1
|
Zhang H, Mao A, Liu Y, Fu Y, Cheng J, Jin D, Fan Y. Transcription factor BbCDR1 regulates the orchestration between conidial formation and maturation in the entomopathogenic fungus Beauveria bassiana. PEST MANAGEMENT SCIENCE 2025. [PMID: 39854122 DOI: 10.1002/ps.8662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/06/2024] [Accepted: 01/05/2025] [Indexed: 01/26/2025]
Abstract
BACKGROUND The entomopathogenic fungus Beauveria bassiana has been widely used for pest biocontrol with conidia serving as the main active agents. Conidial yield and quality are two important characteristics in fungal conidia development, however, the regulatory mechanisms that orchestrate conidial formation and development are not well understood. RESULTS In this study, we identified a Zn2Cys6 transcription factor BbCDR1 that inhibits conidial production while promoting conidial maturation. Compared with the wild type, the ΔBbCDR1 mutant exhibited a 1.88-fold increase in conidial yield but a reduction in conidial quality, including decreased cell wall integrity and trehalose synthesis. The deletion of BbCDR1 also led to reduced conidial germination rates under oxidative, osmotic, conidial wall disruption and UV stresses. Interestingly, ΔBbCDR1 exhibited an increase of fungal virulence with a 12.5% decrease in LT50 compared to the wild type. CONCLUSIONS Further analysis revealed that BbCDR1 represses the expression of BbbrlA and activates BbwetA, two components of the central developmental pathway (CDP) that regulate conidial initiation and maturation, respectively. These findings suggest that BbCDR1 plays a crucial role in conidial development and a new target gene for the genetic engineering of highly active fungal insecticides. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hui Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Yibin Academy of Southwest University, Yibin, China
| | - Ajing Mao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Yibin Academy of Southwest University, Yibin, China
| | - Yu Liu
- Laboratory Animal Center, Southwest University, Chongqing, China
| | - Yu Fu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Yibin Academy of Southwest University, Yibin, China
| | - Jiahao Cheng
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Yibin Academy of Southwest University, Yibin, China
| | - Dan Jin
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Yibin Academy of Southwest University, Yibin, China
| | - Yanhua Fan
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Yibin Academy of Southwest University, Yibin, China
| |
Collapse
|
2
|
Pimentel MF, Rocha LF, Subedi A, Bond JP, Fakhoury AM. Dual RNA-seq reveals transcriptome changes during Fusarium virguliforme-Trichoderma afroharzianum interactions. PLoS One 2025; 20:e0310850. [PMID: 39854323 PMCID: PMC11761082 DOI: 10.1371/journal.pone.0310850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 09/07/2024] [Indexed: 01/26/2025] Open
Abstract
Trichoderma spp. are among the most studied biocontrol agents. While extensive work has been done to understand Trichoderma antagonistic mechanisms, additional research is needed to fully understand how Trichoderma spp. recognize the pathogen-host and the intra-species variability i frequently observed upon interaction with a specific pathogen-host. This study focuses on elucidating the mechanisms underlying observed phenotypic differences among the T. afroharzianum isolates Th19A and Th4 during confrontation with Fusarium virguliforme by investigating differences in their transcriptome at different stages of interaction. In a dual plate assay, Th19A overgrows F. virguliforme, whereas Th4 forms an inhibition zone. Significant differences were observed in the F. virguliforme transcriptome upon interaction with Th19A compared to Th4 and across the different stages of interaction. GO molecular function categories enriched for F. virguliforme genes differed, indicating possible transcriptional plasticity upon interaction with Th19A versus Th4. Significant transcriptome changes were also observed in T. afroharzianum, with several differences in GO-enriched categories between isolates. Several differentially expressed genes-encoding secreted proteins, including CAZymes and CBM1-domain-containing proteins, were up-regulated in Th19A and Th4 upon interaction with the pathogen, even before physical contact, demonstrating possible volatile-mediated recognition of both isolates by F. virguliforme. This study contributes to a better understanding of the interaction between T. afroharzianum and F. virguliforme, which is crucial for developing efficient biological control programs.
Collapse
Affiliation(s)
- Mirian F. Pimentel
- School of Agriculture Sciences, Southern Illinois University Carbondale, Illinois, United States of America
- BASF- Global Agricultural Solutions, Durham, North Carolina, United States of America
| | - Leonardo F. Rocha
- BASF- Global Agricultural Solutions, Durham, North Carolina, United States of America
| | - Arjun Subedi
- BASF- Global Agricultural Solutions, Durham, North Carolina, United States of America
| | - Jason P. Bond
- BASF- Global Agricultural Solutions, Durham, North Carolina, United States of America
| | - Ahmad M. Fakhoury
- BASF- Global Agricultural Solutions, Durham, North Carolina, United States of America
| |
Collapse
|
3
|
Hong G, Yang M, Wang S, Xia Y, Peng G. Metarhizium acridum transcription factor MaFTF1 negatively regulates virulence of the entomopathogenic fungus by controlling cuticle penetration of locusts. PEST MANAGEMENT SCIENCE 2024. [PMID: 39704032 DOI: 10.1002/ps.8604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND The entomopathogenic fungus (EPF) Metarhizium acridum, a typical filamentous fungus, has been utilized for the biological control of migratory locusts (Locusta migratoria manilensis). Fungal-specific transcription factors (TFs) play a crucial role in governing various cellular processes in fungi, although TFs with only the Fungal_trans domain remain poorly understood. RESULTS In this study, we identified a unique fungal-specific TF in M. acridum, named MaFTF1, which contains only a Fungal_trans domain and functions as a negative regulator of M. acridum virulence by influencing cuticle penetration. The virulence of the MaFTF1 knockout strain (ΔMaFTF1) against L. migratoria was increased, with a median lethal time (LT50) ~0.91 days shorter than that of the wild-type (WT) strain when inoculated topically, mimicking natural infection conditions. Correspondingly, ΔMaFTF1 penetrated the cuticle earlier than did the WT strain. Our investigation revealed that the development of appressoria was accelerated in ΔMaFTF1 compared with the WT strain. Furthermore, the appressoria of the ΔMaFTF1 displayed higher turgor pressure and an upregulated expression of fungal hydrolases active toward the insect cuticle. RNA sequencing analysis indicated that the differences in appressorium behavior between the strains were due to MaFTF1 regulating a complex metabolism pathway. CONCLUSION This study revealed that MaFTF1 acts as a negative regulator of virulence, impacting the process of cuticle penetration by slowing the formation of appressoria, decreasing their turgor pressure, and reducing the expression of hydrolases in appressoria, revealing an unexpected strategy in the EPFs. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Geng Hong
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| | - Man Yang
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| | - Shanjun Wang
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| | - Guoxiong Peng
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| |
Collapse
|
4
|
Saha D, Gregor JB, Hoda S, Eastman KE, Gutierrez-Schultz VA, Navarrete M, Wisecaver JH, Briggs SD. Candida glabrata maintains two HAP1 ohnologs, HAP1A and HAP1B, for distinct roles in ergosterol gene regulation to mediate sterol homeostasis under azole and hypoxic conditions. mSphere 2024; 9:e0052424. [PMID: 39440948 PMCID: PMC11580460 DOI: 10.1128/msphere.00524-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/03/2024] [Indexed: 10/25/2024] Open
Abstract
Candida glabrata exhibits innate resistance to azole antifungal drugs but also has the propensity to rapidly develop clinical drug resistance. Azole drugs, which target Erg11, is one of the major classes of antifungals used to treat Candida infections. Despite their widespread use, the mechanism controlling azole-induced ERG gene expression and drug resistance in C. glabrata has primarily revolved around Upc2 and/or Pdr1. Phylogenetic and syntenic analyses revealed that C. glabrata, following a whole genome duplication event, maintained HAP1A and HAP1B, whereas Saccharomyces cerevisiae only retained the HAP1A ortholog, HAP1. In this study, we determined the function of two zinc cluster transcription factors, Hap1A and Hap1B, as direct regulators of ERG genes. In S. cerevisiae, Hap1, an ortholog of Hap1A, is a known transcription factor controlling ERG gene expression under aerobic and hypoxic conditions. Interestingly, deleting HAP1 or HAP1B in either S. cerevisiae or C. glabrata, respectively, showed altered susceptibility to azoles. In contrast, the strain deleted for HAP1A did not exhibit azole susceptibility. We also determined that the increased azole susceptibility in a hap1BΔ strain is attributed to decreased azole-induced expression of ERG genes, resulting in decreased levels of total ergosterol. Surprisingly, Hap1A protein expression is barely detected under aerobic conditions but is specifically induced under hypoxic conditions, where Hap1A is required for the repression of ERG genes. However, in the absence of Hap1A, Hap1B can compensate as a transcriptional repressor. Our study shows that Hap1A and Hap1B is utilized by C. glabrata to adapt to specific host and environmental conditions. IMPORTANCE Invasive and drug-resistant fungal infections pose a significant public health concern. Candida glabrata, a human fungal pathogen, is often difficult to treat due to its intrinsic resistance to azole antifungal drugs and its capacity to develop clinical drug resistance. Therefore, understanding the pathways that facilitate fungal growth and environmental adaptation may lead to novel drug targets and/or more efficacious antifungal therapies. While the mechanisms of azole resistance in Candida species have been extensively studied, the roles of zinc cluster transcription factors, such as Hap1A and Hap1B, in C. glabrata have remained largely unexplored until now. Our research shows that these factors play distinct yet crucial roles in regulating ergosterol homeostasis under azole drug treatment and oxygen-limiting growth conditions. These findings offer new insights into how this pathogen adapts to different environmental conditions and enhances our understanding of factors that alter drug susceptibility and/or resistance.
Collapse
Affiliation(s)
- Debasmita Saha
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Justin B. Gregor
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Smriti Hoda
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | | | | | - Mindy Navarrete
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | | | - Scott D. Briggs
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
- Purdue University Institute for Cancer Research, West Lafayette, Indiana, USA
| |
Collapse
|
5
|
Morschhäuser J. Adaptation of Candida albicans to specific host environments by gain-of-function mutations in transcription factors. PLoS Pathog 2024; 20:e1012643. [PMID: 39495716 PMCID: PMC11534201 DOI: 10.1371/journal.ppat.1012643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
The yeast Candida albicans is usually a harmless member of the normal microbiota in healthy persons but is also a major fungal pathogen that can colonize and infect almost every human tissue. A successful adaptation to environmental changes encountered in different host niches requires an appropriate regulation of gene expression. The zinc cluster transcription factors are the largest family of transcriptional regulators in C. albicans and are involved in the control of virtually all aspects of its biology. Under certain circumstances, mutations in these transcription factors that alter their activity and the expression of their target genes confer a selective advantage, which results in the emergence of phenotypically altered variants that are better adapted to new environmental challenges. This review describes how gain-of-function mutations in different zinc cluster transcription factors enable C. albicans to overcome antifungal therapy and to successfully establish itself in specific host niches.
Collapse
Affiliation(s)
- Joachim Morschhäuser
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Yang Q, Ran Y, Guo Y, Zeng J, Song Y, Qiao D, Xu H, Cao Y. Enhancement of lipid synthesis by the transcription factor Asg1 in Saitozyma podzolica zwy-2-3 under dissolved oxygen stress. BIORESOURCE TECHNOLOGY 2024; 411:131312. [PMID: 39168414 DOI: 10.1016/j.biortech.2024.131312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Microbial oils have been of considerable interest as food additives and biofuel resources due to high lipid contents, but lipid accumulation of oleaginous microorganisms can be induced by environmental stresses, such as dissolved oxygen (DO), which limit large-scale lipid production. Here, DO stress gave rise to the endogenous nitric oxide (NO) level to mediate S-nitrosylation of SpAsg1, regulating the lipid accumulation in Saitozyma podzolica zwy-2-3. Notably, qRT-PCR, yeast one-hybrid, dual-luciferase reporter assays, and metabolomics analysis exhibited that overexpression of SpAsg1 promoted lipid synthesis by directly regulation of glucose metabolism, enhancing glucose uptake, ATP and NADPH contents under DO stress. Meanwhile, SpAsg1 improved the antioxidant capacity to reduce the intracellular reactive oxygen species (ROS) and NO levels. Overall, we systematically investigated the regulation of SpAsg1 on lipid metabolism of S. podzolica zwy-2-3 under DO stress, which sheds light on further studies for alleviating oxygen limitation of lipid production in microbial industry.
Collapse
Affiliation(s)
- Qingzhuoma Yang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yulu Ran
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yihan Guo
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jie Zeng
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yao Song
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
7
|
Buradam P, Thananusak R, Koffas M, Chumnanpuen P, Vongsangnak W. Expanded Gene Regulatory Network Reveals Potential Light-Responsive Transcription Factors and Target Genes in Cordyceps militaris. Int J Mol Sci 2024; 25:10516. [PMID: 39408845 PMCID: PMC11476991 DOI: 10.3390/ijms251910516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Cordyceps militaris, a fungus widely used in traditional Chinese medicine and pharmacology, is recognized for its abundant bioactive compounds, including cordycepin and carotenoids. The growth, development, and metabolite production in various fungi are influenced by the complex interactions between regulatory cascades and light-signaling pathways. However, the mechanisms of gene regulation in response to light exposure in C. militaris remain largely unexplored. This study aimed to identify light-responsive genes and potential transcription factors (TFs) in C. militaris through an integrative transcriptome analysis. To achieve this, we reconstructed an expanded gene regulatory network (eGRN) comprising 507 TFs and 8662 regulated genes using both interolog-based and homolog-based methods to build the protein-protein interaction network. Aspergillus nidulans and Neurospora crassa were chosen as templates due to their relevance as fungal models and the extensive study of their light-responsive mechanisms. By utilizing the eGRN as a framework for comparing transcriptomic responses between light-exposure and dark conditions, we identified five key TFs-homeobox TF (CCM_07504), FlbC (CCM_04849), FlbB (CCM_01128), C6 zinc finger TF (CCM_05172), and mcrA (CCM_06477)-along with ten regulated genes within the light-responsive subnetwork. These TFs and regulated genes are likely crucial for the growth, development, and secondary metabolite production in C. militaris. Moreover, molecular docking analysis revealed that two novel TFs, CCM_05727 and CCM_06992, exhibit strong binding affinities and favorable docking scores with the primary light-responsive protein CmWC-1, suggesting their potential roles in light signaling pathways. This information provides an important functional interactive network for future studies on global transcriptional regulation in C. militaris and related fungi.
Collapse
Affiliation(s)
- Paradee Buradam
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Kasetsart University International College (KUIC), Kasetsart University, Bangkok 10900, Thailand
| | - Roypim Thananusak
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand;
| | - Mattheos Koffas
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Pramote Chumnanpuen
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Kasetsart University International College (KUIC), Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand;
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand;
| |
Collapse
|
8
|
Zhang Y, Jia C, Liu Y, Li G, Li B, Shi W, Zhang Y, Hou J, Qin Q, Zhang M, Qin J. The Fungal Transcription Factor BcTbs1 from Botrytis cinerea Promotes Pathogenicity via Host Cellulose Degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20816-20830. [PMID: 39261294 DOI: 10.1021/acs.jafc.4c03744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Zn(II)2Cys6 proteins constitute the largest group of fungal-specific transcription factors. However, little is known about their functions in the crop killer Botrytis cinerea. In this work, a T-DNA insertion strain M13448 was identified which was inserted into the Zn(II)2Cys6 TF-encoding gene BcTBS1. Knockout of BcTBS1 did not affect mycelia growth, appressorium formation, and sclerotium germination, but impaired fungal conidiation, conidial morphogenesis, conidial germination, infection cushion development, and sclerotial formation. Accordingly, ΔBctbs1 mutants showed reduced virulence in its host plants. Further study proved that BcTBS1, BCIN_15g03870, and BCIN_12g06630 were induced by cellulose. Subsequent cellulase activity assays revealed that the loss of BcTBS1 significantly decreased cellulase activity. In addition, we verified that the BCIN_15g03870 and BCIN_12g06630 genes were positive regulated by BcTBS1 by quantitative real-time reverse-transcription-polymerase chain reaction (qRT-PCR). Taken together, these results suggested that BcTBS1 can promote pathogenicity by modulating cellulase-encoding genes that participate in host cellulose degradation.
Collapse
Affiliation(s)
- Yinshan Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Chengguo Jia
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Yue Liu
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Guihua Li
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Bin Li
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Wuliang Shi
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Yubin Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jie Hou
- Engineering Research Centre of Forestry Biotechnology of Jilin Province in Beihua University, Jilin 132013, China
| | - Qingming Qin
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Mingzhe Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jianchun Qin
- College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
9
|
Gomez-Gutierrrez SV, Sic-Hernandez WR, Haridas S, LaButti K, Eichenberger J, Kaur N, Lipzen A, Barry K, Goodwin SB, Gribskov M, Grigoriev IV. Comparative genomics of the extremophile Cryomyces antarcticus and other psychrophilic Dothideomycetes. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1418145. [PMID: 39309730 PMCID: PMC11412873 DOI: 10.3389/ffunb.2024.1418145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
Over a billion years of fungal evolution has enabled representatives of this kingdom to populate almost all parts of planet Earth and to adapt to some of its most uninhabitable environments including extremes of temperature, salinity, pH, water, light, or other sources of radiation. Cryomyces antarcticus is an endolithic fungus that inhabits rock outcrops in Antarctica. It survives extremes of cold, humidity and solar radiation in one of the least habitable environments on Earth. This fungus is unusual because it produces heavily melanized, meristematic growth and is thought to be haploid and asexual. Due to its growth in the most extreme environment, it has been suggested as an organism that could survive on Mars. However, the mechanisms it uses to achieve its extremophilic nature are not known. Comparative genomics can provide clues to the processes underlying biological diversity, evolution, and adaptation. This effort has been greatly facilitated by the 1000 Fungal Genomes project and the JGI MycoCosm portal where sequenced genomes have been assembled into phylogenetic and ecological groups representing different projects, lifestyles, ecologies, and evolutionary histories. Comparative genomics within and between these groups provides insights into fungal adaptations, for example to extreme environmental conditions. Here, we analyze two Cryomyces genomes in the context of additional psychrophilic fungi, as well as non-psychrophilic fungi with diverse lifestyles selected from the MycoCosm database. This analysis identifies families of genes that are expanded and contracted in Cryomyces and other psychrophiles and may explain their extremophilic lifestyle. Higher GC contents of genes and of bases in the third positions of codons may help to stabilize DNA under extreme conditions. Numerous smaller contigs in C. antarcticus suggest the presence of an alternative haplotype that could indicate the sequenced isolate is diploid or dikaryotic. These analyses provide a first step to unraveling the secrets of the extreme lifestyle of C. antarcticus.
Collapse
Affiliation(s)
| | - Wily R. Sic-Hernandez
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Sajeet Haridas
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Joanne Eichenberger
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Navneet Kaur
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Stephen B. Goodwin
- Crop Production and Pest Control Research Unit, U.S. Department of Agriculture (USDA) - Agricultural Research Service, West Lafayette, IN, United States
| | - Michael Gribskov
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
10
|
John E, Verdonk C, Singh KB, Oliver RP, Lenzo L, Morikawa S, Soyer JL, Muria-Gonzalez J, Soo D, Mousley C, Jacques S, Tan KC. Regulatory insight for a Zn2Cys6 transcription factor controlling effector-mediated virulence in a fungal pathogen of wheat. PLoS Pathog 2024; 20:e1012536. [PMID: 39312592 PMCID: PMC11419344 DOI: 10.1371/journal.ppat.1012536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
The regulation of virulence in plant-pathogenic fungi has emerged as a key area of importance underlying host infections. Recent work has highlighted individual transcription factors (TFs) that serve important roles. A prominent example is PnPf2, a member of the Zn2Cys6 family of fungal TFs, which controls the expression of effectors and other virulence-associated genes in Parastagonospora nodorum during infection of wheat. PnPf2 orthologues are similarly important for other major fungal pathogens during infection of their respective host plants, and have also been shown to control polysaccharide metabolism in model saprophytes. In each case, the direct genomic targets and associated regulatory mechanisms were unknown. Significant insight was made here by investigating PnPf2 through chromatin-immunoprecipitation (ChIP) and mutagenesis approaches in P. nodorum. Two distinct binding motifs were characterised as positive regulatory elements and direct PnPf2 targets identified. These encompass known effectors and other components associated with the P. nodorum pathogenic lifestyle, such as carbohydrate-active enzymes and nutrient assimilators. The results support a direct involvement of PnPf2 in coordinating virulence on wheat. Other prominent PnPf2 targets included TF-encoding genes. While novel functions were observed for the TFs PnPro1, PnAda1, PnEbr1 and the carbon-catabolite repressor PnCreA, our investigation upheld PnPf2 as the predominant transcriptional regulator characterised in terms of direct and specific coordination of virulence on wheat, and provides important mechanistic insights that may be conserved for homologous TFs in other fungi.
Collapse
Affiliation(s)
- Evan John
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Callum Verdonk
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Karam B. Singh
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Perth, Australia
| | - Richard P. Oliver
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Leon Lenzo
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Shota Morikawa
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Jessica L. Soyer
- Université Paris-Saclay, INRAE, UR BIOGER, Thiverval-Grignon, France
| | - Jordi Muria-Gonzalez
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Daniel Soo
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Carl Mousley
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Silke Jacques
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Kar-Chun Tan
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| |
Collapse
|
11
|
Yang S, Sun J, Xue A, Li G, Sun C, Hou J, Qin QM, Zhang M. Novel Botrytis cinerea Zn(II) 2Cys 6 Transcription Factor BcFtg1 Enhances the Virulence of the Gray Mold Fungus by Promoting Organic Acid Secretion and Carbon Source Utilization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18824-18839. [PMID: 39140189 DOI: 10.1021/acs.jafc.4c03014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The Zn(II)2Cys6 zinc cluster protein family comprises a subclass of zinc-finger proteins that serve as transcriptional regulators involved in a diverse array of fugal biological processes. However, the roles and mechanisms of the Zn(II)2Cys6 transcription factors in mediating Botrytis cinerea, a necrotrophic fungus that causes gray mold in over 1000 plant species, development and virulence remain obscure. Here, we demonstrate that a novel B. cinerea pathogenicity-associated factor BcFTG1 (fungal transcription factor containing the GAL4 domain), identified from a virulence-attenuated mutant M20162 from a B. cinerea T-DNA insertion mutant library, plays an important role in oxalic acid (OA) secretion, carbon source absorption and cell wall integrity. Loss of BcFTG1 compromises the ability of the pathogen to secrete OA, absorb carbon sources, maintain cell wall integrity, and promote virulence. Our findings provide novel insights into fungal factors mediating the pathogenesis of the gray mold fungus via regulation of OA secretion, carbon source utilization and cell wall integrity.
Collapse
Affiliation(s)
- Song Yang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jiao Sun
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Datong University, Datong, Shanxi 037009, China
| | - Aoran Xue
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Guihua Li
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Chenhao Sun
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jie Hou
- Engineering Research Centre of Forestry Biotechnology of Jilin Province in Beihua University, Jilin 132013, China
| | - Qing-Ming Qin
- Christopher S. Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri 65211, United States
| | - Mingzhe Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
12
|
Hong G, Wang S, Xia Y, Peng G. MaAzaR Influences Virulence of Metarhizium acridum against Locusta migratoria manilensis by Affecting Cuticle Penetration. J Fungi (Basel) 2024; 10:564. [PMID: 39194890 DOI: 10.3390/jof10080564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
The entomopathogenic fungus (EPF) Metarhizium acridum is a typical filamentous fungus and has been used to control migratory locusts (Locusta migratoria manilensis). This study examines the impact of the Zn(II)2Cys6 transcription factor, MaAzaR, in the virulence of M. acridum. Disruption of MaAzaR (ΔMaAzaR) diminished the fungus's ability to penetrate the insect cuticle, thereby decreasing its virulence. The median lethal time (LT50) for the ΔMaAzaR strain increased by approximately 1.5 d compared to the wild-type (WT) strain when topically inoculated, simulating natural infection conditions. ΔMaAzaR compromises the formation, turgor pressure, and secretion of extracellular hydrolytic enzymes in appressoria. However, the growth ability of ΔMaAzaR within the hemolymph is not impaired; in fact, it grows better than the WT strain. Moreover, RNA-sequencing (RNA-Seq) analysis of ΔMaAzaR and WT strains grown for 20 h on locust hindwings revealed 87 upregulated and 37 downregulated differentially expressed genes (DEGs) in the mutant strain. Pathogen-host interaction database (PHI) analysis showed that about 40% of the total DEGs were associated with virulence, suggesting that MaAzaR is a crucial transcription factor that directly regulates the expression of downstream genes. This study identifies a new transcription factor involved in EPF cuticle penetration, providing theoretical support and genetic resources for the developing highly virulent strains.
Collapse
Affiliation(s)
- Geng Hong
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Siqing Wang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Guoxiong Peng
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
| |
Collapse
|
13
|
Ramírez-Zavala B, Krüger I, Schwanfelder S, Barker KS, Rogers PD, Morschhäuser J. The zinc cluster transcription factor Znc1 regulates Rta3-dependent miltefosine resistance in Candida albicans. mSphere 2024; 9:e0027024. [PMID: 38860767 PMCID: PMC11288014 DOI: 10.1128/msphere.00270-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/03/2024] [Indexed: 06/12/2024] Open
Abstract
Zinc cluster transcription factors (ZCFs) are a family of transcription regulators that are almost exclusively found in the fungal kingdom. Activating mutations in the ZCFs Mrr1, Tac1, and Upc2 frequently cause acquired resistance to the widely used antifungal drug fluconazole in the pathogenic yeast Candida albicans. Similar to a hyperactive Tac1, a constitutively active form of the ZCF Znc1 causes increased fluconazole resistance by upregulating the multidrug efflux pump-encoding gene CDR1. Hyperactive forms of both Tac1 and Znc1 also cause overexpression of RTA3, which encodes a seven-transmembrane receptor protein involved in the regulation of asymmetric lipid distribution in the plasma membrane. RTA3 expression is also upregulated by miltefosine, an antiparasitic drug that is active against fungal pathogens and considered for treatment of invasive candidiasis, and rta3Δ mutants are hypersensitive to miltefosine. We found that activated forms of both Tac1 and Znc1 confer increased miltefosine resistance, which was dependent on RTA3 whereas CDR1 was dispensable. Intriguingly, the induction of RTA3 expression by miltefosine depended on Znc1, but not Tac1, in contrast to the known Tac1-dependent RTA3 upregulation by fluphenazine. In line with this observation, znc1Δ mutants were hypersensitive to miltefosine, whereas tac1Δ mutants showed wild-type tolerance. Forced expression of RTA3 reverted the hypersensitivity of znc1Δ mutants, demonstrating that the hypersensitivity was caused by the inability of the mutants to upregulate RTA3 in response to the drug. These findings establish Znc1 as a key regulator of miltefosine-induced RTA3 expression that is important for wild-type miltefosine tolerance. IMPORTANCE Transcription factors are central regulators of gene expression, and knowledge about which transcription factor regulates specific genes in response to a certain signal is important to understand the behavior of organisms. In the pathogenic yeast Candida albicans, the RTA3 gene is required for wild-type tolerance of miltefosine, an antiparasitic drug that is considered for treatment of invasive candidiasis. Activated forms of the transcription factors Tac1 and Znc1 cause constitutive overexpression of RTA3 and thereby increased miltefosine resistance, but only Tac1 mediates upregulation of RTA3 in response to the known inducer fluphenazine. RTA3 expression is also induced by miltefosine, and we found that this response depends on Znc1, whereas Tac1 is dispensable. Consequently, znc1Δ mutants were hypersensitive to miltefosine, whereas tac1Δ mutants showed wild-type tolerance. These findings demonstrate that Znc1 is the key regulator of RTA3 expression in response to miltefosine that is important for wild-type miltefosine tolerance.
Collapse
Affiliation(s)
| | - Ines Krüger
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Sonja Schwanfelder
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Katherine S. Barker
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - P. David Rogers
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Joachim Morschhäuser
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
14
|
Ror S, Stamnes MA, Moye-Rowley WS. Gene-specific transcriptional activation by the Aspergillus fumigatus AtrR factor requires a conserved C-terminal domain. mSphere 2024; 9:e0042524. [PMID: 38975761 PMCID: PMC11288021 DOI: 10.1128/msphere.00425-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024] Open
Abstract
Treatment of fungal infections associated with the filamentous fungus Aspergillus fumigatus is becoming more problematic as this organism is developing resistance to the main chemotherapeutic drug at an increasing rate. Azole drugs represent the current standard-of-care in the treatment of aspergillosis with this drug class acting by inhibiting a key step in the biosynthesis of the fungal sterol ergosterol. Azole compounds block the activity of the lanosterol α-14 demethylase, encoded by the cyp51A gene. A common route of azole resistance involves an increase in transcription of cyp51A. This transcriptional increase requires the function of a Zn2Cys6 DNA-binding domain-containing transcription activator protein called AtrR. AtrR was identified through its action as a positive regulator of expression of an ATP-binding cassette transporter (abcC/cdr1B here called abcG1). Using both deletion and alanine scanning mutagenesis, we demonstrate that a conserved C-terminal domain in A. fumigatus is required for the expression of abcG1 but dispensable for cyp51A transcription. This domain is also found in several other fungal pathogen AtrR homologs consistent with a conserved gene-selective function of this protein segment being conserved. Using RNA sequencing (RNA-seq), we find that this gene-specific transcriptional defect extends to several other membrane transporter-encoding genes including a second ABC transporter locus. Our data reveal that AtrR uses at least two distinct mechanisms to induce gene expression and that normal susceptibility to azole drugs cannot be provided by maintenance of wild-type expression of the ergosterol biosynthetic pathway when ABC transporter expression is reduced. IMPORTANCE Aspergillus fumigatus is the primary human filamentous fungal pathogen. The principal chemotherapeutic drug used to control infections associated with A. fumigatus is the azole compound. These drugs are well-tolerated and effective, but resistance is emerging at an alarming rate. Most resistance is associated with mutations that lead to overexpression of the azole target enzyme, lanosterol α-14 demethylase, encoded by the cyp51A gene. A key regulator of cyp51A gene expression is the transcription factor AtrR. Very little is known of the molecular mechanisms underlying the effect of AtrR on gene expression. Here, we use deletion and clustered amino acid substitution mutagenesis to map a region of AtrR that confers gene-specific activation on target genes of this transcription factor. This region is highly conserved across AtrR homologs from other pathogenic species arguing that its importance in transcriptional regulation is maintained across evolution.
Collapse
Affiliation(s)
- Shivani Ror
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Mark A. Stamnes
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - W. Scott Moye-Rowley
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
15
|
Wang C, Zhang X, Wu K, Liu S, Li X, Zhu C, Xiao Y, Fang Z, Liu J. Two Zn 2Cys 6-type transcription factors respond to aromatic compounds and regulate the expression of laccases in the white-rot fungus Trametes hirsuta. Appl Environ Microbiol 2024; 90:e0054524. [PMID: 38899887 PMCID: PMC11267944 DOI: 10.1128/aem.00545-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
White-rot fungi differentially express laccases when they encounter aromatic compounds. However, the underlying mechanisms are still being explored. Here, proteomics analysis revealed that in addition to increased laccase activity, proteins involved in sphingolipid metabolism and toluene degradation as well as some cytochrome P450s (CYP450s) were differentially expressed and significantly enriched during 48 h of o-toluidine exposure, in Trametes hirsuta AH28-2. Two Zn2Cys6-type transcription factors (TFs), TH8421 and TH4300, were upregulated. Bioinformatics docking and isothermal titration calorimetry assays showed that each of them could bind directly to o-toluidine and another aromatic monomer, guaiacol. Binding to aromatic compounds promoted the formation of TH8421/TH4300 heterodimers. TH8421 and TH4300 silencing in T. hirsuta AH28-2 led to decreased transcriptional levels and activities of LacA and LacB upon o-toluidine and guaiacol exposure. EMSA and ChIP-qPCR analysis further showed that TH8421 and TH4300 bound directly with the promoter regions of lacA and lacB containing CGG or CCG motifs. Furthermore, the two TFs were involved in direct and positive regulation of the transcription of some CYP450s. Together, TH8421 and TH4300, two key regulators found in T. hirsuta AH28-2, function as heterodimers to simultaneously trigger the expression of downstream laccases and intracellular enzymes. Monomeric aromatic compounds act as ligands to promote heterodimer formation and enhance the transcriptional activities of the two TFs.IMPORTANCEWhite-rot fungi differentially express laccase isoenzymes when exposed to aromatic compounds. Clarification of the molecular mechanisms underlying differential laccase expression is essential to elucidate how white-rot fungi respond to the environment. Our study shows that two Zn2Cys6-type transcription factors form heterodimers, interact with the promoters of laccase genes, and positively regulate laccase transcription in Trametes hirsuta AH28-2. Aromatic monomer addition induces faster heterodimer formation and rate of activity. These findings not only identify two new transcription factors involved in fungal laccase transcription but also deepen our understanding of the mechanisms underlying the response to aromatics exposure in white-rot fungi.
Collapse
Affiliation(s)
- Chenkai Wang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Xinlei Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Kun Wu
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Shenglong Liu
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Xiang Li
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Chaona Zhu
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Juanjuan Liu
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| |
Collapse
|
16
|
Harder CB, Miyauchi S, Virágh M, Kuo A, Thoen E, Andreopoulos B, Lu D, Skrede I, Drula E, Henrissat B, Morin E, Kohler A, Barry K, LaButti K, Salamov A, Lipzen A, Merényi Z, Hegedüs B, Baldrian P, Stursova M, Weitz H, Taylor A, Koriabine M, Savage E, Grigoriev IV, Nagy LG, Martin F, Kauserud H. Extreme overall mushroom genome expansion in Mycena s.s. irrespective of plant hosts or substrate specializations. CELL GENOMICS 2024; 4:100586. [PMID: 38942024 PMCID: PMC11293592 DOI: 10.1016/j.xgen.2024.100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/28/2024] [Accepted: 05/28/2024] [Indexed: 06/30/2024]
Abstract
Mycena s.s. is a ubiquitous mushroom genus whose members degrade multiple dead plant substrates and opportunistically invade living plant roots. Having sequenced the nuclear genomes of 24 Mycena species, we find them to defy the expected patterns for fungi based on both their traditionally perceived saprotrophic ecology and substrate specializations. Mycena displayed massive genome expansions overall affecting all gene families, driven by novel gene family emergence, gene duplications, enlarged secretomes encoding polysaccharide degradation enzymes, transposable element (TE) proliferation, and horizontal gene transfers. Mainly due to TE proliferation, Arctic Mycena species display genomes of up to 502 Mbp (2-8× the temperate Mycena), the largest among mushroom-forming Agaricomycetes, indicating a possible evolutionary convergence to genomic expansions sometimes seen in Arctic plants. Overall, Mycena show highly unusual, varied mosaic-like genomic structures adaptable to multiple lifestyles, providing genomic illustration for the growing realization that fungal niche adaptations can be far more fluid than traditionally believed.
Collapse
Affiliation(s)
- Christoffer Bugge Harder
- Department of Biosciences, University of Oslo, Box 1066 Blindern, 0316 Oslo, Norway; Department of Biology, Microbial Ecology Group, Biology Department, Lund University, Lund, Sweden; University of Copenhagen, Department of Biology, Section of Terrestrial Ecology, 2100 Copenhagen Ø, Denmark.
| | - Shingo Miyauchi
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan; Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, 54280 Champenoux, France
| | - Máté Virágh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, HUN-REN Szeged, 6726 Szeged, Hungary
| | - Alan Kuo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ella Thoen
- Department of Biosciences, University of Oslo, Box 1066 Blindern, 0316 Oslo, Norway
| | - Bill Andreopoulos
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dabao Lu
- Department of Biosciences, University of Oslo, Box 1066 Blindern, 0316 Oslo, Norway
| | - Inger Skrede
- Department of Biosciences, University of Oslo, Box 1066 Blindern, 0316 Oslo, Norway
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix Marseille Université, 163 avenue de Luminy, 13288 Marseille, France; INRAE, UMR 1163, Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix Marseille Université, 163 avenue de Luminy, 13288 Marseille, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, 54280 Champenoux, France
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, 54280 Champenoux, France
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Asaf Salamov
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Zsolt Merényi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, HUN-REN Szeged, 6726 Szeged, Hungary
| | - Botond Hegedüs
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, HUN-REN Szeged, 6726 Szeged, Hungary
| | - Petr Baldrian
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Martina Stursova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Hedda Weitz
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Andy Taylor
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK; The James Hutton Institute, Aberdeen, UK
| | - Maxim Koriabine
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Emily Savage
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, HUN-REN Szeged, 6726 Szeged, Hungary
| | - Francis Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, 54280 Champenoux, France.
| | - Håvard Kauserud
- Department of Biosciences, University of Oslo, Box 1066 Blindern, 0316 Oslo, Norway
| |
Collapse
|
17
|
Yan J, Wang R, Wu M, Cai M, Qu J, Liu L, Xie J, Yin W, Luo C. Transcriptional Activator UvXlnR Is Required for Conidiation and Pathogenicity of Rice False Smut Fungus Ustilaginoidea virens. PHYTOPATHOLOGY 2024; 114:1603-1611. [PMID: 38506745 DOI: 10.1094/phyto-01-24-0038-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Transcription factors play critical roles in diverse biological processes in fungi. XlnR, identified as a transcriptional activator that regulates the expression of the extracellular xylanase genes in fungi, has not been extensively studied for its function in fungal development and pathogenicity in rice false smut fungus Ustilaginoidea virens. In this study, we characterized UvXlnR in U. virens and established that the full-length, N-terminal, and C-terminal forms have the ability to activate transcription. The study further demonstrated that UvXlnR plays crucial roles in various aspects of U. virens biology. Deletion of UvXlnR affected growth, conidiation, and stress response. UvXlnR mutants also exhibited reduced pathogenicity, which could be partially attributed to the reduced expression of xylanolytic genes and extracellular xylanase activity of U. virens during the infection process. Our results indicate that UvXlnR is involved in regulating growth, conidiation, stress response, and pathogenicity.
Collapse
Affiliation(s)
- Jiali Yan
- The National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Wang
- The National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengyao Wu
- The National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Minzheng Cai
- The National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinsong Qu
- The National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lianmeng Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Jiatao Xie
- The National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weixiao Yin
- The National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaoxi Luo
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
18
|
Saha D, Gregor JB, Hoda S, Eastman KE, Navarrete M, Wisecaver JH, Briggs SD. Candida glabrata maintains two Hap1 homologs, Zcf27 and Zcf4, for distinct roles in ergosterol gene regulation to mediate sterol homeostasis under azole and hypoxic conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599910. [PMID: 38979343 PMCID: PMC11230168 DOI: 10.1101/2024.06.20.599910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Candida glabrata exhibits innate resistance to azole antifungal drugs but also has the propensity to rapidly develop clinical drug resistance. Azole drugs, which target Erg11, is one of the three major classes of antifungals used to treat Candida infections. Despite their widespread use, the mechanism controlling azole-induced ERG gene expression and drug resistance in C. glabrata has primarily revolved around Upc2 and/or Pdr1. In this study, we determined the function of two zinc cluster transcription factors, Zcf27 and Zcf4, as direct but distinct regulators of ERG genes. Our phylogenetic analysis revealed C. glabrata Zcf27 and Zcf4 as the closest homologs to Saccharomyces cerevisiae Hap1. Hap1 is a known zinc cluster transcription factor in S. cerevisiae in controlling ERG gene expression under aerobic and hypoxic conditions. Interestingly, when we deleted HAP1 or ZCF27 in either S. cerevisiae or C. glabrata, respectively, both deletion strains showed altered susceptibility to azole drugs, whereas the strain deleted for ZCF4 did not exhibit azole susceptibility. We also determined that the increased azole susceptibility in a zcf27Δ strain is attributed to decreased azole-induced expression of ERG genes, resulting in decreased levels of total ergosterol. Surprisingly, Zcf4 protein expression is barely detected under aerobic conditions but is specifically induced under hypoxic conditions. However, under hypoxic conditions, Zcf4 but not Zcf27 was directly required for the repression of ERG genes. This study provides the first demonstration that Zcf27 and Zcf4 have evolved to serve distinct roles allowing C. glabrata to adapt to specific host and environmental conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Scott D Briggs
- Department of Biochemistry
- Purdue University Institute for Cancer Research
| |
Collapse
|
19
|
Zhu C, Sun J, Tian F, Tian X, Liu Q, Pan Y, Zhang Y, Luo Z. The Bbotf1 Zn(Ⅱ) 2Cys 6 transcription factor contributes to antioxidant response, fatty acid assimilation, peroxisome proliferation and infection cycles in insect pathogenic fungus Beauveria bassiana. J Invertebr Pathol 2024; 204:108083. [PMID: 38458350 DOI: 10.1016/j.jip.2024.108083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/30/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
The abilities to withstand oxidation and assimilate fatty acids are critical for successful infection by many pathogenic fungi. Here, we characterized a Zn(II)2Cys6 transcription factor Bbotf1 in the insect pathogenic fungus Beauveria bassiana, which links oxidative response and fatty acid assimilation via regulating peroxisome proliferation. The null mutant ΔBbotf1 showed impaired resistance to oxidants, accompanied by decreased activities of antioxidant enzymes including CATs, PODs and SODs, and down-regulated expression of many antioxidation-associated genes under oxidative stress condition. Meanwhile, Bbotf1 acts as an activator to regulate fatty acid assimilation, lipid and iron homeostasis as well as peroxisome proliferation and localization, and the expressions of some critical genes related to glyoxylate cycle and peroxins were down-regulated in ΔBbotf1 in presence of oleic acid. In addition, ΔBbotf1 was more sensitive to osmotic stressors, CFW, SDS and LDS. Insect bioassays revealed that insignificant changes in virulence were seen between the null mutant and parent strain when conidia produced on CZP plates were used for topical application. However, propagules recovered from cadavers killed by ΔBbotf1 exhibited impaired virulence as compared with counterparts of the parent strain. These data offer a novel insight into fine-tuned aspects of Bbotf1 concerning multi-stress responses, lipid catabolism and infection cycles.
Collapse
Affiliation(s)
- Chenhua Zhu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jingxin Sun
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Fangfang Tian
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Xinting Tian
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Qi Liu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yunxia Pan
- College of Engineering and Technology, Southwest University, Chongqing 400715, China
| | - Yongjun Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Zhibing Luo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
20
|
Sakamoto Y, Sato S, Yoshida H, Takahashi M, Osakabe K, Muraguchi H. The exp2 gene, which encodes a protein with two zinc finger domains, regulates cap expansion and autolysis in Coprinopsis cinerea. Microbiol Res 2024; 283:127695. [PMID: 38554651 DOI: 10.1016/j.micres.2024.127695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024]
Abstract
Cap expansion in agaricoid mushroom species is an important event for sexual reproduction because meiosis occurs in basidia under the cap, and basidiospores can be released by opening the cap. However, molecular mechanisms underlying cap expansion in basidiomycetes remain poorly understood. We aimed to elucidate the molecular mechanisms of cap expansion in basidiomycetes by analyzing the unique cap-expansionless UV mutant #13 (exp2-1) in Coprinopsis cinerea. Linkage analysis and consequent genome sequence analysis revealed that the gene responsible for the mutant phenotypes encodes a putative transcription factor with two C2H2 zinc finger motifs. The mutant that was genome-edited to lack exp2 exhibited an expansionless phenotype. Some of the genes encoding cell wall degradation-related enzymes showed decreased expression during cap expansion and autolysis in the exp2 UV and genome-edited mutant. The exp2 gene is widely conserved in Agaricomycetes, suggesting that Exp2 homologs regulate fruiting body maturation in Agaricomycetes, especially cap expansion in Agaricoid-type mushroom-forming fungi. Therefore, exp2 homologs could be a target for mushroom breeding to maintain shape after harvest for some cultivating mushrooms, presenting a promising avenue for further research in breeding techniques.
Collapse
Affiliation(s)
- Yuichi Sakamoto
- Department of Bioresource Sciences, Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami-shi, Iwate 024-0003, Japan.
| | - Shiho Sato
- Department of Bioresource Sciences, Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami-shi, Iwate 024-0003, Japan
| | - Hiroshi Yoshida
- Department of Bioresource Sciences, Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami-shi, Iwate 024-0003, Japan
| | - Machiko Takahashi
- Department of Bioresource Sciences, Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami-shi, Iwate 024-0003, Japan
| | - Keishi Osakabe
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Hajime Muraguchi
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi Nakano Shimoshinjo, Akita 010-0195, Japan
| |
Collapse
|
21
|
Ror S, Stamnes MA, Moye-Rowley WS. Loss of a conserved C-terminal region of the Aspergillus fumigatus AtrR transcriptional regulator leads to a gene-specific defect in target gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595332. [PMID: 38826412 PMCID: PMC11142210 DOI: 10.1101/2024.05.22.595332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Treatment of fungal infections associated with the filamentous fungus Aspergillus fumigatus is becoming more problematic as this organism is developing resistance to the main chemotherapeutic drug at an increasing rate. Azole drugs represent the current standard-of-care in treatment of aspergillosis with this drug class acting by inhibiting a key step in biosynthesis of the fungal sterol ergosterol. Azole compounds block the activity of the lanosterol α-14 demethylase, encoded by the cyp51A gene. A common route of azole resistance involves an increase in transcription of cyp51A. This transcriptional increase requires the function of a Zn2Cys6 DNA-binding domain-containing transcription activator protein called AtrR. AtrR was identified through its action as a positive regulator of expression of an ATP-binding cassette transporter (abcC/cdr1B here called abcG1). Using both deletion and alanine scanning mutagenesis, we demonstrate that a conserved C-terminal domain in A. fumigatus is required for expression of abcG1 but dispensable for cyp51A transcription. This domain is also found in several other fungal pathogen AtrR homologues consistent with a conserved gene-selective function of this protein segment being conserved. Using RNA-seq, we find that this gene-specific transcriptional defect extends to several other membrane transporter-encoding genes including a second ABC transporter locus. Our data reveal that AtrR uses at least two distinct mechanisms to induce gene expression and that normal susceptibility to azole drugs cannot be provided by maintenance of wild-type expression of the ergosterol biosynthetic pathway when ABC transporter expression is reduced.
Collapse
Affiliation(s)
- Shivani Ror
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Mark A Stamnes
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - W Scott Moye-Rowley
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
22
|
Cacciotti A, Beccaccioli M, Reverberi M. The CRZ1 transcription factor in plant fungi: regulation mechanism and impact on pathogenesis. Mol Biol Rep 2024; 51:647. [PMID: 38727981 PMCID: PMC11087348 DOI: 10.1007/s11033-024-09593-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Calcium (Ca2+) is a universal signaling molecule that is tightly regulated, and a fleeting elevation in cytosolic concentration triggers a signal cascade within the cell, which is crucial for several processes such as growth, tolerance to stress conditions, and virulence in fungi. The link between calcium and calcium-dependent gene regulation in cells relies on the transcription factor Calcineurin-Responsive Zinc finger 1 (CRZ1). The direct regulation of approximately 300 genes in different stress pathways makes it a hot topic in host-pathogen interactions. Notably, CRZ1 can modulate several pathways and orchestrate cellular responses to different types of environmental insults such as osmotic stress, oxidative stress, and membrane disruptors. It is our belief that CRZ1 provides the means for tightly modulating and synchronizing several pathways allowing pathogenic fungi to install into the apoplast and eventually penetrate plant cells (i.e., ROS, antimicrobials, and quick pH variation). This review discusses the structure, function, regulation of CRZ1 in fungal physiology and its role in plant pathogen virulence.
Collapse
Affiliation(s)
- A Cacciotti
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - M Beccaccioli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy.
| | - M Reverberi
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
23
|
Castañeda-Casasola CC, Nieto-Jacobo MF, Soares A, Padilla-Padilla EA, Anducho-Reyes MA, Brown C, Soth S, Esquivel-Naranjo EU, Hampton J, Mendoza-Mendoza A. Unveiling a Microexon Switch: Novel Regulation of the Activities of Sugar Assimilation and Plant-Cell-Wall-Degrading Xylanases and Cellulases by Xlr2 in Trichoderma virens. Int J Mol Sci 2024; 25:5172. [PMID: 38791210 PMCID: PMC11121469 DOI: 10.3390/ijms25105172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Functional microexons have not previously been described in filamentous fungi. Here, we describe a novel mechanism of transcriptional regulation in Trichoderma requiring the inclusion of a microexon from the Xlr2 gene. In low-glucose environments, a long mRNA including the microexon encodes a protein with a GAL4-like DNA-binding domain (Xlr2-α), whereas in high-glucose environments, a short mRNA that is produced encodes a protein lacking this DNA-binding domain (Xlr2-β). Interestingly, the protein isoforms differ in their impact on cellulase and xylanase activity. Deleting the Xlr2 gene reduced both xylanase and cellulase activity and growth on different carbon sources, such as carboxymethylcellulose, xylan, glucose, and arabinose. The overexpression of either Xlr2-α or Xlr2-β in T. virens showed that the short isoform (Xlr2-β) caused higher xylanase activity than the wild types or the long isoform (Xlr2-α). Conversely, cellulase activity did not increase when overexpressing Xlr2-β but was increased with the overexpression of Xlr2-α. This is the first report of a novel transcriptional regulation mechanism of plant-cell-wall-degrading enzyme activity in T. virens. This involves the differential expression of a microexon from a gene encoding a transcriptional regulator.
Collapse
Affiliation(s)
- Cynthia Coccet Castañeda-Casasola
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
- Laboratorio de AgroBiotecnología, Universidad Politécnica de Pachuca, Carretera Pachuca-Cd. Sahagún, km 20, ExHacienda de Santa Bárbara, Zempoala 43830, Mexico;
- Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Centro Nacional de Referencia Fitosanitaria, Tecamac 55740, Mexico
| | | | - Amanda Soares
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
| | - Emir Alejandro Padilla-Padilla
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand;
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 04510, Mexico
| | - Miguel Angel Anducho-Reyes
- Laboratorio de AgroBiotecnología, Universidad Politécnica de Pachuca, Carretera Pachuca-Cd. Sahagún, km 20, ExHacienda de Santa Bárbara, Zempoala 43830, Mexico;
| | - Chris Brown
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand;
| | - Sereyboth Soth
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
| | - Edgardo Ulises Esquivel-Naranjo
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, Queretaro 76230, Mexico
| | - John Hampton
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
| | - Artemio Mendoza-Mendoza
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
| |
Collapse
|
24
|
Picazo I, Espeso EA. Interconnections between the Cation/Alkaline pH-Responsive Slt and the Ambient pH Response of PacC/Pal Pathways in Aspergillus nidulans. Cells 2024; 13:651. [PMID: 38607089 PMCID: PMC11011638 DOI: 10.3390/cells13070651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
In the filamentous ascomycete Aspergillus nidulans, at least three high hierarchy transcription factors are required for growth at extracellular alkaline pH: SltA, PacC and CrzA. Transcriptomic profiles depending on alkaline pH and SltA function showed that pacC expression might be under SltA regulation. Additional transcriptional studies of PacC and the only pH-regulated pal gene, palF, confirmed both the strong dependence on ambient pH and the function of SltA. The regulation of pacC expression is dependent on the activity of the zinc binuclear (C6) cluster transcription factor PacX. However, we found that the ablation of sltA in the pacX- mutant background specifically prevents the increase in pacC expression levels without affecting PacC protein levels, showing a novel specific function of the PacX factor. The loss of sltA function causes the anomalous proteolytic processing of PacC and a reduction in the post-translational modifications of PalF. At alkaline pH, in a null sltA background, PacC72kDa accumulates, detection of the intermediate PacC53kDa form is extremely low and the final processed form of 27 kDa shows altered electrophoretic mobility. Constitutive ubiquitination of PalF or the presence of alkalinity-mimicking mutations in pacC, such as pacCc14 and pacCc700, resembling PacC53kDa and PacC27kDa, respectively, allowed the normal processing of PacC but did not rescue the alkaline pH-sensitive phenotype caused by the null sltA allele. Overall, data show that Slt and PacC/Pal pathways are interconnected, but the transcription factor SltA is on a higher hierarchical level than PacC on regulating the tolerance to the ambient alkalinity in A. nidulans.
Collapse
Affiliation(s)
| | - Eduardo A. Espeso
- Department of Molecular and Cellular Biology, Centro de Investigaciones Biológicas (CIB) Margarita Salas, Spanish Research Council (CSIC), Ramiro de Maeztu, 9, 28040 Madrid, Spain;
| |
Collapse
|
25
|
Gnaien M, Maufrais C, Rebai Y, Kallel A, Ma L, Hamouda S, Khalsi F, Meftah K, Smaoui H, Khemiri M, Hadj Fredj S, Bachellier-Bassi S, Najjar I, Messaoud T, Boussetta K, Kallel K, Mardassi H, d’Enfert C, Bougnoux ME, Znaidi S. A gain-of-function mutation in zinc cluster transcription factor Rob1 drives Candida albicans adaptive growth in the cystic fibrosis lung environment. PLoS Pathog 2024; 20:e1012154. [PMID: 38603707 PMCID: PMC11037546 DOI: 10.1371/journal.ppat.1012154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/23/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Candida albicans chronically colonizes the respiratory tract of patients with Cystic Fibrosis (CF). It competes with CF-associated pathogens (e.g. Pseudomonas aeruginosa) and contributes to disease severity. We hypothesize that C. albicans undergoes specific adaptation mechanisms that explain its persistence in the CF lung environment. To identify the underlying genetic and phenotypic determinants, we serially recovered 146 C. albicans clinical isolates over a period of 30 months from the sputum of 25 antifungal-naive CF patients. Multilocus sequence typing analyses revealed that most patients were individually colonized with genetically close strains, facilitating comparative analyses between serial isolates. We strikingly observed differential ability to filament and form monospecies and dual-species biofilms with P. aeruginosa among 18 serial isolates sharing the same diploid sequence type, recovered within one year from a pediatric patient. Whole genome sequencing revealed that their genomes were highly heterozygous and similar to each other, displaying a highly clonal subpopulation structure. Data mining identified 34 non-synonymous heterozygous SNPs in 19 open reading frames differentiating the hyperfilamentous and strong biofilm-former strains from the remaining isolates. Among these, we detected a glycine-to-glutamate substitution at position 299 (G299E) in the deduced amino acid sequence of the zinc cluster transcription factor ROB1 (ROB1G299E), encoding a major regulator of filamentous growth and biofilm formation. Introduction of the G299E heterozygous mutation in a co-isolated weak biofilm-former CF strain was sufficient to confer hyperfilamentous growth, increased expression of hyphal-specific genes, increased monospecies biofilm formation and increased survival in dual-species biofilms formed with P. aeruginosa, indicating that ROB1G299E is a gain-of-function mutation. Disruption of ROB1 in a hyperfilamentous isolate carrying the ROB1G299E allele abolished hyperfilamentation and biofilm formation. Our study links a single heterozygous mutation to the ability of C. albicans to better survive during the interaction with other CF-associated microbes and illuminates how adaptive traits emerge in microbial pathogens to persistently colonize and/or infect the CF-patient airways.
Collapse
Affiliation(s)
- Mayssa Gnaien
- Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique (LR16IPT01), Tunis, Tunisia
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, INRAE USC2019A, Département Mycologie, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Yasmine Rebai
- Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique (LR16IPT01), Tunis, Tunisia
| | - Aicha Kallel
- Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique (LR16IPT01), Tunis, Tunisia
- Hôpital La Rabta, Laboratoire de Parasitologie et de Mycologie, UR17SP03, Tunis, Tunisia
| | - Laurence Ma
- Institut Pasteur, Université Paris Cité, Biomics core facility, Centre de Ressources et Recherche Technologique (C2RT), Paris, France
| | - Samia Hamouda
- Hôpital d’Enfants Béchir Hamza de Tunis, Tunis, Tunisia
| | - Fatma Khalsi
- Hôpital d’Enfants Béchir Hamza de Tunis, Tunis, Tunisia
| | | | - Hanen Smaoui
- Hôpital d’Enfants Béchir Hamza de Tunis, Tunis, Tunisia
| | - Monia Khemiri
- Hôpital d’Enfants Béchir Hamza de Tunis, Tunis, Tunisia
| | | | - Sophie Bachellier-Bassi
- Institut Pasteur, Université Paris Cité, INRAE USC2019A, Département Mycologie, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Imène Najjar
- Institut Pasteur, Université Paris Cité, Biomics core facility, Centre de Ressources et Recherche Technologique (C2RT), Paris, France
| | | | | | - Kalthoum Kallel
- Hôpital La Rabta, Laboratoire de Parasitologie et de Mycologie, UR17SP03, Tunis, Tunisia
| | - Helmi Mardassi
- Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique (LR16IPT01), Tunis, Tunisia
| | - Christophe d’Enfert
- Institut Pasteur, Université Paris Cité, INRAE USC2019A, Département Mycologie, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Marie-Elisabeth Bougnoux
- Institut Pasteur, Université Paris Cité, INRAE USC2019A, Département Mycologie, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Sadri Znaidi
- Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique (LR16IPT01), Tunis, Tunisia
- Institut Pasteur, Université Paris Cité, INRAE USC2019A, Département Mycologie, Unité Biologie et Pathogénicité Fongiques, Paris, France
| |
Collapse
|
26
|
Martinez KP, Gasmi N, Jeronimo C, Klimova N, Robert F, Turcotte B. Yeast zinc cluster transcription factors involved in the switch from fermentation to respiration show interdependency for DNA binding revealing a novel type of DNA recognition. Nucleic Acids Res 2024; 52:2242-2259. [PMID: 38109318 PMCID: PMC10954478 DOI: 10.1093/nar/gkad1185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023] Open
Abstract
In budding yeast, fermentation is the most important pathway for energy production. Under low-glucose conditions, ethanol is used for synthesis of this sugar requiring a shift to respiration. This process is controlled by the transcriptional regulators Cat8, Sip4, Rds2 and Ert1. We characterized Gsm1 (glucose starvation modulator 1), a paralog of Rds2 and Ert1. Genome-wide analysis showed that Gsm1 has a DNA binding profile highly similar to Rds2. Binding of Gsm1 and Rds2 is interdependent at the gluconeogenic gene FBP1. However, Rds2 is required for Gsm1 to bind at other promoters but not the reverse. Gsm1 and Rds2 also bind to DNA independently of each other. Western blot analysis revealed that Rds2 controls expression of Gsm1. In addition, we showed that the DNA binding domains of Gsm1 and Rds2 bind cooperatively in vitro to the FBP1 promoter. In contrast, at the HAP4 gene, Ert1 cooperates with Rds2 for DNA binding. Mutational analysis suggests that Gsm1/Rds2 and Ert1/Rds2 bind to short common DNA stretches, revealing a novel mode of binding for this class of factors. Two-point mutations in a HAP4 site convert it to a Gsm1 binding site. Thus, Rds2 controls binding of Gsm1 at many promoters by two different mechanisms: regulation of Gsm1 levels and increased DNA binding by formation of heterodimers.
Collapse
Affiliation(s)
- Karla Páez Martinez
- Department of Medicine, McGill University Health Centre, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
| | - Najla Gasmi
- Department of Biochemistry, McGill University, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
| | - Célia Jeronimo
- Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Natalia Klimova
- Department of Medicine, McGill University Health Centre, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, 2900 Boul. Édouard-Montpetit, Montréal, QC H3T 1J4, Canada
| | - Bernard Turcotte
- Department of Medicine, McGill University Health Centre, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
- Department of Biochemistry, McGill University, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
- Department of Microbiology and Immunology, McGill University, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
| |
Collapse
|
27
|
Garg A, Sanchez AM, Schwer B, Shuman S. Factors governing the transcriptome changes and chronological lifespan of fission yeast during phosphate starvation. J Biol Chem 2024; 300:105718. [PMID: 38311173 PMCID: PMC10910108 DOI: 10.1016/j.jbc.2024.105718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/10/2024] Open
Abstract
Starvation of Schizosaccharomyces pombe for inorganic phosphate elicits adaptive transcriptome changes in which mRNAs driving ribosome biogenesis, tRNA biogenesis, and translation are globally downregulated, while those for autophagy and phosphate mobilization are upregulated. Here, we interrogated three components of the starvation response: upregulated autophagy; the role of transcription factor Pho7 (an activator of the PHO regulon); and upregulated expression of ecl3, one of three paralogous genes (ecl1, ecl2, and ecl3) collectively implicated in cell survival during other nutrient stresses. Ablation of autophagy factor Atg1 resulted in early demise of phosphate-starved fission yeast, as did ablation of Pho7. Transcriptome profiling of phosphate-starved pho7Δ cells highlighted Pho7 as an activator of genes involved in phosphate acquisition and mobilization, not limited to the original three-gene PHO regulon, and additional starvation-induced genes (including ecl3) not connected to phosphate dynamics. Pho7-dependent gene induction during phosphate starvation tracked with the presence of Pho7 DNA-binding elements in the gene promoter regions. Fewer ribosome protein genes were downregulated in phosphate-starved pho7Δ cells versus WT, which might contribute to their shortened lifespan. An ecl3Δ mutant elicited no gene expression changes in phosphate-replete cells and had no impact on survival during phosphate starvation. By contrast, pan-ecl deletion (ecl123Δ) curtailed lifespan during chronic phosphate starvation. Phosphate-starved ecl123Δ cells experienced a more widespread downregulation of mRNAs encoding aminoacyl tRNA synthetases vis-à-vis WT or pho7Δ cells. Collectively, these results enhance our understanding of fission yeast phosphate homeostasis and survival during nutrient deprivation.
Collapse
Affiliation(s)
- Angad Garg
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ana M Sanchez
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York, USA
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
| |
Collapse
|
28
|
Day AW, Kumamoto CA. Selection of ethanol tolerant strains of Candida albicans by repeated ethanol exposure results in strains with reduced susceptibility to fluconazole. PLoS One 2024; 19:e0298724. [PMID: 38377103 PMCID: PMC10878505 DOI: 10.1371/journal.pone.0298724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Candida albicans is a commensal yeast that has important impacts on host metabolism and immune function, and can establish life-threatening infections in immunocompromised individuals. Previously, C. albicans colonization has been shown to contribute to the progression and severity of alcoholic liver disease. However, relatively little is known about how C. albicans responds to changing environmental conditions in the GI tract of individuals with alcohol use disorder, namely repeated exposure to ethanol. In this study, we repeatedly exposed C. albicans to high concentrations (10% vol/vol) of ethanol-a concentration that can be observed in the upper GI tract of humans following consumption of alcohol. Following this repeated exposure protocol, ethanol small colony (Esc) variants of C. albicans isolated from these populations exhibited increased ethanol tolerance, altered transcriptional responses to ethanol, and cross-resistance/tolerance to the frontline antifungal fluconazole. These Esc strains exhibited chromosomal copy number variations and carried polymorphisms in genes previously associated with the acquisition of fluconazole resistance during human infection. This study identifies a selective pressure that can result in evolution of fluconazole tolerance and resistance without previous exposure to the drug.
Collapse
Affiliation(s)
- Andrew W. Day
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| |
Collapse
|
29
|
Buechel ER, Pinkett HW. Activity of the pleiotropic drug resistance transcription factors Pdr1p and Pdr3p is modulated by binding site flanking sequences. FEBS Lett 2024; 598:169-186. [PMID: 37873734 PMCID: PMC10843404 DOI: 10.1002/1873-3468.14762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/25/2023]
Abstract
The transcription factors Pdr1p and Pdr3p regulate pleiotropic drug resistance (PDR) in Saccharomyces cerevisiae via the PDR responsive elements (PDREs) to modulate gene expression. However, the exact mechanisms underlying the differences in their regulons remain unclear. Employing genomic occupancy profiling (CUT&RUN), binding assays, and transcription studies, we characterized the differences in sequence specificity between transcription factors. Findings reveal distinct preferences for core PDRE sequences and the flanking sequences for both proteins. While flanking sequences moderately alter DNA binding affinity, they significantly impact Pdr1/3p transcriptional activity. Notably, both proteins demonstrated the ability to bind half sites, showing potential enhancement of transcription from adjacent PDREs. This insight sheds light on ways Pdr1/3p can differentially regulate PDR.
Collapse
Affiliation(s)
- Evan R. Buechel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Heather W. Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
30
|
Sasse C, Bastakis E, Bakti F, Höfer AM, Zangl I, Schüller C, Köhler AM, Gerke J, Krappmann S, Finkernagel F, Harting R, Strauss J, Heimel K, Braus GH. Induction of Aspergillus fumigatus zinc cluster transcription factor OdrA/Mdu2 provides combined cellular responses for oxidative stress protection and multiple antifungal drug resistance. mBio 2023; 14:e0262823. [PMID: 37982619 PMCID: PMC10746196 DOI: 10.1128/mbio.02628-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE An overexpression screen of 228 zinc cluster transcription factor encoding genes of A. fumigatus revealed 11 genes conferring increased tolerance to antifungal drugs. Out of these, four oxidative stress and drug tolerance transcription factor encoding odr genes increased tolerance to oxidative stress and antifungal drugs when overexpressed. This supports a correlation between oxidative stress response and antifungal drug tolerance in A. fumigatus. OdrA/Mdu2 is required for the cross-tolerance between azoles, polyenes, and oxidative stress and activates genes for detoxification. Under oxidative stress conditions or when overexpressed, OdrA/Mdu2 accumulates in the nucleus and activates detoxifying genes by direct binding at their promoters, as we describe with the mdr1 gene encoding an itraconazole specific efflux pump. Finally, this work gives new insights about drug and stress resistance in the opportunistic pathogenic fungus A. fumigatus.
Collapse
Affiliation(s)
- Christoph Sasse
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Emmanouil Bastakis
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Fruzsina Bakti
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Annalena M. Höfer
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Isabella Zangl
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Campus, Tulln, Austria
- Core Facility Bioactive Molecules–Screening and Analysis, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | - Christoph Schüller
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Campus, Tulln, Austria
- Core Facility Bioactive Molecules–Screening and Analysis, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | - Anna M. Köhler
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Jennifer Gerke
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Sven Krappmann
- Institute of Microbiology–Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Center for Infection Research (ECI) and Medical Immunology Campus Erlangen (MICE), Erlangen, Germany
| | - Florian Finkernagel
- Center for Tumor Biology and Immunology, Core Facility Bioinformatics, Philipps University, Marburg, Germany
| | - Rebekka Harting
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Campus, Tulln, Austria
| | - Kai Heimel
- Department of Microbial Cell Biology, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| |
Collapse
|
31
|
Zhao Q, Yang Z, Xiao Z, Zhang Z, Xing J, Liang H, Gao L, Zhao J, Qu Y, Liu G. Structure-guided engineering of transcriptional activator XYR1 for inducer-free production of lignocellulolytic enzymes in Trichoderma reesei. Synth Syst Biotechnol 2023; 8:732-740. [PMID: 38187093 PMCID: PMC10770280 DOI: 10.1016/j.synbio.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/29/2023] [Accepted: 11/15/2023] [Indexed: 01/09/2024] Open
Abstract
The filamentous fungus Trichoderma reesei is widely used for the production of lignocellulolytic enzymes in industry. XYR1 is the major transcriptional activator of cellulases and hemicellulases in T. reesei. However, rational engineering of XYR1 for improved lignocellulolytic enzymes production has been limited by the lack of structure information. Here, alanine 873 was identified as a new potential target for the engineering of XYR1 based on its structure predicted by AlphaFold2. The mutation of this residue to tyrosine enabled significantly enhanced production of xylanolytic enzymes in the medium with cellulose as the carbon source. Moreover, xylanase and cellulase production increased by 56.7- and 3.3-fold, respectively, when glucose was used as the sole carbon source. Under both conditions, the improvements of lignocellulolytic enzyme production were higher than those in the previously reported V821F mutant. With the enriched hemicellulases and cellulases, the crude enzymes secreted by the A873Y mutant strain produced 51 % more glucose and 52 % more xylose from pretreated corn stover than those of the parent strain. The results provide a novel strategy for engineering the lignocellulolytic enzyme-producing capacity of T. reesei, and would be helpful for understanding the molecular mechanisms of XYR1 regulation.
Collapse
Affiliation(s)
- Qinqin Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zezheng Yang
- Taishan College, Shandong University, Qingdao, 266237, China
| | - Ziyang Xiao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jing Xing
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Huiqi Liang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Liwei Gao
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- Taishan College, Shandong University, Qingdao, 266237, China
| |
Collapse
|
32
|
Li Y, Hou X, Li R, Liao K, Ma L, Wang X, Ji P, Kong H, Xia Y, Ding H, Kang W, Zhang G, Li J, Xiao M, Li Y, Xu Y. Whole genome analysis of echinocandin non-susceptible Candida Glabrata clinical isolates: a multi-center study in China. BMC Microbiol 2023; 23:341. [PMID: 37974063 PMCID: PMC10652494 DOI: 10.1186/s12866-023-03105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Candida glabrata is an important cause of invasive candidiasis. Echinocandins are the first-line treatment of invasive candidiasis caused by C. glabrata. The epidemiological echinocandin sensitivity requires long-term surveillance and the understanding about whole genome characteristics of echinocandin non-susceptible isolates was limited. RESULTS The present study investigated the echinocandin susceptibility of 1650 C. glabrata clinical isolates in China from August 2014 to July 2019. The in vitro activity of micafungin was significantly better than those of caspofungin and anidulafungin (P < 0.001), assessed by MIC50/90 values. Whole genome sequencing was conducted on non-susceptible isolates and geography-matched susceptible isolates. Thirteen isolates (0.79%) were resistant to at least one echinocandin. Six isolates (0.36%) were solely intermediate to caspofungin. Common evolutionary analysis of echinocandin-resistant and echinocandin-intermediate isolates revealed genes related with reduced caspofungin sensitivity, including previously identified sphinganine hydroxylase encoding gene SUR2. Genome-wide association study identified SNPs at subtelometric regions that were associated with echinocandin non-susceptibility. In-host evolution of echinocandin resistance of serial isolates revealed an enrichment for non-synonymous mutations in adhesins genes and loss of subtelometric regions containing adhesin genes. CONCLUSIONS The echinocandins are highly active against C. glabrata in China with a resistant rate of 0.79%. Echinocandin non-susceptible isolates carried common evolved genes which are related with reduced caspofungin sensitivity. In-host evolution of C. glabrata accompanied intensive changing of adhesins profile.
Collapse
Affiliation(s)
- Yi Li
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Xin Hou
- Department of Laboratory Medicine, Peking University Third Hospital, Peking University, Beijing, China
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, Peking University, Beijing, China
| | - Kang Liao
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ling Ma
- Union Hospital Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoming Wang
- The First Hospital of Jilin University, Jilin, China
| | - Ping Ji
- Department of Laboratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, Wulumuqi, China
| | - Haishen Kong
- Department of Microbiology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yun Xia
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Ding
- Department of Laboratory Medicine, Lishui Municipal Central Hospital, Lishui, China
| | - Wei Kang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ge Zhang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jin Li
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Xiao
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Yingxing Li
- Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, 100730, China.
| | - Yingchun Xu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China.
| |
Collapse
|
33
|
Day AW, Kumamoto CA. Selection of Ethanol Tolerant Strains of Candida albicans by Repeated Ethanol Exposure Results in Strains with Reduced Susceptibility to Fluconazole. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557677. [PMID: 37745460 PMCID: PMC10515905 DOI: 10.1101/2023.09.13.557677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Candida albicans is a commensal yeast that has important impacts on host metabolism and immune function, and can establish life-threatening infections in immunocompromised individuals. Previously, C. albicans colonization has been shown to contribute to the progression and severity of alcoholic liver disease. However, relatively little is known about how C. albicans responds to changing environmental conditions in the GI tract of individuals with alcohol use disorder, namely repeated exposure to ethanol. In this study, we repeatedly exposed C. albicans to high concentrations (10% vol/vol) of ethanol-a concentration that can be observed in the upper GI tract of humans following consumption of alcohol. Following this repeated exposure protocol, ethanol small colony (Esc) variants of C. albicans isolated from these populations exhibited increased ethanol tolerance, altered transcriptional responses to ethanol, and cross-resistance/tolerance to the frontline antifungal fluconazole. These Esc strains exhibited chromosomal copy number variations and carried polymorphisms in genes previously associated with the acquisition of fluconazole resistance during human infection. This study identifies a selective pressure that can result in evolution of fluconazole tolerance and resistance without previous exposure to the drug.
Collapse
Affiliation(s)
- Andrew W. Day
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, 02111, USA
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, 02111, USA
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, 02111, USA
| |
Collapse
|
34
|
Kashyap I, Deb R, Battineni A, Nagotu S. Acyl CoA oxidase: from its expression, structure, folding, and import to its role in human health and disease. Mol Genet Genomics 2023; 298:1247-1260. [PMID: 37555868 DOI: 10.1007/s00438-023-02059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023]
Abstract
β-oxidation of fatty acids is an important metabolic pathway and is a shared function between mitochondria and peroxisomes in mammalian cells. On the other hand, peroxisomes are the sole site for the degradation of fatty acids in yeast. The first reaction of this pathway is catalyzed by the enzyme acyl CoA oxidase housed in the matrix of peroxisomes. Studies in various model organisms have reported the conserved function of the protein in fatty acid oxidation. The importance of this enzyme is highlighted by the lethal conditions caused in humans due to its altered function. In this review, we discuss various aspects ranging from gene expression, structure, folding, and import of the protein in both yeast and human cells. Further, we highlight recent findings on the role of the protein in human health and aging, and discuss the identified mutations in the protein associated with debilitating conditions in patients.
Collapse
Affiliation(s)
- Isha Kashyap
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Rachayeeta Deb
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Abhigna Battineni
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
35
|
Glazier VE, Kramara J, Ollinger T, Solis NV, Zarnowski R, Wakade RS, Kim MJ, Weigel GJ, Liang SH, Bennett RJ, Wellington M, Andes DR, Stamnes MA, Filler SG, Krysan DJ. The Candida albicans reference strain SC5314 contains a rare, dominant allele of the transcription factor Rob1 that modulates filamentation, biofilm formation, and oral commensalism. mBio 2023; 14:e0152123. [PMID: 37737633 PMCID: PMC10653842 DOI: 10.1128/mbio.01521-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/27/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE Candida albicans is a commensal fungus that colonizes the human oral cavity and gastrointestinal tract but also causes mucosal as well as invasive disease. The expression of virulence traits in C. albicans clinical isolates is heterogeneous and the genetic basis of this heterogeneity is of high interest. The C. albicans reference strain SC5314 is highly invasive and expresses robust filamentation and biofilm formation relative to many other clinical isolates. Here, we show that SC5314 derivatives are heterozygous for the transcription factor Rob1 and contain an allele with a rare gain-of-function SNP that drives filamentation, biofilm formation, and virulence in a model of oropharyngeal candidiasis. These findings explain, in part, the outlier phenotype of the reference strain and highlight the role heterozygosity plays in the strain-to-strain variation of diploid fungal pathogens.
Collapse
Affiliation(s)
| | - Juraj Kramara
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Tomye Ollinger
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Norma V. Solis
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute and Harbor-UCLA Medical Center, Torrance, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Robert Zarnowski
- Department of Medicine, Section of Infectious Disease, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, USA
| | - Rohan S. Wakade
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Min-Ju Kim
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Gabriel J. Weigel
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Shen-Huan Liang
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Richard J. Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Melanie Wellington
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - David R. Andes
- Department of Medicine, Section of Infectious Disease, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, USA
| | - Mark A. Stamnes
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Scott G. Filler
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute and Harbor-UCLA Medical Center, Torrance, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Damian J. Krysan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
36
|
Lin X, An T, Fu D, Duan S, Jin HL, Wang HB. Optimization of central carbon metabolism by Warburg effect of human cancer cell improves triterpenes biosynthesis in yeast. ADVANCED BIOTECHNOLOGY 2023; 1:4. [PMID: 39883335 DOI: 10.1007/s44307-023-00004-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 01/31/2025]
Abstract
Optimizing central carbon metabolism (CCM) represents an attractive and challenging strategy to improve the biosynthesis of valuable chemicals due to the complex regulation of the CCM in yeast. In this study, we triggered the similar Warburg effect of cancer cells in yeast strains by introducing the human hypoxia-inducible factor-1 (HIF-1) complex, which regulated the expression of numerous enzymes involved in CCM and redirected the metabolic flux from glycolysis to tricarboxylic acid cycle. This redirection promoted the production of squalene to a 2.7-fold increase than the control strain BY4741. Furthermore, the HIF-1 complex boosted the production of represented endogenous triterpenoid ergosterol to 1145.95 mg/L, and exogenous triterpenoid lupeol to 236.35 mg/L in shake flask cultivation, 10.5-fold and 9.2-fold increase than engineered strains without HIF-1 complex integration, respectively. This study provides a novel strategy for optimizing CCM by HIF-1 mediated Warburg effect of cancer cells to improve biosynthesis of triterpenoids in yeast.
Collapse
Affiliation(s)
- Xiaona Lin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Tianyue An
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Danni Fu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Sujuan Duan
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hong-Lei Jin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Guangzhou Key Laboratory of Chinese Medicine Research On Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Key Laboratory of Chinese Medicinal Resource From Lingnan, (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, China.
| | - Hong-Bin Wang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Key Laboratory of Chinese Medicinal Resource From Lingnan, (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, China.
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
37
|
Gil-Durán C, Palma D, Marcano Y, Palacios JL, Martínez C, Rojas-Aedo JF, Levicán G, Vaca I, Chávez R. CRISPR/Cas9-Mediated Disruption of the pcz1 Gene and Its Impact on Growth, Development, and Penicillin Production in Penicillium rubens. J Fungi (Basel) 2023; 9:1010. [PMID: 37888266 PMCID: PMC10607824 DOI: 10.3390/jof9101010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Penicillium rubens is a filamentous fungus of great biotechnological importance due to its role as an industrial producer of the antibiotic penicillin. However, despite its significance, our understanding of the regulatory mechanisms governing biological processes in this fungus is still limited. In fungi, zinc finger proteins containing a Zn(II)2Cys6 domain are particularly interesting regulators. Although the P. rubens genome harbors many genes encoding proteins with this domain, only two of them have been investigated thus far. In this study, we employed CRISPR-Cas9 technology to disrupt the pcz1 gene, which encodes a Zn(II)2Cys6 protein in P. rubens. The disruption of pcz1 resulted in a decrease in the production of penicillin in P. rubens. This decrease in penicillin production was accompanied by the downregulation of the expression of pcbAB, pcbC and penDE genes, which form the biosynthetic gene cluster responsible for penicillin production. Moreover, the disruption of pcz1 also impacts on asexual development, leading to decreased growth and conidiation, as well as enhanced conidial germination. Collectively, our results indicate that pcz1 acts as a positive regulator of penicillin production, growth, and conidiation, while functioning as a negative regulator of conidial germination in P. rubens. To the best of our knowledge, this is the first report involving a gene encoding a Zn(II)2Cys6 protein in the regulation of penicillin biosynthesis in P. rubens.
Collapse
Affiliation(s)
- Carlos Gil-Durán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (C.G.-D.); (Y.M.); (J.F.R.-A.); (G.L.)
| | - Diego Palma
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile;
| | - Yudethzi Marcano
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (C.G.-D.); (Y.M.); (J.F.R.-A.); (G.L.)
| | - José-Luis Palacios
- Centro de Estudios en Ciencia y Tecnología de los Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (J.-L.P.); (C.M.)
| | - Claudio Martínez
- Centro de Estudios en Ciencia y Tecnología de los Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (J.-L.P.); (C.M.)
- Departamento de Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Juan F. Rojas-Aedo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (C.G.-D.); (Y.M.); (J.F.R.-A.); (G.L.)
| | - Gloria Levicán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (C.G.-D.); (Y.M.); (J.F.R.-A.); (G.L.)
| | - Inmaculada Vaca
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile;
| | - Renato Chávez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (C.G.-D.); (Y.M.); (J.F.R.-A.); (G.L.)
| |
Collapse
|
38
|
Pasari N, Gupta M, Sinha T, Ogunmolu FE, Yazdani SS. Systematic identification of CAZymes and transcription factors in the hypercellulolytic fungus Penicillium funiculosum NCIM1228 involved in lignocellulosic biomass degradation. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:150. [PMID: 37794424 PMCID: PMC10552389 DOI: 10.1186/s13068-023-02399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Penicillium funiculosum NCIM1228 is a filamentous fungus that was identified in our laboratory to have high cellulolytic activity. Analysis of its secretome suggested that it responds to different carbon substrates by secreting specific enzymes capable of digesting those substrates. This phenomenon indicated the presence of a regulatory system guiding the expression of these hydrolyzing enzymes. Since transcription factors (TFs) are the key players in regulating the expression of enzymes, this study aimed first to identify the complete repertoire of Carbohydrate Active Enzymes (CAZymes) and TFs coded in its genome. The regulation of CAZymes was then analysed by studying the expression pattern of these CAZymes and TFs in different carbon substrates-Avicel (cellulosic substrate), wheat bran (WB; hemicellulosic substrate), Avicel + wheat bran, pre-treated wheat straw (a potential substrate for lignocellulosic ethanol), and glucose (control). RESULTS The P. funiculosum NCIM1228 genome was sequenced, and 10,739 genes were identified in its genome. These genes included a total of 298 CAZymes and 451 TF coding genes. A distinct expression pattern of the CAZymes was observed in different carbon substrates tested. Core cellulose hydrolyzing enzymes were highly expressed in the presence of Avicel, while pre-treated wheat straw and Avicel + wheat bran induced a mixture of CAZymes because of their heterogeneous nature. Wheat bran mainly induced hemicellulases, and the least number of CAZymes were expressed in glucose. TFs also exhibited distinct expression patterns in each of the carbon substrates. Though most of these TFs have not been functionally characterized before, homologs of NosA, Fcr1, and ATF21, which have been known to be involved in fruiting body development, protein secretion and stress response, were identified. CONCLUSIONS Overall, the P. funiculosum NCIM1228 genome was sequenced, and the CAZymes and TFs present in its genome were annotated. The expression of the CAZymes and TFs in response to various polymeric sugars present in the lignocellulosic biomass was identified. This work thus provides a comprehensive mapping of transcription factors (TFs) involved in regulating the production of biomass hydrolyzing enzymes.
Collapse
Affiliation(s)
- Nandita Pasari
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Mayank Gupta
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Tulika Sinha
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Funso Emmanuel Ogunmolu
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Syed Shams Yazdani
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India.
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India.
| |
Collapse
|
39
|
Delorme-Axford E, Wen X, Klionsky DJ. The yeast transcription factor Stb5 acts as a negative regulator of autophagy by modulating cellular metabolism. Autophagy 2023; 19:2719-2732. [PMID: 37345792 PMCID: PMC10472870 DOI: 10.1080/15548627.2023.2228533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023] Open
Abstract
Macroautophagy/autophagy is a highly conserved pathway of cellular degradation and recycling that maintains cell health during homeostatic conditions and facilitates survival during stress. Aberrant cellular autophagy contributes to the pathogenesis of human diseases such as cancer, neurodegeneration, and cardiovascular, metabolic and lysosomal storage disorders. Despite decades of research, there remain unanswered questions as to how autophagy modulates cellular metabolism, and, conversely, how cellular metabolism affects autophagy activity. Here, we have identified the yeast metabolic transcription factor Stb5 as a negative regulator of autophagy. Chromosomal deletion of STB5 in the yeast Saccharomyces cerevisiae enhances autophagy. Loss of Stb5 results in the upregulation of select autophagy-related (ATG) transcripts under nutrient-replete conditions; however, the Stb5-mediated impact on autophagy occurs primarily through its effect on genes involved in NADPH production and the pentose phosphate pathway. This work provides insight into the intersection of Stb5 as a transcription factor that regulates both cellular metabolic responses and autophagy activity.Abbreviations: bp, base pairs; ChIP, chromatin immunoprecipitation; G6PD, glucose-6-phosphate dehydrogenase; GFP, green fluorescent protein; IDR, intrinsically disordered region; NAD, nicotinamide adenine dinucleotide; NADP+, nicotinamide adenine dinucleotide phosphate; NADPH, nicotinamide adenine dinucleotide phosphate (reduced); ORF, open reading frame; PA, protein A; PCR, polymerase chain reaction; PE, phosphatidylethanolamine; PPP, pentose phosphate pathway; prApe1, precursor aminopeptidase I; ROS, reactive oxygen species; RT-qPCR, real-time quantitative PCR; SD, standard deviation; TF, transcription factor; TOR, target of rapamycin; WT, wild-type.
Collapse
Affiliation(s)
| | - Xin Wen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
40
|
Li H, Yao S, Xia W, Ma X, Shi L, Ju H, Li Z, Zhong Y, Xie B, Tao Y. Targeted metabolome and transcriptome analyses reveal changes in gibberellin and related cell wall-acting enzyme-encoding genes during stipe elongation in Flammulina filiformis. Front Microbiol 2023; 14:1195709. [PMID: 37799602 PMCID: PMC10548271 DOI: 10.3389/fmicb.2023.1195709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/08/2023] [Indexed: 10/07/2023] Open
Abstract
Flammulina filiformis, a typical agaric fungus, is a widely cultivated and consumed edible mushroom. Elongation of its stipe (as the main edible part) is closely related to its yield and commercial traits; however, the endogenous hormones during stipe elongation and their regulatory mechanisms are not well understood. Gibberellin (GA) plays an important role in the regulation of plant growth, but little has been reported in macro fungi. In this study, we first treated F. filiformis stipes in the young stage with PBZ (an inhibitor of GA) and found that PBZ significantly inhibited elongation of the stipe. Then, we performed GA-targeted metabolome and transcriptome analyses of the stipe at both the young and elongation stages. A total of 13 types of GAs were detected in F. filiformis; the contents of ten of them, namely, GA3, GA4, GA8, GA14, GA19, GA20, GA24, GA34, GA44, and GA53, were significantly decreased, and the contents of three (GA5, GA9, and GA29) were significantly increased during stipe elongation. Transcriptome analysis showed that the genes in the terpenoid backbone biosynthesis pathway showed varying expression patterns: HMGS, HMGR, GPS, and FPPS were significantly upregulated, while CPS/KS had no significant difference in transcript level during stipe elongation. In total, 37 P450 genes were annotated to be involved in GA biosynthesis; eight of them were upregulated, twelve were downregulated, and the rest were not differentially expressed. In addition, four types of differentially expressed genes involved in stipe elongation were identified, including six signal transduction genes, five cell cycle-controlling genes, twelve cell wall-related enzymes and six transcription factors. The results identified the types and content of GAs and the expression patterns of their synthesis pathways during elongation in F. filiformis and revealed the molecular mechanisms by which GAs may affect the synthesis of cell wall components and the cell cycle of the stipe through the downstream action of cell wall-related enzymes, transcription factors, signal transduction and cell cycle control, thus regulating stipe elongation. This study is helpful for understanding the roles of GAs in stipe development in mushrooms and lays the foundation for the rational regulation of stipe length in agaric mushrooms during production.
Collapse
Affiliation(s)
- Hui Li
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Sen Yao
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Weiwei Xia
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Xinbin Ma
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Lei Shi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Huimin Ju
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ziyan Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yingli Zhong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Baogui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yongxin Tao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
41
|
Wang S, Liu R. Insights into the pleiotropic roles of ZNF703 in cancer. Heliyon 2023; 9:e20140. [PMID: 37810156 PMCID: PMC10559930 DOI: 10.1016/j.heliyon.2023.e20140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Zinc finger proteins (ZNFs) belong to the NET/NLZ protein family. In physiological functions, ZNF703 play significant roles in embryonic development, especially in the nervous system. As an transcription factors with zinc finger domains, abnormal regulation of the ZNF703 protein is associated with enhanced proliferation, invasion, and metastasis as well as drug resistance in many tumors, although mechanisms of action vary depending on the specific tumor microenvironment. ZNF703 lacks a nuclear localization sequence despite its function requiring nuclear DNA binding. The purpose of this review is to summarize the architecture of ZNF703, its roles in tumorigenesis, and tumor progression, as well as future oncology therapeutic prospects, which have implications for understanding tumor susceptibility and progression.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Obstetrics and Gynaecology, Tianjin Central Hospital of Gynecology Obstetrics, No. 156 Nan Kai San Ma Lu, Tianjin, 300000, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300000, China
- Department of Obstetrics and Gynaecology, Nankai University Maternity Hospital, Tianjin, 300000, China
| | - Rong Liu
- Department of Obstetrics and Gynecology, Tianjin First Center Hospital, Tianjin, China
| |
Collapse
|
42
|
Zhang Y, Xu J, Yu J, Si L, Chang L, Li T, Yan D. Identification of CCCH-type zinc finger antiviral protein 1 (ZAP) gene from Pacific white shrimp (Penaeus vannamei): Characterization and expression analysis in response to viral infection. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108948. [PMID: 37453491 DOI: 10.1016/j.fsi.2023.108948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Zinc-finger proteins (ZFPs) are a huge family that exert multiple roles in the cells. ZFPs could be divided into nine types based on the numbers and positions of conserved Cys and His residues, in which CCCH-type ZFP was one of the most widely studied types. CCCH-type zinc finger antiviral protein 1 (ZAP), a CCCH-type ZFP that can inhibit the replication of certain RNA viruses and DNA viruses by mediating degradation of viral RNA and repressing mRNA translation, plays significant roles in the host innate immune defenses against viral infections. Presently, there have been numerous reports investigating the antiviral ability of ZAP, while no data is available about ZAP gene in the species of shrimps or even crustaceans. In this study, a novel protein containing CCCH-type zinc finger motifs (ZnF-CCCH), CCCH-type zinc finger antiviral protein 1 (ZAP) gene, was identified from Pacific white shrimp (Penaeus vannamei) and its role in antiviral immunity was further investigated. Similar to mammalian ZAPs, in addition to ZnF-CCCH, PvZAP also possesses central WWE domains and C-terminal PARP domain. Phylogenetic analysis showed that PvZAP was close to that of the crustacean Pacific oyster, separating from the cluster of vertebrate ZAP proteins. Upon in vivo infection by IHHNV, gene expression of PvZAP was strongly up-regulated in the hepatopancreas and gills of both adult and juvenile shrimps, where adult individuals showed higher fold changes of up-regulation than in juvenile individuals. These results suggested that PvZAP might play an important role in the innate immune defense of Pacific white shrimp against IHHNV infection. This allows us to gain new insights into the immunological function of ZAP in the innate immunity of shrimp species and even crustaceans.
Collapse
Affiliation(s)
- Yingying Zhang
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Jiahui Xu
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Jiyue Yu
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Lingjun Si
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Linrui Chang
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Ting Li
- School of Agriculture, Ludong University, Yantai, 264025, PR China.
| | - Dongchun Yan
- School of Agriculture, Ludong University, Yantai, 264025, PR China.
| |
Collapse
|
43
|
Wang D, Zhang Y, Zhou S, Zhang X, Liu S, Li X, Liu Z. Gcc1 homologs regulate growth, oxidative stress, conidiation and appressorium formation in Colletotrichum siamense and Colletotrichum graminicola. Microb Pathog 2023; 182:106249. [PMID: 37437644 DOI: 10.1016/j.micpath.2023.106249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/09/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
The Zn2Cys6 transcription factor is a fungal-specific zinc finger protein, which plays an important role in regulating growth, development and pathogenicity of pathogenic fungi. In this study, we characterized two Zn2Cys6 transcription factors, CsGcc1 and CgrGcc1 in Colletotrichum siamense and C. graminicola, respectively, which are homologous to Gcc1 in Magnaporthe oryzae. Both CsGcc1 and CgrGcc1 contain a typical GAL4 DNA-binding domain. Deletion of CsGCC1 or CgrGCC1 decreased the growth rate and lowered the tolerance to H2O2. In addition, disrupting CsGCC1 reduced conidial yield and lowered the germination rate and appressorium formation rate of C. siamense. Cellophane assays showed that deletion of CsGCC1 also weakened the penetration ability of appressoria. In C. graminicola, CgrGcc1 did not affect the production and germination of oval conidia, but its deletion significantly decreased the yield of the falcate conidium, and led to abnormal appressorium formation. In terms of pathogenicity, CsGcc1 slightly reduced the virulence of C. siamense, while deleting CgrGcc1 did not affect virulence of C. graminicola. In conclusion, the Zn2Cys6 transcription factors CsGcc1 and CgrGcc1 are involved in the regulation of vegetative growth, oxidative stress, conidial/falcate conidial production and appressorium formation in C. siamense and C. graminicola.
Collapse
Affiliation(s)
- Diguang Wang
- School of Life Sciences, Hainan University, Haikou, China
| | - Ying Zhang
- School of Life Sciences, Hainan University, Haikou, China
| | | | - Xingyuan Zhang
- School of Life Sciences, Hainan University, Haikou, China
| | - Shayu Liu
- School of Life Sciences, Hainan University, Haikou, China
| | - Xiaoyu Li
- School of Life Sciences, Hainan University, Haikou, China; One Health Institute, Hainan University, Haikou, China.
| | - Zhiqiang Liu
- School of Life Sciences, Hainan University, Haikou, China; One Health Institute, Hainan University, Haikou, China.
| |
Collapse
|
44
|
Li S, Chen D, Zhang H, Yang Y, Huai J, Huang L, Fan K, Lin T, Ding B. Clinical significance of expression level of ZNF471 in gastric cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2023; 16:199-208. [PMID: 37693683 PMCID: PMC10492033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/12/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND As a tumor suppressor gene, zinc finger protein 471 (ZNF471) has an essential role in tumor occurrence and development. Due to promoter hypermethylation, it can be underexpressed or silenced in gastric cancer (GC) cell lines. In this study, we investigated relationships between clinical characteristics and ZNF471 expression levels in tissues of patients with GC. METHODS We used immunohistochemistry (IHC) to detect ZNF471 expression in paraffin tissue specimens, and quantitative real-time PCR (qRT-PCR) and western blot (WB) analysis to measure expression levels of ZNF471 in fresh tissue specimens. We analyzed relationships between ZNF471 expression levels and characteristics, such as tumor size, gender, age, TNM stage, and lymph node metastasis. RESULTS Immunohistochemistry revealed the expression of ZNF471 protein from paraffin blocks of GC tissues was significantly lower than that of adjacent tissues. Expression levels of ZNF471 mRNA and protein in fresh GC tissues were markedly lower than those in adjacent tissues and in normal gastric mucosal tissues from healthy subjects. ZNF471 expression was significantly correlated with tumor size, lymph node metastasis, and TNM stage (all P<0.05). There were no significant associations with gender, age, distant metastasis, or pathologic type. Expression of ZNF471 mRNA and protein was not significantly different between adjacent tissues of patients with GC and normal gastric mucosal tissue from healthy subjects. CONCLUSION ZNF471 functions as a tumor suppressor during the pathogenesis of GC. Thus, it is a promising biomarker for diagnosis and therapy of GC.
Collapse
Affiliation(s)
- Siyuan Li
- Postgraduate School, Wannan Medical CollegeWuhu 241000, Anhui, China
- Department of Gastroenterology, The First People’s Hospital of WuhuWuhu 241000, Anhui, China
| | - Diyang Chen
- Postgraduate School, Wannan Medical CollegeWuhu 241000, Anhui, China
| | - Huamin Zhang
- Health Services Policy and Management, Harbin Medical UniversityHarbin 150000, Heilongjiang, China
| | - Yong Yang
- Department of Gastroenterology, The First People’s Hospital of WuhuWuhu 241000, Anhui, China
| | - Jianguo Huai
- Department of Pathology, The First People’s Hospital of WuhuWuhu 241000, Anhui, China
| | - Linna Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Wannan Medical CollegeWuhu 241000, Anhui, China
| | - Kai Fan
- Postgraduate School, Wannan Medical CollegeWuhu 241000, Anhui, China
| | - Tongyuan Lin
- Department of Pharmacy, Division of Science and Education, The First People’s Hospital of WuhuWuhu 241000, Anhui, China
| | - Baijing Ding
- Department of Gastroenterology, The First People’s Hospital of WuhuWuhu 241000, Anhui, China
| |
Collapse
|
45
|
Buechel ER, Pinkett HW. Unraveling the Half and Full Site Sequence Specificity of the Saccharomyces cerevisiae Pdr1p and Pdr3p Transcription Factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.553033. [PMID: 37609128 PMCID: PMC10441396 DOI: 10.1101/2023.08.11.553033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The transcription factors Pdr1p and Pdr3p regulate pleotropic drug resistance (PDR) in Saccharomyces cerevisiae , via the PDR responsive elements (PDREs) to modulate gene expression. However, the exact mechanisms underlying the differences in their regulons remain unclear. Employing genomic occupancy profiling (CUT&RUN), binding assays, and transcription studies, we characterized the differences in sequence specificity between transcription factors. Findings reveal distinct preferences for core PDRE sequences and the flanking sequences for both proteins. While flanking sequences moderately alter DNA binding affinity, they significantly impact Pdr1/3p transcriptional activity. Notably, both proteins demonstrated the ability to bind half sites, showing potential enhancement of transcription from adjacent PDREs. This insight sheds light on ways Pdr1/3 can differentially regulate PDR.
Collapse
|
46
|
Coradetti ST, Adamczyk PA, Liu D, Gao Y, Otoupal PB, Geiselman GM, Webb-Robertson BJM, Burnet MC, Kim YM, Burnum-Johnson KE, Magnuson J, Gladden JM. Engineering transcriptional regulation of pentose metabolism in Rhodosporidium toruloides for improved conversion of xylose to bioproducts. Microb Cell Fact 2023; 22:144. [PMID: 37537586 PMCID: PMC10398944 DOI: 10.1186/s12934-023-02148-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
Efficient conversion of pentose sugars remains a significant barrier to the replacement of petroleum-derived chemicals with plant biomass-derived bioproducts. While the oleaginous yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) has a relatively robust native metabolism of pentose sugars compared to other wild yeasts, faster assimilation of those sugars will be required for industrial utilization of pentoses. To increase the rate of pentose assimilation in R. toruloides, we leveraged previously reported high-throughput fitness data to identify potential regulators of pentose catabolism. Two genes were selected for further investigation, a putative transcription factor (RTO4_12978, Pnt1) and a homolog of a glucose transceptor involved in carbon catabolite repression (RTO4_11990). Overexpression of Pnt1 increased the specific growth rate approximately twofold early in cultures on xylose and increased the maximum specific growth by 18% while decreasing accumulation of arabitol and xylitol in fast-growing cultures. Improved growth dynamics on xylose translated to a 120% increase in the overall rate of xylose conversion to fatty alcohols in batch culture. Proteomic analysis confirmed that Pnt1 is a major regulator of pentose catabolism in R. toruloides. Deletion of RTO4_11990 increased the growth rate on xylose, but did not relieve carbon catabolite repression in the presence of glucose. Carbon catabolite repression signaling networks remain poorly characterized in R. toruloides and likely comprise a different set of proteins than those mainly characterized in ascomycete fungi.
Collapse
Affiliation(s)
- Samuel T. Coradetti
- DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA 94608 USA
- Sandia National Laboratories, Livermore, CA USA
- Present Address: Agricultural Research Service, United States Department of Agriculture, Ithaca, NY USA
| | - Paul A. Adamczyk
- DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA 94608 USA
- Sandia National Laboratories, Livermore, CA USA
| | - Di Liu
- DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA 94608 USA
- Sandia National Laboratories, Livermore, CA USA
| | - Yuqian Gao
- DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA 94608 USA
- Pacific Northwest National Laboratory, Richland, WA USA
| | - Peter B. Otoupal
- DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA 94608 USA
- Sandia National Laboratories, Livermore, CA USA
| | - Gina M. Geiselman
- DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA 94608 USA
- Sandia National Laboratories, Livermore, CA USA
| | | | | | - Young-Mo Kim
- DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA 94608 USA
- Pacific Northwest National Laboratory, Richland, WA USA
| | - Kristin E. Burnum-Johnson
- DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA 94608 USA
- Pacific Northwest National Laboratory, Richland, WA USA
| | - Jon Magnuson
- DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA 94608 USA
- Pacific Northwest National Laboratory, Richland, WA USA
| | - John M. Gladden
- DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA 94608 USA
- Sandia National Laboratories, Livermore, CA USA
- Joint BioEnergy Institute, Emeryville, CA USA
| |
Collapse
|
47
|
Sharma A, Kumar S, Singh R. Formulation of Zinc oxide/Gum acacia nanocomposite as a novel slow-release fertilizer for enhancing Zn uptake and growth performance of Spinacia oleracea L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107884. [PMID: 37451005 DOI: 10.1016/j.plaphy.2023.107884] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Zinc (Zn) deficiency has caused nutritional disorders in 17% of the world's population; thus, producing Zn-enriched plants as a dietary source is necessary. Recently, nanofertilizers have gained much attention as a substitute for conventional fertilizers; however, soil application of polymer-coated Zn-based nanofertilizer has not been explored much. The present study depicts the green synthesis of ZnO nanoparticles using Melia azedarach L. leaf extract, whose phytoconstituents have reducing abilities. The synthesized nanoparticles were combined with gum acacia (GA) to form a ZnOGA nanocomposite. The structural and morphological properties of ZnOGA were studied using XRD, FTIR, FESEM, and EDX. A pot experiment study was carried out with Spinacia oleracea L. at various doses (3, 5, and 10 mg/kg) of the synthesized ZnOGA to evaluate its effectiveness as a slow-release fertilizer and was compared with a commercial Zn fertilizer. The plant growth studies revealed a significant increase in the phyto-morphological traits of the plants fertilized with ZnOGA compared to commercial fertilizer. The plants also displayed significantly higher contents of protein (17-47%), phenols (25-60%), proline (82-94%), total soluble sugar (20-31%), DPPH activity (70-72%), and Zn uptake (91-106%). The doses of ZnOGA played an imperative role in determining the growth and productivity of the plant. Soil column studies showed that ZnOGA reduces Zn leaching by 52% compared to commercial Zn fertilizer. This study signifies the potential of ZnOGA to be applied as an eco-friendly and sustainable substitute for conventional Zn fertilizer minimizing Zn losses and Zn deficiency-related health problems in human populations.
Collapse
Affiliation(s)
- Avimanu Sharma
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India
| | - Sanjeev Kumar
- Department of Geology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Ritu Singh
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
48
|
Liu Z, Basso P, Hossain S, Liston SD, Robbins N, Whitesell L, Noble SM, Cowen LE. Multifactor transcriptional control of alternative oxidase induction integrates diverse environmental inputs to enable fungal virulence. Nat Commun 2023; 14:4528. [PMID: 37500616 PMCID: PMC10374912 DOI: 10.1038/s41467-023-40209-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
Metabolic flexibility enables fungi to invade challenging host environments. In Candida albicans, a common cause of life-threatening infections in humans, an important contributor to flexibility is alternative oxidase (Aox) activity. Dramatic induction of this activity occurs under respiratory-stress conditions, which impair the classical electron transport chain (ETC). Here, we show that deletion of the inducible AOX2 gene cripples C. albicans virulence in mice by increasing immune recognition. To investigate further, we examined transcriptional regulation of AOX2 in molecular detail under host-relevant, ETC-inhibitory conditions. We found that multiple transcription factors, including Rtg1/Rtg3, Cwt1/Zcf11, and Zcf2, bind and regulate the AOX2 promoter, conferring thousand-fold levels of inducibility to AOX2 in response to distinct environmental stressors. Further dissection of this complex promoter revealed how integration of stimuli ranging from reactive species of oxygen, nitrogen, and sulfur to reduced copper availability is achieved at the transcriptional level to regulate AOX2 induction and enable pathogenesis.
Collapse
Affiliation(s)
- Zhongle Liu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Pauline Basso
- UCSF Department of Microbiology & Immunology, San Francisco, CA, USA
| | - Saif Hossain
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sean D Liston
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Suzanne M Noble
- UCSF Department of Microbiology & Immunology, San Francisco, CA, USA.
- UCSF Department of Medicine, Division of Infectious Diseases, San Francisco, CA, USA.
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
49
|
Jain T, Mishra P, Kumar S, Panda G, Banerjee D. Molecular dissection studies of TAC1, a transcription activator of Candida drug resistance genes of the human pathogenic fungus Candida albicans. Front Microbiol 2023; 14:994873. [PMID: 37502396 PMCID: PMC10370356 DOI: 10.3389/fmicb.2023.994873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 06/06/2023] [Indexed: 07/29/2023] Open
Abstract
The up-regulation of ABC transporters Cdr1p and Cdr2p that efflux antifungal azole drugs are a leading cause of Multi-Drug Resistance (MDR) in the white fungus Candida albicans. C. albicans was reported to infect patients following the recent Covid-19 pandemic after they were given steroids for recovery. Previously, the TAC1 gene was identified as the transcriptional activator of Candida drug resistance genes (CDR1 and CDR2) and has no known human homologs. This makes it a good target for the development of novel antifungals. We, therefore, carried out the molecular dissection study of TAC1 to understand the functional regulation of the ABC transporter genes (CDR1 and CDR2) under its control. The N-terminal DNA Binding Domain (DBD) of Tac1p interacts with the Drug Responsive Element (DRE) present in the upstream promoter region of CDR1 and CDR2 genes of C. albicans. The interaction between DBD and DRE recruits Tac1p to the promoter of CDR genes. The C-terminal Acidic Activation Domain (AAD) of Tac1p interacts with the TATA box Binding Protein (TBP) and thus recruits TBP to the TATA box of CDR1 and CDR2 genes. Taking a cue from a previous study involving a TAC1 deletion strain that suggested that Tac1p acts as a xenobiotic receptor, in this study, we identified that the Middle Homology Region (MHR) of Tac1p acts as a probable xenobiotic binding domain (XBD) which plays an important role in Candida drug resistance. In addition, we studied the role of Tac1p in the regulation of some lipid profiling genes and stress response genes since they also contain the DRE consensus sequence and found that some of them can respond to xenobiotic stimuli.
Collapse
Affiliation(s)
- Tushar Jain
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Lucknow, Uttar Pradesh, India
- CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Pankaj Mishra
- CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sushil Kumar
- CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Gautam Panda
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Lucknow, Uttar Pradesh, India
- CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Dibyendu Banerjee
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Lucknow, Uttar Pradesh, India
- CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| |
Collapse
|
50
|
Zhang Y, Zhuang X, Meng J, Zan F, Liu Z, Qin C, Hao L, Wang Z, Wang L, Li H, Li H, Ding S. A Putative Zn(II) 2Cys 6-Type Transcription Factor FpUme18 Is Required for Development, Conidiation, Cell Wall Integrity, Endocytosis and Full Virulence in Fusarium pseudograminearum. Int J Mol Sci 2023; 24:10987. [PMID: 37446163 PMCID: PMC10341630 DOI: 10.3390/ijms241310987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Fusarium pseudograminearum is one of the major fungal pathogens that cause Fusarium crown rot (FCR) worldwide and can lead to a substantially reduced grain yield and quality. Transcription factors play an important role in regulating growth and pathogenicity in plant pathogens. In this study, we identified a putative Zn(II)2Cys6 fungal-type domain-containing transcription factor and named it FpUme18. The expression of FpUME18 was induced during the infection of wheat by F. pseudograminearum. The ΔFpume18 deletion mutant showed defects in growth, conidial production, and conidial germination. In the responses to the cell wall, salt and oxidative stresses, the ΔFpume18 mutant inhibited the rate of mycelial growth at a higher rate compared with the wild type. The staining of conidia and mycelia with lipophilic dye FM4-64 revealed a delay in endocytosis when FpUME18 was deleted. FpUME18 also positively regulated the expression of phospholipid-related synthesis genes. The deletion of FpUME18 attenuated the pathogenicity of wheat coleoptiles. FpUME18 also participated in the production of the DON toxin by regulating the expression of TRI genes. Collectively, FpUme18 is required for vegetative growth, conidiation, stress response, endocytosis, and full virulence in F. pseudograminearum.
Collapse
Affiliation(s)
- Yuan Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Xunyu Zhuang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Jiaxing Meng
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Feifei Zan
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Zheran Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Cancan Qin
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Lingjun Hao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Zhifang Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Limin Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Honglian Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Haiyang Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Shengli Ding
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| |
Collapse
|