature of some interactions between phages or phages and bacteria is only now becoming clear. Bacteria harbor viruses called bacteriophages that, like all viruses, co-opt the host cellular machinery to replicate. Although this relationship is at first glance parasitic, there are social interactions among and between bacteriophages and their bacterial hosts. These social interactions can take on many forms, including cooperation, altruism, and cheating. Such behaviors among individuals in groups of bacteria have been well described. However, the social nature of some interactions between phages or phages and bacteria is only now becoming clear. We are just beginning to understand how bacteriophages affect the sociobiology of bacteria, and we know even less about social interactions within bacteriophage populations. In this review, we discuss recent developments in our understanding of bacteriophage sociobiology, including how selective pressures influence the outcomes of social interactions between populations of bacteria and bacteriophages. We also explore how tripartite social interactions between bacteria, bacteriophages, and an animal host affect host-microbe interactions. Finally, we argue that understanding the sociobiology of bacteriophages will have implications for the therapeutic use of bacteriophages to treat bacterial infections.
Collapse
|
13
|
Yan J, Monaco H, Xavier JB. The Ultimate Guide to Bacterial Swarming: An Experimental Model to Study the Evolution of Cooperative Behavior. Annu Rev Microbiol 2019; 73:293-312. [PMID: 31180806 PMCID: PMC7428860 DOI: 10.1146/annurev-micro-020518-120033] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cooperation has fascinated biologists since Darwin. How did cooperative behaviors evolve despite the fitness cost to the cooperator? Bacteria have cooperative behaviors that make excellent models to take on this age-old problem from both proximate (molecular) and ultimate (evolutionary) angles. We delve into Pseudomonas aeruginosa swarming, a phenomenon where billions of bacteria move cooperatively across distances of centimeters in a matter of a few hours. Experiments with swarming have unveiled a strategy called metabolic prudence that stabilizes cooperation, have showed the importance of spatial structure, and have revealed a regulatory network that integrates environmental stimuli and direct cooperative behavior, similar to a machine learning algorithm. The study of swarming elucidates more than proximate mechanisms: It exposes ultimate mechanisms valid to all scales, from cells in cancerous tumors to animals in large communities.
Collapse
Affiliation(s)
- Jinyuan Yan
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA;
| | - Hilary Monaco
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA;
| | - Joao B Xavier
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
14
|
Domingo-Calap P, Segredo-Otero E, Durán-Moreno M, Sanjuán R. Social evolution of innate immunity evasion in a virus. Nat Microbiol 2019; 4:1006-1013. [PMID: 30833734 PMCID: PMC6544518 DOI: 10.1038/s41564-019-0379-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/18/2019] [Indexed: 02/06/2023]
Abstract
Antiviral immunity has been studied extensively from the perspective of virus-cell interactions, yet the role of virus-virus interactions remains poorly addressed. Here, we demonstrate that viral escape from interferon (IFN)-based innate immunity is a social process in which IFN-stimulating viruses determine the fitness of neighbouring viruses. We propose a general and simple social evolution framework to analyse how natural selection acts on IFN shutdown and validate it in cell cultures and mice infected with vesicular stomatitis virus. Furthermore, we find that IFN shutdown is costly because it reduces short-term viral progeny production, thus fulfilling the definition of an altruistic trait. Hence, in well-mixed populations, the IFN-blocking wild-type virus is susceptible to invasion by IFN-stimulating variants and spatial structure consequently determines whether IFN shutdown can evolve. Our findings reveal that fundamental social evolution rules govern viral innate immunity evasion and virulence and suggest possible antiviral interventions.
Collapse
Affiliation(s)
- Pilar Domingo-Calap
- Institute for Integrative Systems Biology, Universitat de València-Consejo Superior de Investigaciones Científicas, Paterna, Spain
| | - Ernesto Segredo-Otero
- Institute for Integrative Systems Biology, Universitat de València-Consejo Superior de Investigaciones Científicas, Paterna, Spain
| | - María Durán-Moreno
- Institute for Integrative Systems Biology, Universitat de València-Consejo Superior de Investigaciones Científicas, Paterna, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology, Universitat de València-Consejo Superior de Investigaciones Científicas, Paterna, Spain.
| |
Collapse
|
15
|
Zhao K, Liu L, Chen X, Huang T, Du L, Lin J, Yuan Y, Zhou Y, Yue B, Wei K, Chu Y. Behavioral heterogeneity in quorum sensing can stabilize social cooperation in microbial populations. BMC Biol 2019; 17:20. [PMID: 30841874 PMCID: PMC6889464 DOI: 10.1186/s12915-019-0639-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/19/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Microbial communities are susceptible to the public goods dilemma, whereby individuals can gain an advantage within a group by utilizing, but not sharing the cost of producing, public goods. In bacteria, the development of quorum sensing (QS) can establish a cooperation system in a population by coordinating the production of costly and sharable extracellular products (public goods). Cooperators with intact QS system and robust ability in producing public goods are vulnerable to being undermined by QS-deficient defectors that escape from QS but benefit from the cooperation of others. Although microorganisms have evolved several mechanisms to resist cheating invasion in the public goods game, it is not clear why cooperators frequently coexist with defectors and how they form a relatively stable equilibrium during evolution. RESULTS We show that in Pseudomonas aeruginosa, QS-directed social cooperation can select a conditional defection strategy prior to the emergence of QS-mutant defectors, depending on resource availability. Conditional defectors represent a QS-inactive state of wild type (cooperator) individual and can invade QS-activated cooperators by adopting a cheating strategy, and then revert to cooperating when there are abundant nutrient supplies irrespective of the exploitation of QS-mutant defector. Our mathematical modeling further demonstrates that the incorporation of conditional defection strategy into the framework of iterated public goods game with sound punishment mechanism can lead to the coexistence of cooperator, conditional defector, and defector in a rock-paper-scissors dynamics. CONCLUSIONS These findings highlight the importance of behavioral heterogeneity in stabilizing the population structure and provide a potential reasonable explanation for the maintenance and evolution of cooperation in microbial communities.
Collapse
Affiliation(s)
- Kelei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 168, Huaguan Road, Chengdu, 610052 Sichuan China
| | - Linjie Liu
- School of Mathematical Sciences, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue, Chengdu, 611731 Sichuan China
| | - Xiaojie Chen
- School of Mathematical Sciences, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue, Chengdu, 611731 Sichuan China
| | - Ting Huang
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Lianming Du
- Institute for Advanced Study, Chengdu University, Chengdu, China
| | - Jiafu Lin
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 168, Huaguan Road, Chengdu, 610052 Sichuan China
| | - Yang Yuan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 168, Huaguan Road, Chengdu, 610052 Sichuan China
| | - Yingshun Zhou
- Department of Pathogenic Biology, College of Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Bisong Yue
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Kun Wei
- School of Mathematical Sciences, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue, Chengdu, 611731 Sichuan China
| | - Yiwen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 168, Huaguan Road, Chengdu, 610052 Sichuan China
| |
Collapse
|
16
|
Cheating on Cheaters Stabilizes Cooperation in Pseudomonas aeruginosa. Curr Biol 2018; 28:2070-2080.e6. [DOI: 10.1016/j.cub.2018.04.093] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/27/2018] [Accepted: 04/27/2018] [Indexed: 01/07/2023]
|
17
|
Madsen JS, Sørensen SJ, Burmølle M. Bacterial social interactions and the emergence of community-intrinsic properties. Curr Opin Microbiol 2017; 42:104-109. [PMID: 29197823 DOI: 10.1016/j.mib.2017.11.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 02/04/2023]
Abstract
Bacterial communities are dominated and shaped by social interactions, which facilitate the emergence of properties observed only in the community setting. Such community-intrinsic properties impact not only the phenotypes of cells in a community, but also community composition and function, and are thus likely to affect a potential host. Studying community-intrinsic properties is, therefore, important for furthering our understanding of clinical, applied and environmental microbiology. Here, we provide recent examples of research investigating community-intrinsic properties, focusing mainly on community composition and interactions in multispecies biofilms. We hereby wish to emphasize the importance of studying social interactions in settings where community-intrinsic properties are likely to emerge.
Collapse
Affiliation(s)
| | | | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Denmark.
| |
Collapse
|
18
|
Checcucci A, DiCenzo GC, Bazzicalupo M, Mengoni A. Trade, Diplomacy, and Warfare: The Quest for Elite Rhizobia Inoculant Strains. Front Microbiol 2017; 8:2207. [PMID: 29170661 PMCID: PMC5684177 DOI: 10.3389/fmicb.2017.02207] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/26/2017] [Indexed: 01/12/2023] Open
Abstract
Rhizobia form symbiotic nitrogen-fixing nodules on leguminous plants, which provides an important source of fixed nitrogen input into the soil ecosystem. The improvement of symbiotic nitrogen fixation is one of the main challenges facing agriculture research. Doing so will reduce the usage of chemical nitrogen fertilizer, contributing to the development of sustainable agriculture practices to deal with the increasing global human population. Sociomicrobiological studies of rhizobia have become a model for the study of the evolution of mutualistic interactions. The exploitation of the wide range of social interactions rhizobia establish among themselves, with the soil and root microbiota, and with the host plant, could constitute a great advantage in the development of a new generation of highly effective rhizobia inoculants. Here, we provide a brief overview of the current knowledge on three main aspects of rhizobia interaction: trade of fixed nitrogen with the plant; diplomacy in terms of communication and possible synergistic effects; and warfare, as antagonism and plant control over symbiosis. Then, we propose new areas of investigation and the selection of strains based on the combination of the genetic determinants for the relevant rhizobia symbiotic behavioral phenotypes.
Collapse
Affiliation(s)
- Alice Checcucci
- Department of Biology, University of Florence, Florence, Italy
| | | | | | - Alessio Mengoni
- Department of Biology, University of Florence, Florence, Italy
| |
Collapse
|
19
|
Nadell CD, Ricaurte D, Yan J, Drescher K, Bassler BL. Flow environment and matrix structure interact to determine spatial competition in Pseudomonas aeruginosa biofilms. eLife 2017; 6. [PMID: 28084994 PMCID: PMC5283829 DOI: 10.7554/elife.21855] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 01/11/2017] [Indexed: 12/11/2022] Open
Abstract
Bacteria often live in biofilms, which are microbial communities surrounded by a secreted extracellular matrix. Here, we demonstrate that hydrodynamic flow and matrix organization interact to shape competitive dynamics in Pseudomonas aeruginosa biofilms. Irrespective of initial frequency, in competition with matrix mutants, wild-type cells always increase in relative abundance in planar microfluidic devices under simple flow regimes. By contrast, in microenvironments with complex, irregular flow profiles – which are common in natural environments – wild-type matrix-producing and isogenic non-producing strains can coexist. This result stems from local obstruction of flow by wild-type matrix producers, which generates regions of near-zero shear that allow matrix mutants to locally accumulate. Our findings connect the evolutionary stability of matrix production with the hydrodynamics and spatial structure of the surrounding environment, providing a potential explanation for the variation in biofilm matrix secretion observed among bacteria in natural environments. DOI:http://dx.doi.org/10.7554/eLife.21855.001 Bacteria often live together – attached to surfaces like river rocks, water pipes, the lining of the gut and catheters – in communities called biofilms. These groups of bacteria are small-scale ecosystems in which cells cooperate and compete with one another to obtain resources, such as food and space to grow. Within a biofilm, a sticky glue-like substance called the matrix binds the cells to each other and to the surface. Cells that make the matrix typically have an advantage over those that do not because they can better resist the shearing forces experienced when liquid flows over the surface. The matrix also helps cells to capture nutrients from the passing liquid. Nevertheless, not all strains of bacteria make matrix, despite its advantages. Because of where they can grow, biofilms are fundamentally important in the environment, in industry and in infections. Resolving why some bacteria make matrix while others do not could therefore allow scientists and engineers to re-design the surfaces involved in these settings to discourage harmful biofilms or to encourage beneficial ones. Nadell, Ricaurte et al. have now used a bacterium called Pseudomonas aeruginosa to explore how the properties of the surface and the flowing liquid affect matrix production among cells in biofilms. P. aeruginosa typically lives in soil and can cause infections in people, especially in hospital patients and people who have weakened immune systems. Nadell, Ricaurte et al. studied normal P. aeruginosa bacteria and a mutant strain that is unable to make matrix. The strains were labeled with fluorescent markers and put into special chambers that simulated different environments. The proportion of each strain was measured after three days of biofilm growth. When biofilms were grown under flowing liquid in simple environments with flat surfaces, matrix producers always outcompeted non-producers. However, the two strains coexisted in more complex and porous environments, like those found in soil. Nadell, Ricaurte et al. went on to show that the strains could co-exist because the matrix producers made biofilms that created areas within the environment where the liquid flows very slowly or not at all. In these regions, non-producing cells could compete successfully because resistance to shearing forces is less important when flow is weak or absent, and so the non-producing cells were not washed away. The results begin to explain why matrix production among cells in environmental settings is diverse and highlight that the environment is important in the evolution of bacterial biofilms. DOI:http://dx.doi.org/10.7554/eLife.21855.002
Collapse
Affiliation(s)
- Carey D Nadell
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Deirdre Ricaurte
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Jing Yan
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| |
Collapse
|