1
|
Easo George J, Basak R, Yadav I, Tan CJ, van Kan JA, Wien F, Arluison V, van der Maarel JRC. Effect of base methylation on binding and mobility of bacterial protein Hfq on double-stranded DNA. LAB ON A CHIP 2024. [PMID: 39363842 DOI: 10.1039/d4lc00628c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Regulation of protein mobility is a fundamental aspect of cellular processes. In this study, we examined the impact of DNA methylation on the diffusion of nucleoid associated protein Hfq. This protein is one of the most abundant proteins that shapes the bacterial chromosome and is involved in several aspects of nucleic acid metabolism. Fluorescence microscopy was employed to monitor the movement of Hfq along double-stranded DNA, which was stretched due to confinement within a nanofluidic channel. The mobility of Hfq is significantly influenced by DNA methylation. Our results underscore the importance of bacterial epigenetic modifications in governing the movement of nucleoid associated proteins such as Hfq. Increased levels of methylation result in enhanced binding affinity, which in turn slows down the diffusion of Hfq on DNA. The reported control of protein mobility by DNA methylation has potential implications for the mechanisms involved in target DNA search processes and dynamic modelling of the bacterial chromosome.
Collapse
Affiliation(s)
- Jijo Easo George
- Department of Physics, National University of Singapore, 117542, Singapore.
| | - Rajib Basak
- Department of Physics, National University of Singapore, 117542, Singapore.
| | - Indresh Yadav
- Department of Physics, National University of Singapore, 117542, Singapore.
| | - Chuan Jie Tan
- Department of Physics, National University of Singapore, 117542, Singapore.
| | - Jeroen A van Kan
- Department of Physics, National University of Singapore, 117542, Singapore.
| | - Frank Wien
- Synchrotron SOLEIL, F-91192 Gif-sur-Yvette, France
| | - Véronique Arluison
- Laboratoire Léon Brillouin, CNRS UMR12, CEA Saclay, 91191 Gif-sur-Yvette, France
- UFR Sciences du vivant, Université Paris Cité, 75006 Paris, France
| | | |
Collapse
|
2
|
Low D. Advantage of an epigenetic switch in response to alternate environments. Proc Natl Acad Sci U S A 2024; 121:e2416356121. [PMID: 39284073 PMCID: PMC11441561 DOI: 10.1073/pnas.2416356121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024] Open
Affiliation(s)
- David Low
- Department of Molecular, Cellular, and Developmental Biology, University of California-Santa Barbara, Santa Barbara, CA 93106-9625
- Biomolecular Science and Engineering Program, University of California-Santa Barbara, Santa Barbara, CA 93106-9625
| |
Collapse
|
3
|
Gory R, Personnic N, Blaha D. Unravelling the Roles of Bacterial Nanomachines Bistability in Pathogens' Life Cycle. Microorganisms 2024; 12:1930. [PMID: 39338604 PMCID: PMC11434070 DOI: 10.3390/microorganisms12091930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Bacterial nanomachines represent remarkable feats of evolutionary engineering, showcasing intricate molecular mechanisms that enable bacteria to perform a diverse array of functions essential to persist, thrive, and evolve within ecological and pathological niches. Injectosomes and bacterial flagella represent two categories of bacterial nanomachines that have been particularly well studied both at the molecular and functional levels. Among the diverse functionalities of these nanomachines, bistability emerges as a fascinating phenomenon, underscoring their dynamic and complex regulation as well as their contribution to shaping the bacterial community behavior during the infection process. In this review, we examine two closely related bacterial nanomachines, the type 3 secretion system, and the flagellum, to explore how the bistability of molecular-scale devices shapes the bacterial eco-pathological life cycle.
Collapse
Affiliation(s)
- Romain Gory
- Group Persistence and Single-Cell Dynamics of Respiratory Pathogens, CIRI-Centre International de Recherche en Infectiologie, CNRS, INSERM, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 50 avenue Tony Garnier, 69007 Lyon, France
| | - Nicolas Personnic
- Group Persistence and Single-Cell Dynamics of Respiratory Pathogens, CIRI-Centre International de Recherche en Infectiologie, CNRS, INSERM, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 50 avenue Tony Garnier, 69007 Lyon, France
| | - Didier Blaha
- Group Persistence and Single-Cell Dynamics of Respiratory Pathogens, CIRI-Centre International de Recherche en Infectiologie, CNRS, INSERM, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 50 avenue Tony Garnier, 69007 Lyon, France
| |
Collapse
|
4
|
Tsuru S, Hatanaka N, Furusawa C. Promoters Constrain Evolution of Expression Levels of Essential Genes in Escherichia coli. Mol Biol Evol 2024; 41:msae185. [PMID: 39219319 PMCID: PMC11406756 DOI: 10.1093/molbev/msae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/31/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Variability in expression levels in response to random genomic mutations varies among genes, influencing both the facilitation and constraint of phenotypic evolution in organisms. Despite its importance, both the underlying mechanisms and evolutionary origins of this variability remain largely unknown due to the mixed contributions of cis- and trans-acting elements. To address this issue, we focused on the mutational variability of cis-acting elements, that is, promoter regions, in Escherichia coli. Random mutations were introduced into the natural and synthetic promoters to generate mutant promoter libraries. By comparing the variance in promoter activity of these mutant libraries, we found no significant difference in mutational variability in promoter activity between promoter groups, suggesting the absence of a signature of natural selection for mutational robustness. In contrast, the promoters controlling essential genes exhibited a remarkable bias in mutational variability, with mutants displaying higher activities than the wild types being relatively rare compared to those with lower activities. Our evolutionary simulation on a rugged fitness landscape provided a rationale for this vulnerability. These findings suggest that past selection created nonuniform mutational variability in promoters biased toward lower activities of random mutants, which now constrains the future evolution of downstream essential genes toward higher expression levels.
Collapse
Affiliation(s)
- Saburo Tsuru
- Universal Biology Institute, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naoki Hatanaka
- Universal Biology Institute, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Chikara Furusawa
- Universal Biology Institute, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Physics, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka 565-0874, Japan
| |
Collapse
|
5
|
Fernández-Fernández R, Olivenza DR, Weyer E, Singh A, Casadesús J, Antonia Sánchez-Romero M. Evolution of a bistable genetic system in fluctuating and nonfluctuating environments. Proc Natl Acad Sci U S A 2024; 121:e2322371121. [PMID: 39213178 PMCID: PMC11388349 DOI: 10.1073/pnas.2322371121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Epigenetic mechanisms can generate bacterial lineages capable of spontaneously switching between distinct phenotypes. Currently, mathematical models and simulations propose epigenetic switches as a mechanism of adaptation to deal with fluctuating environments. However, bacterial evolution experiments for testing these predictions are lacking. Here, we exploit an epigenetic switch in Salmonella enterica, the opvAB operon, to show clear evidence that OpvAB bistability persists in changing environments but not in stable conditions. Epigenetic control of transcription in the opvAB operon produces OpvABOFF (phage-sensitive) and OpvABON (phage-resistant) cells in a reversible manner and may be interpreted as an example of bet-hedging to preadapt Salmonella populations to the encounter with phages. Our experimental observations and computational simulations illustrate the adaptive value of epigenetic variation as an evolutionary strategy for mutation avoidance in fluctuating environments. In addition, our study provides experimental support to game theory models predicting that phenotypic heterogeneity is advantageous in changing and unpredictable environments.
Collapse
Affiliation(s)
- Rocío Fernández-Fernández
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Sevilla41012, Spain
| | - David R. Olivenza
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla41012, Spain
| | - Esther Weyer
- Department of Electrical and Computer Engineering, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE19716
- Department of Biomedical Engineering, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE19716
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE19716
- Department of Biomedical Engineering, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE19716
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla41012, Spain
| | - María Antonia Sánchez-Romero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Sevilla41012, Spain
| |
Collapse
|
6
|
Gopalan-Nair R, Coissac A, Legrand L, Lopez-Roques C, Pécrix Y, Vandecasteele C, Bouchez O, Barlet X, Lanois A, Givaudan A, Brillard J, Genin S, Guidot A. Changes in DNA methylation contribute to rapid adaptation in bacterial plant pathogen evolution. PLoS Biol 2024; 22:e3002792. [PMID: 39302959 PMCID: PMC11460718 DOI: 10.1371/journal.pbio.3002792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/08/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024] Open
Abstract
Adaptation is usually explained by beneficial genetic mutations that are transmitted from parents to offspring and become fixed in the adapted population. However, genetic mutation analysis alone is not sufficient to fully explain the adaptive processes, and several studies report the existence of nongenetic (or epigenetic) inheritance that can enable adaptation to new environments. In the present work, we tested the hypothesis of the role of DNA methylation, a form of epigenetic modification, in adaptation of the plant pathogen Ralstonia pseudosolanacearum to the host during experimental evolution. Using SMRT-seq technology, we analyzed the methylomes of 31 experimentally evolved clones obtained after serial passages on 5 different plant species during 300 generations. Comparison with the methylome of the ancestral clone revealed a list of 50 differential methylated sites (DMSs) at the GTWWAC motif. Gene expression analysis of the 39 genes targeted by these DMSs revealed limited correlation between differential methylation and differential expression of the corresponding genes. Only 1 gene showed a correlation, the RSp0338 gene encoding the EpsR regulator protein. The MSRE-qPCR technology, used as an alternative approach for DNA methylation analysis, also found the 2 DMSs upstream RSp0338. Using site-directed mutagenesis, we demonstrated the contribution of these 2 DMSs in host adaptation. As these DMSs appeared very early in the experimental evolution, we hypothesize that such fast epigenetic changes can allow rapid adaptation to the plant stem environment. In addition, we found that the change in DNA methylation upstream RSp0338 remains stable at least for 100 generations outside the host and thus can contribute to long-term adaptation to the host plant. To our knowledge, this is the first study showing a direct link between bacterial epigenetic variation and adaptation to a new environment.
Collapse
Affiliation(s)
| | - Aurore Coissac
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Ludovic Legrand
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | | | - Yann Pécrix
- PVBMT, Université de La Réunion, CIRAD, Saint-Pierre, Réunion Island, France
| | | | - Olivier Bouchez
- GeT-PlaGe, Genotoul, INRAE, US1426, Castanet-Tolosan, France
| | - Xavier Barlet
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Anne Lanois
- DGIMI, Université de Montpellier, INRAE, Montpellier, France
| | - Alain Givaudan
- DGIMI, Université de Montpellier, INRAE, Montpellier, France
| | - Julien Brillard
- DGIMI, Université de Montpellier, INRAE, Montpellier, France
| | - Stéphane Genin
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Alice Guidot
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| |
Collapse
|
7
|
Larkin A, Kunze C, Seman M, Levashkevich A, Curran J, Morris-Evans D, Lemieux S, Khalil AS, Ragunathan K. Mapping the dynamics of epigenetic adaptation in S. pombe during heterochromatin misregulation. Dev Cell 2024; 59:2222-2238.e4. [PMID: 39094565 PMCID: PMC11338711 DOI: 10.1016/j.devcel.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 04/04/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Epigenetic mechanisms enable cells to develop novel adaptive phenotypes without altering their genetic blueprint. Recent studies show histone modifications, such as heterochromatin-defining H3K9 methylation (H3K9me), can be redistributed to establish adaptive phenotypes. We developed a precision-engineered genetic approach to trigger heterochromatin misregulation on-demand in fission yeast. This enabled us to trace genome-scale RNA and H3K9me changes over time in long-term, continuous cultures. Adaptive H3K9me establishes over remarkably slow timescales relative to the initiating stress. We captured dynamic H3K9me redistribution events which depend on an RNA binding complex MTREC, ultimately leading to cells converging on an optimal adaptive solution. Upon stress removal, cells relax to new transcriptional and chromatin states, establishing memory that is tunable and primed for future adaptive epigenetic responses. Collectively, we identify the slow kinetics of epigenetic adaptation that allow cells to discover and heritably encode novel adaptive solutions, with implications for drug resistance and response to infection.
Collapse
Affiliation(s)
- Ajay Larkin
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Colin Kunze
- Biological Design Center, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Melissa Seman
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | | | - Justin Curran
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | | | - Sophia Lemieux
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Ahmad S Khalil
- Biological Design Center, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| | | |
Collapse
|
8
|
Hahn A, Hung GCC, Ahier A, Dai CY, Kirmes I, Forde BM, Campbell D, Lee RSY, Sucic J, Onraet T, Zuryn S. Misregulation of mitochondrial 6mA promotes the propagation of mutant mtDNA and causes aging in C. elegans. Cell Metab 2024:S1550-4131(24)00291-2. [PMID: 39173633 DOI: 10.1016/j.cmet.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/21/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024]
Abstract
In virtually all eukaryotes, the mitochondrial DNA (mtDNA) encodes proteins necessary for oxidative phosphorylation (OXPHOS) and RNAs required for their synthesis. The mechanisms of regulation of mtDNA copy number and expression are not completely understood but crucially ensure the correct stoichiometric assembly of OXPHOS complexes from nuclear- and mtDNA-encoded subunits. Here, we detect adenosine N6-methylation (6mA) on the mtDNA of diverse animal and plant species. This modification is regulated in C. elegans by the DNA methyltransferase DAMT-1 and demethylase ALKB-1. Misregulation of mtDNA 6mA through targeted modulation of these activities inappropriately alters mtDNA copy number and transcript levels, impairing OXPHOS function, elevating oxidative stress, and shortening lifespan. Compounding these defects, mtDNA 6mA hypomethylation promotes the cross-generational propagation of a deleterious mtDNA. Together, these results reveal that mtDNA 6mA is highly conserved among eukaryotes and regulates lifespan by influencing mtDNA copy number, expression, and heritable mutation levels in vivo.
Collapse
Affiliation(s)
- Anne Hahn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Grace Ching Ching Hung
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Arnaud Ahier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chuan-Yang Dai
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ina Kirmes
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Brian M Forde
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel Campbell
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rachel Shin Yie Lee
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Josiah Sucic
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tessa Onraet
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Steven Zuryn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
9
|
Liu T, Wei W, Xu M, Ren Q, Liu M, Pan X, Feng F, Han T, Gou L. The Restriction Activity Investigation of Rv2528c, an Mrr-like Modification-Dependent Restriction Endonuclease from Mycobacterium tuberculosis. Microorganisms 2024; 12:1456. [PMID: 39065224 PMCID: PMC11279042 DOI: 10.3390/microorganisms12071456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb), as a typical intracellular pathogen, possesses several putative restriction-modification (R-M) systems, which restrict exogenous DNA's entry, such as bacterial phage infection. Here, we investigate Rv2528c, a putative Mrr-like type IV restriction endonuclease (REase) from Mtb H37Rv, which is predicted to degrade methylated DNA that contains m6A, m5C, etc. Rv2528c shows significant cytotoxicity after being expressed in Escherichia coli BL21(DE3)pLysS strain. The Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) assay indicates that Rv2528c cleaves genomic DNA in vivo. The plasmid transformation efficiency of BL21(DE3)pLysS strain harboring Rv2528c gene was obviously decreased after plasmids were in vitro methylated by commercial DNA methyltransferases such as M.EcoGII, M.HhaI, etc. These results are consistent with the characteristics of type IV REases. The in vitro DNA cleavage condition and the consensus cleavage/recognition site of Rv2528c still remain unclear, similar to that of most Mrr-family proteins. The possible reasons mentioned above and the potential role of Rv2528c for Mtb were discussed.
Collapse
Affiliation(s)
- Tong Liu
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (T.L.); (M.X.); (Q.R.); (M.L.); (X.P.); (F.F.)
| | - Wei Wei
- Centers for Disease Control and Prevention of He Xi District, Tianjin 300210, China;
| | - Mingyan Xu
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (T.L.); (M.X.); (Q.R.); (M.L.); (X.P.); (F.F.)
| | - Qi Ren
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (T.L.); (M.X.); (Q.R.); (M.L.); (X.P.); (F.F.)
| | - Meikun Liu
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (T.L.); (M.X.); (Q.R.); (M.L.); (X.P.); (F.F.)
| | - Xuemei Pan
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (T.L.); (M.X.); (Q.R.); (M.L.); (X.P.); (F.F.)
| | - Fumin Feng
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (T.L.); (M.X.); (Q.R.); (M.L.); (X.P.); (F.F.)
| | - Tiesheng Han
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (T.L.); (M.X.); (Q.R.); (M.L.); (X.P.); (F.F.)
| | - Lixia Gou
- School of Life Science, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
10
|
Lax C, Mondo SJ, Osorio-Concepción M, Muszewska A, Corrochano-Luque M, Gutiérrez G, Riley R, Lipzen A, Guo J, Hundley H, Amirebrahimi M, Ng V, Lorenzo-Gutiérrez D, Binder U, Yang J, Song Y, Cánovas D, Navarro E, Freitag M, Gabaldón T, Grigoriev IV, Corrochano LM, Nicolás FE, Garre V. Symmetric and asymmetric DNA N6-adenine methylation regulates different biological responses in Mucorales. Nat Commun 2024; 15:6066. [PMID: 39025853 PMCID: PMC11258239 DOI: 10.1038/s41467-024-50365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
DNA N6-adenine methylation (6mA) has recently gained importance as an epigenetic modification in eukaryotes. Its function in lineages with high levels, such as early-diverging fungi (EDF), is of particular interest. Here, we investigated the biological significance and evolutionary implications of 6mA in EDF, which exhibit divergent evolutionary patterns in 6mA usage. The analysis of two Mucorales species displaying extreme 6mA usage reveals that species with high 6mA levels show symmetric methylation enriched in highly expressed genes. In contrast, species with low 6mA levels show mostly asymmetric 6mA. Interestingly, transcriptomic regulation throughout development and in response to environmental cues is associated with changes in the 6mA landscape. Furthermore, we identify an EDF-specific methyltransferase, likely originated from endosymbiotic bacteria, as responsible for asymmetric methylation, while an MTA-70 methylation complex performs symmetric methylation. The distinct phenotypes observed in the corresponding mutants reinforced the critical role of both types of 6mA in EDF.
Collapse
Affiliation(s)
- Carlos Lax
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Stephen J Mondo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Macario Osorio-Concepción
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | | | - Gabriel Gutiérrez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Robert Riley
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jie Guo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hope Hundley
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mojgan Amirebrahimi
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vivian Ng
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Damaris Lorenzo-Gutiérrez
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Ulrike Binder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Junhuan Yang
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, 524048, China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, China
| | - David Cánovas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Eusebio Navarro
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Luis M Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain.
| | - Francisco E Nicolás
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain.
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
11
|
Won C, Yim SS. Emerging methylation-based approaches in microbiome engineering. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:96. [PMID: 38987811 PMCID: PMC11238421 DOI: 10.1186/s13068-024-02529-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
Bacterial epigenetics, particularly through DNA methylation, exerts significant influence over various biological processes such as DNA replication, uptake, and gene regulation in bacteria. In this review, we explore recent advances in characterizing bacterial epigenomes, accompanied by emerging strategies that harness bacterial epigenetics to elucidate and engineer diverse bacterial species with precision and effectiveness. Furthermore, we delve into the potential of epigenetic modifications to steer microbial functions and influence community dynamics, offering promising opportunities for understanding and modulating microbiomes. Additionally, we investigate the extensive diversity of DNA methyltransferases and emphasize their potential utility in the context of the human microbiome. In summary, this review highlights the potential of DNA methylation as a powerful toolkit for engineering microbiomes.
Collapse
Affiliation(s)
- Changhee Won
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sung Sun Yim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
- Graduate School of Engineering Biology, KAIST, Daejeon, Republic of Korea.
- KAIST Institute for BioCentury, KAIST, Daejeon, Republic of Korea.
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
| |
Collapse
|
12
|
Pal S, Dhar R. Living in a noisy world-origins of gene expression noise and its impact on cellular decision-making. FEBS Lett 2024; 598:1673-1691. [PMID: 38724715 DOI: 10.1002/1873-3468.14898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 07/23/2024]
Abstract
The expression level of a gene can vary between genetically identical cells under the same environmental condition-a phenomenon referred to as gene expression noise. Several studies have now elucidated a central role of transcription factors in the generation of expression noise. Transcription factors, as the key components of gene regulatory networks, drive many important cellular decisions in response to cellular and environmental signals. Therefore, a very relevant question is how expression noise impacts gene regulation and influences cellular decision-making. In this Review, we summarize the current understanding of the molecular origins of expression noise, highlighting the role of transcription factors in this process, and discuss the ways in which noise can influence cellular decision-making. As advances in single-cell technologies open new avenues for studying expression noise as well as gene regulatory circuits, a better understanding of the influence of noise on cellular decisions will have important implications for many biological processes.
Collapse
Affiliation(s)
- Sampriti Pal
- Department of Bioscience and Biotechnology, IIT Kharagpur, India
| | - Riddhiman Dhar
- Department of Bioscience and Biotechnology, IIT Kharagpur, India
| |
Collapse
|
13
|
Alves J, Vrieling M, Ring N, Yebra G, Pickering A, Prajsnar TK, Renshaw SA, Fitzgerald JR. Experimental evolution of Staphylococcus aureus in macrophages: dissection of a conditional adaptive trait promoting intracellular survival. mBio 2024; 15:e0034624. [PMID: 38682911 PMCID: PMC11237485 DOI: 10.1128/mbio.00346-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
Staphylococcus aureus is a major pathogen associated with important diseases in humans and animals. Macrophages are a key component of the innate immune response to S. aureus infection and play a major role in disease outcomes. To investigate the adaptive evolution of S. aureus in response to macrophages, we developed an experimental infection assay. S. aureus strains representing major human epidemic clones were passaged many times in a macrophage cell line, accumulating mutations in an array of genomic loci. Phenotypic analysis revealed the emergence of a lineage exhibiting increased survival in macrophages and human blood, and resistance to vancomycin. The evolved lineage exhibited a previously undescribed small colony variant (SCV) phenotype characterized by hyper-pigmentation, which resulted from a missense mutation in rsbW. Notably, the novel SCV was a conditional adaptive trait that was unstable in nutrient-replete conditions in vitro, rapidly converting from hyper-pigmented SCV to a non-pigmented large colony variant via spontaneous sigB deletion events. Importantly, we identified similar deletions in the genome sequences of a limited number of clinical S. aureus isolates from public databases, indicating that related events may occur during clinical infection. Experimental infection of zebrafish did not reveal a difference in virulence between parent and novel SCV but demonstrated an in vivo fitness cost for the compensatory sigB deletion events. Taken together, we report an experimental evolutionary approach for investigating bacterial innate immune cell interactions, revealing a conditional adaptation that promotes S. aureus survival in macrophages and resistance to vancomycin. IMPORTANCE Staphylococcus aureus is an important human bacterial pathogen. The host response to S. aureus involves the production of innate immune cells such as macrophages which are important for fighting infection. Here we report a new model of experimental evolution for studying how S. aureus can evade killing by macrophages. We identified a novel adaptive phenotype that promotes survival in macrophages and blood and resistance to antibiotics. The phenotype is lost rapidly upon growth in nutrient-rich conditions via disruption of the alternative sigma factor sigB, revealing a conditional niche-specific fitness advantage. Genomic analysis of clinical isolates suggests similar adaptations may occur during human infections. Our model may be used broadly to identify adaptations of S. aureus to the innate immune response.
Collapse
Affiliation(s)
- Joana Alves
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Manouk Vrieling
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Natalie Ring
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Gonzalo Yebra
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Amy Pickering
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Tomasz K. Prajsnar
- Florey Institute, Bateson Centre and Division of Clinical Medicine, School of Medicine and Population Health, Sheffield, United Kingdom
| | - Stephen A. Renshaw
- Florey Institute, Bateson Centre and Division of Clinical Medicine, School of Medicine and Population Health, Sheffield, United Kingdom
| | - J. Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| |
Collapse
|
14
|
Guha M, Singh A, Butzin NC. Gram-positive bacteria are primed for surviving lethal doses of antibiotics and chemical stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596288. [PMID: 38895422 PMCID: PMC11185512 DOI: 10.1101/2024.05.28.596288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Antibiotic resistance kills millions worldwide yearly. However, a major contributor to recurrent infections lies in a small fraction of bacterial cells, known as persisters. These cells are not inherently antibiotic-resistant, yet they lead to increased antibiotic usage, raising the risk of developing resistant progenies. In a bacterial population, individual cells exhibit considerable fluctuations in their gene expression levels despite being cultivated under identical, stable conditions. This variability in cell-to-cell characteristics (phenotypic diversity) within an isogenic population enables persister cells to withstand antibiotic exposure by entering a non-dividing state. We recently showed the existence of "primed cells" in E. coli. Primed cells are dividing cells prepared for antibiotic stress before encountering it and are more prone to form persisters. They also pass their "prepared state" down for several generations through epigenetic memory. Here, we show that primed cells are common among distant bacterial lineages, allowing for survival against antibiotics and other chemical stress, and form in different growth phases. They are also responsible for increased persister levels in transition and stationary phases compared to the log phase. We tested and showed that the Gram-positive bacterium Bacillus megaterium, evolutionarily very distant from E. coli, forms primed cells and has a transient epigenetic memory that is maintained for 7 generations or more. We showed this using ciprofloxacin and the non-antibiotic chemical stress fluoride. It is well established that persister levels are higher in the stationary phase than in the log phase, and B. megaterium persisters levels are nearly identical from the early to late-log phase but are ~2-fold and ~4-fold higher in the transition and stationary phase, respectively. It was previously proposed that there are two distinct types of persisters: Type II forms in the log phase, while Type I forms in the stationary phase. However, we show that primed cells lead to increased persisters in the transition and stationary phase and found no evidence of Type I or II persisters with distant phenotypes. Overall, we have provided substantial evidence of the importance of primed cells and their transitory epigenetic memories to surviving stress.
Collapse
Affiliation(s)
- Manisha Guha
- Department of Biology and Microbiology; South Dakota State University; Brookings, SD, 57006; USA
| | - Abhyudai Singh
- Electrical & Computer Engineering; University of Delaware; Newark, DE 19716; USA
| | - Nicholas C. Butzin
- Department of Biology and Microbiology; South Dakota State University; Brookings, SD, 57006; USA
- Department of Chemistry and Biochemistry; South Dakota State University; Brookings, SD, 57006; USA
| |
Collapse
|
15
|
Gigon L, Müller P, Haenni B, Iacovache I, Barbo M, Gosheva G, Yousefi S, Soragni A, von Ballmoos C, Zuber B, Simon HU. Membrane damage by MBP-1 is mediated by pore formation and amplified by mtDNA. Cell Rep 2024; 43:114084. [PMID: 38583154 DOI: 10.1016/j.celrep.2024.114084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/28/2023] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
Eosinophils play a crucial role in host defense while also contributing to immunopathology through the release of inflammatory mediators. Characterized by distinctive cytoplasmic granules, eosinophils securely store and rapidly release various proteins exhibiting high toxicity upon extracellular release. Among these, major basic protein 1 (MBP-1) emerges as an important mediator in eosinophil function against pathogens and in eosinophil-associated diseases. While MBP-1 targets both microorganisms and host cells, its precise mechanism remains elusive. We demonstrate that formation of small pores by MBP-1 in lipid bilayers induces membrane permeabilization and disrupts potassium balance. Additionally, we reveal that mitochondrial DNA (mtDNA) present in eosinophil extracellular traps (EETs) amplifies MBP-1 toxic effects, underscoring the pivotal role of mtDNA in EETs. Furthermore, we present evidence indicating that absence of CpG methylation in mtDNA contributes to the regulation of MBP-1-mediated toxicity. Taken together, our data suggest that the mtDNA scaffold within extracellular traps promotes MBP-1 toxicity.
Collapse
Affiliation(s)
- Lea Gigon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Philipp Müller
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Beat Haenni
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Ioan Iacovache
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Maruša Barbo
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland; Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Gordana Gosheva
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland; Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Alice Soragni
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christoph von Ballmoos
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland; Institute of Biochemistry, Brandenburg Medical School, 16816 Neuruppin, Germany.
| |
Collapse
|
16
|
Passeri I, Vaccaro F, Mengoni A, Fagorzi C. Moving toward the Inclusion of Epigenomics in Bacterial Genome Evolution: Perspectives and Challenges. Int J Mol Sci 2024; 25:4425. [PMID: 38674013 PMCID: PMC11050019 DOI: 10.3390/ijms25084425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The universality of DNA methylation as an epigenetic regulatory mechanism belongs to all biological kingdoms. However, while eukaryotic systems have been the primary focus of DNA methylation studies, the molecular mechanisms in prokaryotes are less known. Nevertheless, DNA methylation in prokaryotes plays a pivotal role in many cellular processes such as defense systems against exogenous DNA, cell cycle dynamics, and gene expression, including virulence. Thanks to single-molecule DNA sequencing technologies, genome-wide identification of methylated DNA is becoming feasible on a large scale, providing the possibility to investigate more deeply the presence, variability, and roles of DNA methylation. Here, we present an overview of the multifaceted roles of DNA methylation in prokaryotes and suggest research directions and tools which can enable us to better understand the contribution of DNA methylation to prokaryotic genome evolution and adaptation. In particular, we emphasize the need to understand the presence and role of transgenerational inheritance, as well as the impact of epigenomic signatures on adaptation and genome evolution. Research directions and the importance of novel computational tools are underlined.
Collapse
Affiliation(s)
| | | | - Alessio Mengoni
- Department of Biology, University of Florence, 50121 Firenze, Italy; (I.P.); (F.V.); (C.F.)
| | | |
Collapse
|
17
|
Larkin A, Kunze C, Seman M, Levashkevich A, Curran J, Morris-Evans D, Lemieux S, Khalil AS, Ragunathan K. Mapping the dynamics of epigenetic adaptation during heterochromatin misregulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.10.548368. [PMID: 37503217 PMCID: PMC10369875 DOI: 10.1101/2023.07.10.548368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A classical and well-established mechanism that enables cells to adapt to new and adverse conditions is the acquisition of beneficial genetic mutations. Much less is known about epigenetic mechanisms that allow cells to develop novel and adaptive phenotypes without altering their genetic blueprint. It has been recently proposed that histone modifications, such as heterochromatin-defining H3K9 methylation (H3K9me), normally reserved to maintain genome integrity, can be redistributed across the genome to establish new and potentially adaptive phenotypes. To uncover the dynamics of this process, we developed a precision engineered genetic approach to trigger H3K9me redistribution on-demand in fission yeast. This enabled us to trace genome-scale RNA and chromatin changes over time prior to and during adaptation in long-term continuous cultures. Establishing adaptive H3K9me occurs over remarkably slow time-scales relative to the initiating stress. During this time, we captured dynamic H3K9me redistribution events ultimately leading to cells converging on an optimal adaptive solution. Upon removal of stress, cells relax to new transcriptional and chromatin states rather than revert to their initial (ground) state, establishing a tunable memory for a future adaptive epigenetic response. Collectively, our tools uncover the slow kinetics of epigenetic adaptation that allow cells to search for and heritably encode adaptive solutions, with implications for drug resistance and response to infection.
Collapse
|
18
|
Wazahat R, Zaidi R, Kumar P. Epigenetic regulations in Mycobacterium tuberculosis infection. Indian J Tuberc 2024; 71:204-212. [PMID: 38589125 DOI: 10.1016/j.ijtb.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 04/10/2024]
Abstract
Mycobacterium tuberculosis (Mtb) employs several sophisticated strategies to evade host immunity and facilitate its intracellular survival. One of them is the epigenetic manipulation of host chromatin by three strategies i.e., DNA methylation, histone modifications and miRNA involvement. A host-directed therapeutic can be an attractive approach that targets these host epigenetics or gene regulations and circumvent manipulation of host cell machinery by Mtb. Given the complexity of the nature of intracellular infection by Mtb, there are challenges in identifying the important host proteins, non-coding RNA or the secretory proteins of Mtb itself that directly or indirectly bring upon the epigenetic modifications in the host chromatin. Equally challenging is developing the methods of targeting these epigenetic factors through chemical or non-chemical approaches as host-directed therapeutics. The current review article briefly summarizes several of the epigenetic factors that serve to bring upon potential changes in the host transcriptional machinery and targets the immune system for immunosuppression and disease progression in Mtb infection.
Collapse
Affiliation(s)
- Rushna Wazahat
- Department of Biochemistry, Jamia Hamdard, New Delhi 110062, India.
| | - Rana Zaidi
- Department of Biochemistry, Jamia Hamdard, New Delhi 110062, India
| | - Pankaj Kumar
- Department of Biochemistry, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
19
|
Reva ON, La Cono V, Crisafi F, Smedile F, Mudaliyar M, Ghosal D, Giuliano L, Krupovic M, Yakimov MM. Interplay of intracellular and trans-cellular DNA methylation in natural archaeal consortia. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13258. [PMID: 38589217 PMCID: PMC11001535 DOI: 10.1111/1758-2229.13258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/15/2024] [Indexed: 04/10/2024]
Abstract
DNA methylation serves a variety of functions across all life domains. In this study, we investigated archaeal methylomics within a tripartite xylanolytic halophilic consortium. This consortium includes Haloferax lucertense SVX82, Halorhabdus sp. SVX81, and an ectosymbiotic Candidatus Nanohalococcus occultus SVXNc, a nano-sized archaeon from the DPANN superphylum. We utilized PacBio SMRT and Illumina cDNA sequencing to analyse samples from consortia of different compositions for methylomics and transcriptomics. Endogenous cTAG methylation, typical of Haloferax, was accompanied in this strain by methylation at four other motifs, including GDGcHC methylation, which is specific to the ectosymbiont. Our analysis of the distribution of methylated and unmethylated motifs suggests that autochthonous cTAG methylation may influence gene regulation. The frequency of GRAGAaG methylation increased in highly expressed genes, while CcTTG and GTCGaGG methylation could be linked to restriction-modification (RM) activity. Generally, the RM activity might have been reduced during the evolution of this archaeon to balance the protection of cells from intruders, the reduction of DNA damage due to self-restriction in stressful environments, and the benefits of DNA exchange under extreme conditions. Our methylomics, transcriptomics and complementary electron cryotomography (cryo-ET) data suggest that the nanohaloarchaeon exports its methyltransferase to methylate the Haloferax genome, unveiling a new aspect of the interaction between the symbiont and its host.
Collapse
Affiliation(s)
- Oleg N. Reva
- Department of Biochemistry, Genetics and Microbiology, Centre for Bioinformatics and Computational BiologyUniversity of PretoriaPretoriaSouth Africa
| | - Violetta La Cono
- Extreme Microbiology, Biotechnology and Astrobiology GroupInstitute of Polar Sciences, ISP‐CNRMessinaItaly
| | - Francesca Crisafi
- Extreme Microbiology, Biotechnology and Astrobiology GroupInstitute of Polar Sciences, ISP‐CNRMessinaItaly
| | - Francesco Smedile
- Extreme Microbiology, Biotechnology and Astrobiology GroupInstitute of Polar Sciences, ISP‐CNRMessinaItaly
| | - Manasi Mudaliyar
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneVictoriaAustralia
- ARC Centre for Cryo‐electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology InstituteUniversity of MelbourneParkvilleVictoriaAustralia
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneVictoriaAustralia
- ARC Centre for Cryo‐electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology InstituteUniversity of MelbourneParkvilleVictoriaAustralia
| | | | - Mart Krupovic
- Istitut Pasteur, Archaeal Virology UnitUniversité Paris CitéParisFrance
| | - Michail M. Yakimov
- Extreme Microbiology, Biotechnology and Astrobiology GroupInstitute of Polar Sciences, ISP‐CNRMessinaItaly
| |
Collapse
|
20
|
Cao L, Kong Y, Fan Y, Ni M, Tourancheau A, Ksiezarek M, Mead EA, Koo T, Gitman M, Zhang XS, Fang G. mEnrich-seq: methylation-guided enrichment sequencing of bacterial taxa of interest from microbiome. Nat Methods 2024; 21:236-246. [PMID: 38177508 PMCID: PMC11474163 DOI: 10.1038/s41592-023-02125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/08/2023] [Indexed: 01/06/2024]
Abstract
Metagenomics has enabled the comprehensive study of microbiomes. However, many applications would benefit from a method that sequences specific bacterial taxa of interest, but not most background taxa. We developed mEnrich-seq (in which 'm' stands for methylation and seq for sequencing) for enriching taxa of interest from metagenomic DNA before sequencing. The core idea is to exploit the self versus nonself differentiation by natural bacterial DNA methylation and rationally choose methylation-sensitive restriction enzymes, individually or in combination, to deplete host and background taxa while enriching targeted taxa. This idea is integrated with library preparation procedures and applied in several applications to enrich (up to 117-fold) pathogenic or beneficial bacteria from human urine and fecal samples, including species that are hard to culture or of low abundance. We assessed 4,601 bacterial strains with mapped methylomes so far and showed broad applicability of mEnrich-seq. mEnrich-seq provides microbiome researchers with a versatile and cost-effective approach for selective sequencing of diverse taxa of interest.
Collapse
Affiliation(s)
- Lei Cao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yimeng Kong
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yu Fan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mi Ni
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alan Tourancheau
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Magdalena Ksiezarek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edward A Mead
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tonny Koo
- Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Melissa Gitman
- Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, NJ, USA
| | - Gang Fang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
21
|
Dhara L, Tripathi A. Contribution of genetic factors towards cefotaxime and ciprofloxacin resistance development among Extended spectrum beta-lactamase producing-Quinolone resistant pathogenic Enterobacteriaceae. Gene 2024; 893:147921. [PMID: 37884102 DOI: 10.1016/j.gene.2023.147921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
β-lactams and quinolones are widely utilised to treat pathogenic Enterobacterial isolates worldwide. Due to improper use of these antibiotics, both ESBL producing and quinolone resistant (ESBL-QR) pathogenic bacteria have emerged. Nature of contribution of beta-lactamase (bla)/quinolone resistant (QR) genes, efflux pumps (AcrAB-TolC) over-expression and outer membrane proteins (OMPs) /porin loss/reduction and their combinations towards development of this phenotype were explored in this study. Kirby-Bauer disc diffusion method was used for phenotypic characterization of these bacteria and minimum inhibitory concentration of cefotaxime and ciprofloxacin was determined by broth micro dilution assay. Presence of bla, QR, gyrA/B genes was examined by PCR; acrB upregulation by real-time quantitative PCR and porin loss/reduction by SDS-PAGE. Based on antibiogram, phenotypic categorization of 715 non-duplicate clinical isolates was: ESBL+QR+ (n = 265), ESBL+QR- (n = 6), ESBL-QR+ (n = 346) and ESBL-QR-(n = 11). Increased OmpF/K35 and OmpC/K36 reduction, acrB up-regulation, prevalence of bla, QR genes and gyrA/B mutation was observed among the groups in following order: ESBL+QR+> ESBL-QR+> ESBL+QR-> ESBL-QR-. Presence of bla gene alone or combined porin loss and efflux pump upregulation or their combination contributed most for development of a highest level of cefotaxime resistance of ESBL+QR+ isolates. Similarly, combined presence of QR genes, porin loss/reduction, efflux pump upregulation and gyrA/B mutation contributed towards highest ciprofloxacin resistance development of these isolates.
Collapse
Affiliation(s)
- Lena Dhara
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C.R. Avenue, Kolkata 700073, India
| | - Anusri Tripathi
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C.R. Avenue, Kolkata 700073, India.
| |
Collapse
|
22
|
Shi C, Wang L, Xu H, Zhao Y, Tian B, Hua Y. Characterization of a Novel N4-Methylcytosine Restriction-Modification System in Deinococcus radiodurans. Int J Mol Sci 2024; 25:1660. [PMID: 38338939 PMCID: PMC10855626 DOI: 10.3390/ijms25031660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Deinococcus radiodurans is an extremophilic microorganism that possesses a unique DNA damage repair system, conferring a strong resistance to radiation, desiccation, oxidative stress, and chemical damage. Recently, we discovered that D. radiodurans possesses an N4-methylation (m4C) methyltransferase called M.DraR1, which recognizes the 5'-CCGCGG-3' sequence and methylates the second cytosine. Here, we revealed its cognate restriction endonuclease R.DraR1 and recognized that it is the only endonuclease specially for non-4C-methylated 5'-CCGCGG-3' sequence so far. We designated the particular m4C R.DraR1-M.DraR1 as the DraI R-M system. Bioinformatics searches displayed the rarity of the DraI R-M homologous system. Meanwhile, recombination and transformation efficiency experiments demonstrated the important role of the DraI R-M system in response to oxidative stress. In addition, in vitro activity experiments showed that R.DraR1 could exceptionally cleave DNA substrates with a m5C-methlated 5'-CCGCGG-3' sequence instead of its routine activity, suggesting that this particular R-M component possesses a broader substrate choice. Furthermore, an imbalance of the DraI R-M system led to cell death through regulating genes involved in the maintenance of cell survival such as genome stability, transporter, and energy production. Thus, our research revealed a novel m4C R-M system that plays key roles in maintaining cell viability and defending foreign DNA in D. radiodurans.
Collapse
Affiliation(s)
- Chenxiang Shi
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.S.); (H.X.); (Y.Z.); (B.T.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Liangyan Wang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.S.); (H.X.); (Y.Z.); (B.T.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Hong Xu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.S.); (H.X.); (Y.Z.); (B.T.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Ye Zhao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.S.); (H.X.); (Y.Z.); (B.T.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Bing Tian
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.S.); (H.X.); (Y.Z.); (B.T.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Yuejin Hua
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.S.); (H.X.); (Y.Z.); (B.T.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
23
|
Oelschlaeger P. Molecular Mechanisms and the Significance of Synonymous Mutations. Biomolecules 2024; 14:132. [PMID: 38275761 PMCID: PMC10813300 DOI: 10.3390/biom14010132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Synonymous mutations result from the degeneracy of the genetic code. Most amino acids are encoded by two or more codons, and mutations that change a codon to another synonymous codon do not change the amino acid in the gene product. Historically, such mutations have been considered silent because they were assumed to have no to very little impact. However, research in the last few decades has produced several examples where synonymous mutations play important roles. These include optimizing expression by enhancing translation initiation and accelerating or decelerating translation elongation via codon usage and mRNA secondary structures, stabilizing mRNA molecules and preventing their breakdown before translation, and faulty protein folding or increased degradation due to enhanced ubiquitination and suboptimal secretion of proteins into the appropriate cell compartments. Some consequences of synonymous mutations, such as mRNA stability, can lead to different outcomes in prokaryotes and eukaryotes. Despite these examples, the significance of synonymous mutations in evolution and in causing disease in comparison to nonsynonymous mutations that do change amino acid residues in proteins remains controversial. Whether the molecular mechanisms described by which synonymous mutations affect organisms can be generalized remains poorly understood and warrants future research in this area.
Collapse
Affiliation(s)
- Peter Oelschlaeger
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
24
|
Manzer HS, Doran KS. Complete m6A and m4C methylomes for group B streptococcal clinical isolates CJB111, A909, COH1, and NEM316. Microbiol Resour Announc 2024; 13:e0073323. [PMID: 38099685 PMCID: PMC10793328 DOI: 10.1128/mra.00733-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/17/2023] [Indexed: 01/18/2024] Open
Abstract
Group B Streptococcus (GBS) is known to colonize the female reproductive tract and causes adverse pregnancy outcomes and neonatal disease. DNA methylation is a common mechanism for both phage defense and transcriptional regulation. Here, we report the m6A and m4C methylomes of four clinical GBS isolates, CJB111, A909, COH1, and NEM316.
Collapse
Affiliation(s)
- Haider S. Manzer
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
25
|
Manzer HS, Brunetti T, Doran KS. Identification of a DNA-cytosine methyltransferase that impacts global transcription to promote group B streptococcal vaginal colonization. mBio 2023; 14:e0230623. [PMID: 37905908 PMCID: PMC10746215 DOI: 10.1128/mbio.02306-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Group B Streptococcus (GBS) colonizes the female reproductive tract (FRT) in one-third of women, and carriage leads to numerous adverse pregnancy outcomes including the preterm premature rupture of membranes, chorioamnionitis, and stillbirth. The presence of GBS in the FRT during pregnancy is also the largest predisposing factor for the transmission of GBS and invasive neonatal diseases, including pneumonia, sepsis, and meningitis. The factors contributing to GBS colonization are still being elucidated. Here, we show for the first time that GBS transcription is regulated by an orphan DNA cytosine methyltransferase (Dcm). Many GBS factors are regulated by Dcm, especially those involved in carbohydrate transport and metabolism. We show that GBS persistence in the FRT is dependent on the catabolism of sugars found on the vaginal mucin MUC5B. Collectively, this work highlights the regulatory importance of a DNA methyltransferase and identifies both host and bacterial factors required for GBS colonization.
Collapse
Affiliation(s)
- Haider S. Manzer
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tonya Brunetti
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
26
|
Wassing IE, Nishiyama A, Hiruta M, Jia Q, Shikimachi R, Kikuchi A, Sugimura K, Hong X, Chiba Y, Peng J, Jenness C, Nakanishi M, Zhao L, Arita K, Funabiki H. CDCA7 is a hemimethylated DNA adaptor for the nucleosome remodeler HELLS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572350. [PMID: 38187757 PMCID: PMC10769307 DOI: 10.1101/2023.12.19.572350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mutations of the SNF2 family ATPase HELLS and its activator CDCA7 cause immunodeficiency-centromeric instability-facial anomalies (ICF) syndrome, characterized by hypomethylation at heterochromatin. The unique zinc-finger domain, zf-4CXXC_R1, of CDCA7 is widely conserved across eukaryotes but is absent from species that lack HELLS and DNA methyltransferases, implying its specialized relation with methylated DNA. Here we demonstrate that zf-4CXXC_R1 acts as a hemimethylated DNA sensor. The zf-4CXXC_R1 domain of CDCA7 selectively binds to DNA with a hemimethylated CpG, but not unmethylated or fully methylated CpG, and ICF disease mutations eliminated this binding. CDCA7 and HELLS interact via their N-terminal alpha helices, through which HELLS is recruited to hemimethylated DNA. While placement of a hemimethylated CpG within the nucleosome core particle can hinder its recognition by CDCA7, cryo-EM structure analysis of the CDCA7-nucleosome complex suggests that zf-4CXXC_R1 recognizes a hemimethylated CpG in the major groove at linker DNA. Our study provides insights into how the CDCA7-HELLS nucleosome remodeling complex uniquely assists maintenance DNA methylation.
Collapse
Affiliation(s)
- Isabel E. Wassing
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Moeri Hiruta
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Qingyuan Jia
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Reia Shikimachi
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Amika Kikuchi
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Keita Sugimura
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Xin Hong
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Yoshie Chiba
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Christopher Jenness
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Kyohei Arita
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
27
|
Rodrigues MGF, Nakanishi ES, Soutello RVG, Diniz FONH. Global methylation in 'Valencia' orange seedlings associated with rootstocks and Huanglongbing. BRAZ J BIOL 2023; 83:e277679. [PMID: 38126644 DOI: 10.1590/1519-6984.277679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Citrus farming is one of the main activities that contributed to the Brazilian trade balance, with citrus seedling being the most important input in the formation of orchards to guarantee high productivity and fruit quality, which fundamentally depends on the chosen genetics. The present study aimed to analyze the existence of epigenetic variability in 'Valencia' orange plants on rootstocks, associated or not with HLB, through the quantification of the global methylation of its genome, in order to support works on genetic improvement and crop production. For this purpose, this work was carried out in greenhouse in a completely randomized experimental design, with 5 treatments and 6 replicates per treatment, each seedling being considered a replicate, namely: T1 = "Valencia" orange grafted onto "Rangpur" lemon, inoculated with HLB; T2 = "Valencia" orange grafted onto "Swingle" citrumelo, inoculated with HLB; T3 = "Valencia" orange grafted onto "Rangpur" lemon, without HLB inoculation ; T4 = "Valencia" orange grafted onto "Swingle" citrumelo, without HLB inoculation ; T5 = "Valencia" orange in free standing. The DNA was extracted from leaves and the ELISA test (Enzyme-Linked Immunosorbent Assay) was carried out, based on the use of receptors sensitive to 5-mC., to measure the relative quantification of global methylation between genomic orange DNAs . Since the control treatment (T5) consists of "Valencia" orange in free standing, it could be inferred that both the normal grafting technique in the seedling formation process and the inoculation of buds infected with HLB are external factors capable of changing the methylation pattern in the evaluated plants, including the DNA demethylation process, causing an adaptive response in association with the expression of genes previously silenced by genome methylation.
Collapse
Affiliation(s)
- M G F Rodrigues
- Universidade Estadual Paulista - UNESP, Faculdade de Ciências Agrárias e Tecnológicas - FCAT, Departamento de Produção Vegetal, Dracena, SP, Brasil
| | - E S Nakanishi
- Universidade Estadual Paulista - UNESP, Faculdade de Ciências Agrárias e Tecnológicas - FCAT, Dracena, SP, Brasil
| | - R V G Soutello
- Universidade Estadual Paulista - UNESP, Departamento de Produção Animal, Faculdade de Ciências Agrárias e Tecnológicas - FCAT, Dracena, SP, Brasil
| | - F O N H Diniz
- Universidade Estadual Paulista - UNESP, Faculdade de Engenharia de Ilha Solteira - FEIS, Ilha Solteira, SP, Brasil
| |
Collapse
|
28
|
Zhang W, Lyu L, Xu Z, Ni J, Wang D, Lu J, Yao YF. Integrative DNA methylome and transcriptome analysis reveals DNA adenine methylation is involved in Salmonella enterica Typhimurium response to oxidative stress. Microbiol Spectr 2023; 11:e0247923. [PMID: 37882553 PMCID: PMC10715015 DOI: 10.1128/spectrum.02479-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE The intracellular pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) comes across a wide variety of stresses from entry to dissemination, such as reactive oxygen species. To adapt itself to oxidative stress, Salmonella must adopt various and complex strategies. In this study, we revealed that DNA adenine methyltransferase was essential for S. Typhimurium to survive in hydrogen peroxide. We then screened out oxidative stress-responsive genes that were potentially regulated by DNA methylation in S. Typhimurium. Our results show that the DNA methylome is highly stable throughout the genome, and the coupled change of m6A GATC with gene expression is identified in only a few positions, which suggests the complexity of the DNA methylation and gene expression regulation networks. The results may shed light on our understanding of m6A-mediated gene expression regulation in bacteria.
Collapse
Affiliation(s)
- Wenting Zhang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Lyu
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihiong Xu
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinjing Ni
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danni Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| |
Collapse
|
29
|
Van Hofwegen DJ, Hovde CJ, Minnich SA. Comparison of Yersinia enterocolitica DNA Methylation at Ambient and Host Temperatures. EPIGENOMES 2023; 7:30. [PMID: 38131902 PMCID: PMC10742451 DOI: 10.3390/epigenomes7040030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Pathogenic bacteria recognize environmental cues to vary gene expression for host adaptation. Moving from ambient to host temperature, Yersinia enterocolitica responds by immediately repressing flagella synthesis and inducing the virulence plasmid (pYV)-encoded type III secretion system. In contrast, shifting from host to ambient temperature requires 2.5 generations to restore motility, suggesting a link to the cell cycle. We hypothesized that differential DNA methylation contributes to temperature-regulated gene expression. We tested this hypothesis by comparing single-molecule real-time (SMRT) sequencing of Y. enterocolitica DNA from cells growing exponentially at 22 °C and 37 °C. The inter-pulse duration ratio rather than the traditional QV scoring was the kinetic metric to compare DNA from cells grown at each temperature. All 565 YenI restriction sites were fully methylated at both temperatures. Among the 27,118 DNA adenine methylase (Dam) sites, 42 had differential methylation patterns, while 17 remained unmethylated regardless of the temperature. A subset of the differentially methylated Dam sites localized to promoter regions of predicted regulatory genes including LysR-type and PadR-like transcriptional regulators and a cyclic-di-GMP phosphodiesterase. The unmethylated Dam sites localized with a bias to the replication terminus, suggesting they were protected from Dam methylase. No cytosine methylation was detected at Dcm sites.
Collapse
Affiliation(s)
| | | | - Scott A. Minnich
- Department of Animal Veterinary and Food Science, University of Idaho, Moscow, ID 83843, USA; (D.J.V.H.); (C.J.H.)
| |
Collapse
|
30
|
Li J, Luo S, Ouyang X, Wu G, Deng Z, He X, Zhao YL. Understanding base and backbone contributions of phosphorothioate DNA for molecular recognition with SBD proteins. Phys Chem Chem Phys 2023; 25:29289-29302. [PMID: 37876253 DOI: 10.1039/d3cp02820h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Bacterial DNA phosphorothioate (PT) modification provides a specific anchoring site for sulfur-binding proteins (SBDs). Besides, their recognition patterns include phosphate links and bases neighboring the PT-modified site, thereby bringing about genome sequence-dependent properties in PT-related epigenetics. Here, we analyze the contributions of the DNA backbone (phosphates and deoxyribose) and bases bound with two SBD proteins in Streptomyces pristinaespiralis and coelicolor (SBDSco and SBDSpr). The chalcogen-hydrophobic interactions remained constantly at the anchoring site while the adjacent bases formed conditional and distinctive non-covalent interactions. More importantly, SBD/PT-DNA interactions were not limited within the traditional "4-bp core" range from 5'-I to 3'-III but extended to upstream 5'-II and 5'-III bases and even 5''-I to 5''-III at the non-PT-modified complementary strand. From the epigenetic viewpoint, bases 3'-II, 5''-I, and 5''-III of SBDSpr and 3'-II, 5''-II, and 5''-III of SBDSco present remarkable differentiations in the molecular recognitions. From the protein viewpoint, H102 in SBDSpr and R191 in SBDSco contribute significantly while proline residues at the PT-bound site are strictly conserved for the PT-chalcogen bond. The mutual and make-up mutations are proposed to alter the SBD/PT-DNA recognition pattern, besides additional chiral phosphorothioate modifications on phosphates 5'-II, 5'-II, 3'-I, and 3'-II.
Collapse
Affiliation(s)
- Jiayi Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shenggan Luo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xingyu Ouyang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
31
|
Monteith W, Pascoe B, Mourkas E, Clark J, Hakim M, Hitchings MD, McCarthy N, Yahara K, Asakura H, Sheppard SK. Contrasting genes conferring short- and long-term biofilm adaptation in Listeria. Microb Genom 2023; 9:001114. [PMID: 37850975 PMCID: PMC10634452 DOI: 10.1099/mgen.0.001114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
Listeria monocytogenes is an opportunistic food-borne bacterium that is capable of infecting humans with high rates of hospitalization and mortality. Natural populations are genotypically and phenotypically variable, with some lineages being responsible for most human infections. The success of L. monocytogenes is linked to its capacity to persist on food and in the environment. Biofilms are an important feature that allow these bacteria to persist and infect humans, so understanding the genetic basis of biofilm formation is key to understanding transmission. We sought to investigate the biofilm-forming ability of L. monocytogenes by identifying genetic variation that underlies biofilm formation in natural populations using genome-wide association studies (GWAS). Changes in gene expression of specific strains during biofilm formation were then investigated using RNA sequencing (RNA-seq). Genetic variation associated with enhanced biofilm formation was identified in 273 genes by GWAS and differential expression in 220 genes by RNA-seq. Statistical analyses show that the number of overlapping genes flagged by either type of experiment is less than expected by random sampling. This novel finding is consistent with an evolutionary scenario where rapid adaptation is driven by variation in gene expression of pioneer genes, and this is followed by slower adaptation driven by nucleotide changes within the core genome.
Collapse
Affiliation(s)
- William Monteith
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biology, University of Bath, Claverton Down, Bath, UK
| | - Ben Pascoe
- Department of Biology, University of Oxford, Oxford, UK
- Big Data Institute, University of Oxford, Oxford, UK
| | | | - Jack Clark
- Department of Genetics, University of Leicester, University Road, Leicester, UK
| | - Maliha Hakim
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | - Matthew D. Hitchings
- Swasnsea University Medical School, Swansea University, Singleton Campus, Swansea, UK
| | - Noel McCarthy
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroshi Asakura
- Division of Biomedical Food Research, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | | |
Collapse
|
32
|
Funabiki H, Wassing IE, Jia Q, Luo JD, Carroll T. Coevolution of the CDCA7-HELLS ICF-related nucleosome remodeling complex and DNA methyltransferases. eLife 2023; 12:RP86721. [PMID: 37769127 PMCID: PMC10538959 DOI: 10.7554/elife.86721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
5-Methylcytosine (5mC) and DNA methyltransferases (DNMTs) are broadly conserved in eukaryotes but are also frequently lost during evolution. The mammalian SNF2 family ATPase HELLS and its plant ortholog DDM1 are critical for maintaining 5mC. Mutations in HELLS, its activator CDCA7, and the de novo DNA methyltransferase DNMT3B, cause immunodeficiency-centromeric instability-facial anomalies (ICF) syndrome, a genetic disorder associated with the loss of DNA methylation. We here examine the coevolution of CDCA7, HELLS and DNMTs. While DNMT3, the maintenance DNA methyltransferase DNMT1, HELLS, and CDCA7 are all highly conserved in vertebrates and green plants, they are frequently co-lost in other evolutionary clades. The presence-absence patterns of these genes are not random; almost all CDCA7 harboring eukaryote species also have HELLS and DNMT1 (or another maintenance methyltransferase, DNMT5). Coevolution of presence-absence patterns (CoPAP) analysis in Ecdysozoa further indicates coevolutionary linkages among CDCA7, HELLS, DNMT1 and its activator UHRF1. We hypothesize that CDCA7 becomes dispensable in species that lost HELLS or DNA methylation, and/or the loss of CDCA7 triggers the replacement of DNA methylation by other chromatin regulation mechanisms. Our study suggests that a unique specialized role of CDCA7 in HELLS-dependent DNA methylation maintenance is broadly inherited from the last eukaryotic common ancestor.
Collapse
Affiliation(s)
- Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
| | - Isabel E Wassing
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
| | - Qingyuan Jia
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
| | - Ji-Dung Luo
- Bioinformatics Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Thomas Carroll
- Bioinformatics Resource Center, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
33
|
Hossain T, Singh A, Butzin NC. Escherichia coli cells are primed for survival before lethal antibiotic stress. Microbiol Spectr 2023; 11:e0121923. [PMID: 37698413 PMCID: PMC10581089 DOI: 10.1128/spectrum.01219-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/16/2023] [Indexed: 09/13/2023] Open
Abstract
Non-genetic factors can cause significant fluctuations in gene expression levels. Regardless of growing in a stable environment, this fluctuation leads to cell-to-cell variability in an isogenic population. This phenotypic heterogeneity allows a tiny subset of bacterial cells in a population called persister cells to tolerate long-term lethal antibiotic effects by entering into a non-dividing, metabolically repressed state. We occasionally noticed a high variation in persister levels, and to explore this, we tested clonal populations starting from a single cell using a modified Luria-Delbrück fluctuation test. Although we kept the conditions same, the diversity in persistence level among clones was relatively consistent: varying from ~60- to 100- and ~40- to 70-fold for ampicillin and apramycin, respectively. Then, we divided and diluted each clone to observe whether the same clone had comparable persister levels for more than one generation. Replicates had similar persister levels even when clones were divided, diluted by 1:20, and allowed to grow for approximately five generations. This result explicitly shows a cellular memory passed on for generations and eventually lost when cells are diluted to 1:100 and regrown (>seven generations). Our result demonstrates (1) the existence of a small population prepared for stress ("primed cells") resulting in higher persister numbers; (2) the primed memory state is reproducible and transient, passed down for generations but eventually lost; and (3) a heterogeneous persister population is a result of a transiently primed reversible cell state and not due to a pre-existing genetic mutation. IMPORTANCE Antibiotics have been highly effective in treating lethal infectious diseases for almost a century. However, the increasing threat of antibiotic resistance is again causing these diseases to become life-threatening. The longer a bacteria can survive antibiotics, the more likely it is to develop resistance. Complicating matters is that non-genetic factors can allow bacterial cells with identical DNA to gain transient resistance (also known as persistence). Here, we show that a small fraction of the bacterial population called primed cells can pass down non-genetic information ("memory") to their offspring, enabling them to survive lethal antibiotics for a long time. However, this memory is eventually lost. These results demonstrate how bacteria can leverage differences among genetically identical cells formed through non-genetic factors to form primed cells with a selective advantage to survive antibiotics.
Collapse
Affiliation(s)
- Tahmina Hossain
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Abhyudai Singh
- Electrical & Computer Engineering, University of Delaware, Newark, Delaware, USA
| | - Nicholas C. Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
34
|
Costeira R, Aduse-Opoku J, Vernon JJ, Rodriguez-Algarra F, Joseph S, Devine DA, Marsh PD, Rakyan V, Curtis MA, Bell JT. Hemin availability induces coordinated DNA methylation and gene expression changes in Porphyromonas gingivalis. mSystems 2023; 8:e0119322. [PMID: 37436062 PMCID: PMC10470040 DOI: 10.1128/msystems.01193-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/12/2023] [Indexed: 07/13/2023] Open
Abstract
Periodontal disease is a chronic inflammatory disease in which the oral pathogen Porphyromonas gingivalis plays an important role. Porphyromonas gingivalis expresses virulence determinants in response to higher hemin concentrations, but the underlying regulatory processes remain unclear. Bacterial DNA methylation has the potential to fulfil this mechanistic role. We characterized the methylome of P. gingivalis, and compared its variation to transcriptome changes in response to hemin availability. Porphyromonas gingivalis W50 was grown in chemostat continuous culture with excess or limited hemin, prior to whole-methylome and transcriptome profiling using Nanopore and Illumina RNA-Seq. DNA methylation was quantified for Dam/Dcm motifs and all-context N6-methyladenine (6mA) and 5-methylcytosine (5mC). Of all 1,992 genes analyzed, 161 and 268 were respectively over- and under-expressed with excess hemin. Notably, we detected differential DNA methylation signatures for the Dam "GATC" motif and both all-context 6mA and 5mC in response to hemin availability. Joint analyses identified a subset of coordinated changes in gene expression, 6mA, and 5mC methylation that target genes involved in lactate utilization and ABC transporters. The results identify altered methylation and expression responses to hemin availability in P. gingivalis, with insights into mechanisms regulating its virulence in periodontal disease. IMPORTANCE DNA methylation has important roles in bacteria, including in the regulation of transcription. Porphyromonas gingivalis, an oral pathogen in periodontitis, exhibits well-established gene expression changes in response to hemin availability. However, the regulatory processes underlying these effects remain unknown. We profiled the novel P. gingivalis epigenome, and assessed epigenetic and transcriptome variation under limited and excess hemin conditions. As expected, multiple gene expression changes were detected in response to limited and excess hemin that reflect health and disease, respectively. Notably, we also detected differential DNA methylation signatures for the Dam "GATC" motif and both all-context 6mA and 5mC in response to hemin. Joint analyses identified coordinated changes in gene expression, 6mA, and 5mC methylation that target genes involved in lactate utilization and ABC transporters. The results identify novel regulatory processes underlying the mechanism of hemin regulated gene expression in P. gingivalis, with phenotypic impacts on its virulence in periodontal disease.
Collapse
Affiliation(s)
- Ricardo Costeira
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Joseph Aduse-Opoku
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Jon J. Vernon
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom
| | - Francisco Rodriguez-Algarra
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Susan Joseph
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Deirdre A. Devine
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom
| | - Philip D. Marsh
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom
| | - Vardhman Rakyan
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Michael A. Curtis
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Jordana T. Bell
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| |
Collapse
|
35
|
Yang J, Son Y, Kang M, Park W. AamA-mediated epigenetic control of genome-wide gene expression and phenotypic traits in Acinetobacter baumannii ATCC 17978. Microb Genom 2023; 9:mgen001093. [PMID: 37589545 PMCID: PMC10483419 DOI: 10.1099/mgen.0.001093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 08/03/2023] [Indexed: 08/18/2023] Open
Abstract
Individual deletions of three genes encoding orphan DNA methyltransferases resulted in the occurrence of growth defect only in the aamA (encoding AcinetobacterAdenine Methylase A) mutant of A. baumannii strain ATCC 17978. Our single-molecule real-time sequencing-based methylome analysis revealed multiple AamA-mediated DNA methylation sites and proposed a potent census target motif (TTTRAATTYAAA). Loss of Dam led to modulation of genome-wide gene expression, and several Dam-target sites including the promoter region of the trmD operon (rpsP, rimM, trmD, and rplS) were identified through our methylome and transcriptome analyses. AamA methylation also appeared to control the expression of many genes linked to membrane functions (lolAB, lpxO), replication (dnaA) and protein synthesis (trmD operon) in the strain ATCC 17978. Interestingly, cellular resistance against several antibiotics and ethidium bromide through functions of efflux pumps diminished in the absence of the aamA gene, and the complementation of aamA gene restored the wild-type phenotypes. Other tested phenotypic traits such as outer-membrane vesicle production, biofilm formation and virulence were also affected in the aamA mutant. Collectively, our data indicated that epigenetic regulation through AamA-mediated DNA methylation of novel target sites mostly in the regulatory regions could contribute significantly to changes in multiple phenotypic traits in A. baumannii ATCC 17978.
Collapse
Affiliation(s)
- Jihye Yang
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Yongjun Son
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Mingyeong Kang
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
36
|
Soares-Castro P, Soares F, Reis F, Lino-Neto T, Santos PM. Bioprospection of the bacterial β-myrcene-biotransforming trait in the rhizosphere. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12650-w. [PMID: 37405434 PMCID: PMC10386936 DOI: 10.1007/s00253-023-12650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 07/06/2023]
Abstract
The biocatalysis of β-myrcene into value-added compounds, with enhanced organoleptic/therapeutic properties, may be performed by resorting to specialized enzymatic machinery of β-myrcene-biotransforming bacteria. Few β-myrcene-biotransforming bacteria have been studied, limiting the diversity of genetic modules/catabolic pathways available for biotechnological research. In our model Pseudomonas sp. strain M1, the β-myrcene catabolic core-code was identified in a 28-kb genomic island (GI). The lack of close homologs of this β-myrcene-associated genetic code prompted a bioprospection of cork oak and eucalyptus rhizospheres, from 4 geographic locations in Portugal, to evaluate the environmental diversity and dissemination of the β-myrcene-biotransforming genetic trait (Myr+). Soil microbiomes were enriched in β-myrcene-supplemented cultures, from which β-myrcene-biotransforming bacteria were isolated, belonging to Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Sphingobacteriia classes. From a panel of representative Myr+ isolates that included 7 bacterial genera, the production of β-myrcene derivatives previously reported in strain M1 was detected in Pseudomonas spp., Cupriavidus sp., Sphingobacterium sp., and Variovorax sp. A comparative genomics analysis against the genome of strain M1 found the M1-GI code in 11 new Pseudomonas genomes. Full nucleotide conservation of the β-myrcene core-code was observed throughout a 76-kb locus in strain M1 and all 11 Pseudomonas spp., resembling the structure of an integrative and conjugative element (ICE), despite being isolated from different niches. Furthermore, the characterization of isolates not harboring the Myr+-related 76-kb locus suggested that they may biotransform β-myrcene via alternative catabolic loci, being thereby a novel source of enzymes and biomolecule catalogue for biotechnological exploitation. KEY POINTS: • The isolation of 150 Myr+ bacteria hints the ubiquity of such trait in the rhizosphere. • The Myr+ trait is spread across different bacterial taxonomic classes. • The core-code for the Myr+ trait was detected in a novel ICE, only found in Pseudomonas spp.
Collapse
Affiliation(s)
- Pedro Soares-Castro
- CBMA - Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, Portugal
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisbon, Portugal
| | - Filipa Soares
- CBMA - Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Francisca Reis
- CBMA - Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Teresa Lino-Neto
- CBMA - Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Pedro M Santos
- CBMA - Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, Portugal.
| |
Collapse
|
37
|
Gardner A, Soni A, Cookson A, Brightwell G. Light tolerance of extended spectrum β-lactamase producing Escherichia coli strains after repetitive exposure to far-UVC and blue LED light. J Appl Microbiol 2023; 134:lxad124. [PMID: 37463831 DOI: 10.1093/jambio/lxad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023]
Abstract
AIMS The aim of this study was to investigate dual far-UVC (Ultraviolet-C) (222 nm) and blue LED (Light Emitting Diode) (405 nm) light on the inactivation of extended spectrum β-lactamase-producing Escherichia coli (ESBL-Ec) and to determine if repetitive exposure to long pulses of light resulted in changes to light tolerance, and antibiotic susceptibility. METHODS AND RESULTS Antimicrobial efficiency of dual and individual light wavelengths and development of light tolerance in E. coli was evaluated through a spread plate method after exposure to light at 25 cm. Dual light exposure for 30 min resulted in a 5-6 log10 CFU mL-1 reduction in two ESBL-Ec and two antibiotic-sensitive control E. coli strains. The overall inhibition achieved by dual light treatment was always greater than the combined reductions (log10 CFU) observed from exposure to individual light wavelengths (combined 222-405 nm), indicating a synergistic relationship between blue LED and far-UVC light when used together. Repetitive long pulses of dual and individual far-UVC light exposure resulted in light tolerance in two ESBL-Ec strains but not the antibiotic-sensitive E. coli strains. Subsequent passages of repetitive light-treated ESBL-Ec strains continued to exhibit light tolerance. Antibiotic susceptibility was determined through a standard disk diffusion method. No changes were observed in the antibiotic susceptibility profiles for any of the four strains after exposure to either dual or individual wavelengths. CONCLUSIONS Dual light exposure was effective in the disinfection of ESBL-Ec in solution; however, antibiotic-resistant E. coli were able to develop light tolerance after repetitive exposure to light.
Collapse
Affiliation(s)
- Amanda Gardner
- Food Systems Integrity Team, AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand
| | - Aswathi Soni
- Food Systems Integrity Team, AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand
| | - Adrian Cookson
- Food Systems Integrity Team, AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand
- School of Veterinary Medicine, Massey University Manawatu (Turitea), Tennent Drive, Palmerston North 4474, New Zealand
| | - Gale Brightwell
- Food Systems Integrity Team, AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University Manawatu (Turitea), Tennent Drive, Palmerston North 4474, New Zealand
| |
Collapse
|
38
|
D’Aquila P, De Rango F, Paparazzo E, Passarino G, Bellizzi D. Epigenetic-Based Regulation of Transcriptome in Escherichia coli Adaptive Antibiotic Resistance. Microbiol Spectr 2023; 11:e0458322. [PMID: 37184386 PMCID: PMC10269836 DOI: 10.1128/spectrum.04583-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/24/2023] [Indexed: 05/16/2023] Open
Abstract
Adaptive antibiotic resistance is a transient metabolic adaptation of bacteria limiting their sensitivity to low, progressively increased, concentrations of antibiotics. Unlike innate and acquired resistance, adaptive resistance is dependent on the presence of antibiotics, and it disappears when the triggering factor is removed. Low concentrations of antibiotics are largely diffused in natural environments, in the food industry or in certain body compartments of humans when used therapeutically, or in animals when used for growth promotion. However, molecular mechanisms underlying this phenomenon are still poorly characterized. Here, we present experiments suggesting that epigenetic modifications, triggered by low concentrations of ampicillin, gentamicin, and ciprofloxacin, may modulate the sensitivity of bacteria to antibiotics. The epigenetic modifications we observed were paralleled by modifications of the expression pattern of many genes, including some of those that have been found mutated in strains with permanent antibiotic resistance. As the use of low concentrations of antibiotics is spreading in different contexts, our findings may suggest new targets and strategies to avoid adaptive antibiotic resistance. This might be very important as, in the long run, this transient adaptation may increase the chance, allowing the survival and the flourishing of bacteria populations, of the onset of mutations leading to stable resistance. IMPORTANCE In this study, we characterized the modifications of epigenetic marks and of the whole transcriptome in the adaptive response of Escherichia coli cells to low concentrations of ampicillin, gentamicin, and ciprofloxacin. As the transient adaptation does increase the chance of permanent resistance, possibly allowing the survival and flourishing of bacteria populations where casual mutations providing resistance may give an immediate advantage, the importance of this study is not only in the identification of possible molecular mechanisms underlying adaptive resistance to antibiotics, but also in suggesting new strategies to avoid adaptation.
Collapse
Affiliation(s)
- Patrizia D’Aquila
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Francesco De Rango
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
39
|
Wang X, Yu D, Chen L. Antimicrobial resistance and mechanisms of epigenetic regulation. Front Cell Infect Microbiol 2023; 13:1199646. [PMID: 37389209 PMCID: PMC10306973 DOI: 10.3389/fcimb.2023.1199646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/26/2023] [Indexed: 07/01/2023] Open
Abstract
The rampant use of antibiotics in animal husbandry, farming and clinical disease treatment has led to a significant issue with pathogen resistance worldwide over the past decades. The classical mechanisms of resistance typically investigate antimicrobial resistance resulting from natural resistance, mutation, gene transfer and other processes. However, the emergence and development of bacterial resistance cannot be fully explained from a genetic and biochemical standpoint. Evolution necessitates phenotypic variation, selection, and inheritance. There are indications that epigenetic modifications also play a role in antimicrobial resistance. This review will specifically focus on the effects of DNA modification, histone modification, rRNA methylation and the regulation of non-coding RNAs expression on antimicrobial resistance. In particular, we highlight critical work that how DNA methyltransferases and non-coding RNAs act as transcriptional regulators that allow bacteria to rapidly adapt to environmental changes and control their gene expressions to resist antibiotic stress. Additionally, it will delve into how Nucleolar-associated proteins in bacteria perform histone functions akin to eukaryotes. Epigenetics, a non-classical regulatory mechanism of bacterial resistance, may offer new avenues for antibiotic target selection and the development of novel antibiotics.
Collapse
Affiliation(s)
- Xinrui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- National Health Commission Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Donghong Yu
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- National Health Commission Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Lu Chen
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- National Health Commission Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| |
Collapse
|
40
|
Ashy RA, Jalal RS, Sonbol HS, Alqahtani MD, Sefrji FO, Alshareef SA, Alshehrei FM, Abuauf HW, Baz L, Tashkandi MA, Hakeem IJ, Refai MY, Abulfaraj AA. Functional annotation of rhizospheric phageome of the wild plant species Moringa oleifera. Front Microbiol 2023; 14:1166148. [PMID: 37260683 PMCID: PMC10227523 DOI: 10.3389/fmicb.2023.1166148] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/10/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction The study aims to describe phageome of soil rhizosphere of M.oleifera in terms of the genes encoding CAZymes and other KEGG enzymes. Methods Genes of the rhizospheric virome of the wild plant species Moringa oleifera were investigated for their ability to encode useful CAZymes and other KEGG (Kyoto Encyclopedia of Genes and Genomes) enzymes and to resist antibiotic resistance genes (ARGs) in the soil. Results Abundance of these genes was higher in the rhizospheric microbiome than in the bulk soil. Detected viral families include the plant viral family Potyviridae as well as the tailed bacteriophages of class Caudoviricetes that are mainly associated with bacterial genera Pseudomonas, Streptomyces and Mycobacterium. Viral CAZymes in this soil mainly belong to glycoside hydrolase (GH) families GH43 and GH23. Some of these CAZymes participate in a KEGG pathway with actions included debranching and degradation of hemicellulose. Other actions include biosynthesizing biopolymer of the bacterial cell wall and the layered cell wall structure of peptidoglycan. Other CAZymes promote plant physiological activities such as cell-cell recognition, embryogenesis and programmed cell death (PCD). Enzymes of other pathways help reduce the level of soil H2O2 and participate in the biosynthesis of glycine, malate, isoprenoids, as well as isoprene that protects plant from heat stress. Other enzymes act in promoting both the permeability of bacterial peroxisome membrane and carbon fixation in plants. Some enzymes participate in a balanced supply of dNTPs, successful DNA replication and mismatch repair during bacterial cell division. They also catalyze the release of signal peptides from bacterial membrane prolipoproteins. Phages with the most highly abundant antibiotic resistance genes (ARGs) transduce species of bacterial genera Pseudomonas, Streptomyces, and Mycobacterium. Abundant mechanisms of antibiotic resistance in the rhizosphere include "antibiotic efflux pump" for ARGs soxR, OleC, and MuxB, "antibiotic target alteration" for parY mutant, and "antibiotic inactivation" for arr-1. Discussion These ARGs can act synergistically to inhibit several antibiotics including tetracycline, penam, cephalosporin, rifamycins, aminocoumarin, and oleandomycin. The study highlighted the issue of horizontal transfer of ARGs to clinical isolates and human gut microbiome.
Collapse
Affiliation(s)
- Ruba A. Ashy
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Rewaa S. Jalal
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Hana S. Sonbol
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mashael D. Alqahtani
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fatmah O. Sefrji
- Department of Biology, College of Science, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Sahar A. Alshareef
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| | - Fatimah M. Alshehrei
- Department of Biology, Jumum College University, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Haneen W. Abuauf
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Lina Baz
- Department of Biochemistry, Faculty of Science, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Manal A. Tashkandi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Israa J. Hakeem
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammed Y. Refai
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Aala A. Abulfaraj
- Biological Sciences Department, College of Science & Arts, King AbdulAziz University, Rabigh, Saudi Arabia
| |
Collapse
|
41
|
Pisciotta A, Sampino AM, Presentato A, Galardini M, Manteca A, Alduina R. The DNA cytosine methylome revealed two methylation motifs in the upstream regions of genes related to morphological and physiological differentiation in Streptomyces coelicolor A(3)2 M145. Sci Rep 2023; 13:7038. [PMID: 37120673 PMCID: PMC10148868 DOI: 10.1038/s41598-023-34075-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023] Open
Abstract
DNA methylation is an epigenetic modification detected in both prokaryotic and eukaryotic genomic DNAs. In bacteria, the importance of 5-methylcytosine (m5C) in gene expression has been less investigated than in eukaryotic systems. Through dot-blot analysis employing m5C antibodies against chromosomal DNA, we have previously demonstrated that m5C influences the differentiation of Streptomyces coelicolor A(3)2 M145 in solid sporulating and liquid non-sporulating complex media. Here, we mapped the methylated cytosines of the M145 strain growing in the defined Maltose Glutamate (MG) liquid medium. Sequencing of the M145 genome after bisulfite treatment (BS-sequencing) evidenced 3360 methylated cytosines and the two methylation motifs, GGCmCGG and GCCmCG, in the upstream regions of 321 genes. Besides, the role of cytosine methylation was investigated using the hypo-methylating agent 5'-aza-2'-deoxycytidine (5-aza-dC) in S. coelicolor cultures, demonstrating that m5C affects both growth and antibiotic biosynthesis. Finally, quantitative reverse-transcription polymerase-chain-reaction (RT-qPCR) analysis of genes containing the methylation motifs in the upstream regions showed that 5-aza-dC treatment influenced their transcriptional levels and those of the regulatory genes for two antibiotics. To the best of our knowledge, this is the first study that reports the cytosine methylome of S. coelicolor M145, supporting the crucial role ascribed to cytosine methylation in controlling bacterial gene expression.
Collapse
Affiliation(s)
- Annalisa Pisciotta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy
| | - Alessia Maria Sampino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy
| | - Alessandro Presentato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy
| | - Marco Galardini
- Department of Biology, University of Florence, Florence, Italy
- EMBL-EBI, Wellcome Genome Campus, Cambridge, UK
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Angel Manteca
- Área de Microbiología, Departamento de Biología Funcional, IUOPA and ISPA, Facultad de Medicina, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy.
| |
Collapse
|
42
|
Fernandez NL, Chen Z, Fuller DEH, van Gijtenbeek LA, Nye TM, Biteen JS, Simmons LA. DNA Methylation and RNA-DNA Hybrids Regulate the Single-Molecule Localization of a DNA Methyltransferase on the Bacterial Nucleoid. mBio 2023; 14:e0318522. [PMID: 36645292 PMCID: PMC9973331 DOI: 10.1128/mbio.03185-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/19/2022] [Indexed: 01/17/2023] Open
Abstract
Bacterial DNA methyltransferases (MTases) function in restriction modification systems, cell cycle control, and the regulation of gene expression. DnmA is a recently described DNA MTase that forms N6-methyladenosine at nonpalindromic 5'-GACGAG-3' sites in Bacillus subtilis, yet how DnmA activity is regulated is unknown. To address DnmA regulation, we tested substrate binding in vitro and found that DnmA binds poorly to methylated DNA and to an RNA-DNA hybrid with the DNA recognition sequence. Further, DnmA variants with amino acid substitutions that disrupt cognate sequence recognition or catalysis also bind poorly to DNA. Using superresolution fluorescence microscopy and single-molecule tracking of DnmA-PAmCherry, we characterized the subcellular DnmA diffusion and detected its preferential localization to the replisome region and the nucleoid. Under conditions where the chromosome is highly methylated, upon RNA-DNA hybrid accumulation, or with a DnmA variant with severely limited DNA binding activity, DnmA is excluded from the nucleoid, demonstrating that prior methylation or accumulation of RNA-DNA hybrids regulates the association of DnmA with the chromosome in vivo. Furthermore, despite the high percentage of methylated recognition sites and the proximity to putative endonuclease genes conserved across bacterial species, we find that DnmA fails to protect B. subtilis against phage predation, suggesting that DnmA is functionally an orphan MTase involved in regulating gene expression. Our work explores the regulation of a bacterial DNA MTase and identifies prior methylation and RNA-DNA hybrids as regulators of MTase localization. These MTase regulatory features could be common across biology. IMPORTANCE DNA methyltransferases (MTases) influence gene expression, cell cycle control, and host defense through DNA modification. Predicted MTases are pervasive across bacterial genomes, but the vast majority remain uncharacterized. Here, we show that in the soil microorganism Bacillus subtilis, the DNA MTase dnmA and neighboring genes are remnants of a phage defense system that no longer protects against phage predation. This result suggests that portions of the bacterial methylome may originate from inactive restriction modification systems that have maintained methylation activity. Analysis of DnmA movement in vivo shows that active DnmA localizes in the nucleoid, suggesting that DnmA can search for recognition sequences throughout the nucleoid region with some preference for the replisome. Our results further show that prior DNA methylation and RNA-DNA hybrids regulate DnmA dynamics and nucleoid localization, providing new insight into how DNA methylation is coordinated within the cellular environment.
Collapse
Affiliation(s)
- Nicolas L. Fernandez
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ziyuan Chen
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| | - David E. H. Fuller
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Lieke A. van Gijtenbeek
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Taylor M. Nye
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Julie S. Biteen
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
43
|
Has EG, Akçelik N, Akçelik M. Comparative global gene expression analysis of biofilm forms of Salmonella Typhimurium ATCC 14028 and its seqA mutant. Gene X 2023; 853:147094. [PMID: 36470486 DOI: 10.1016/j.gene.2022.147094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
In this study, comparative transcriptomic analyzes (mRNA and miRNA) were performed on the biofilm forms of S. Typhimurium ATCC 14028 wild-type strain and its seqA gene mutant in order to determine the regulation characteristics of the seqA gene in detail. The results of global gene expression analyses showed an increase in the expression level of 54 genes and a decrease in the expression level of 155 genes (p < 0.05) in the seqA mutant compared to the wild-type strain. 10 of the 48 miRNAs identified on behalf of sequence analysis are new miRNA records for Salmonella. Transcripts of 14 miRNAs differed between wild-type strain and seqA mutant (p < 0.05), of which eight were up-regulated and six were down-regulated. Bioinformatic analyzes showed that differentially expressed genes in the wild-type strain and its seqA gene mutant play a role in different metabolic processes as well as biofilm formation, pathogenicity and virulence. When the transcriptomic data were interpreted together with the findings obtained from phenotypic tests such as motility, attachment to host cells and biofilm morphotyping, it was determined that the seqA gene has a critical function especially for the adhesion and colonization stages of biofilm formation, as well as for biofilm stability. Transcriptomic data pointing out that the seqA gene is also a general positive regulator of T3SS effector proteins active in cell invasion in S. Typhimurium wild-type biofilm, proves that this gene is involved in Salmonella host cell invasion.
Collapse
Affiliation(s)
- Elif Gamze Has
- Department of Biology, Ankara University, Yenimahalle, 06100 Ankara, Turkey
| | - Nefise Akçelik
- Biotechnology Institute, Ankara University, Keçiören, 06135 Ankara, Turkey
| | - Mustafa Akçelik
- Department of Biology, Ankara University, Yenimahalle, 06100 Ankara, Turkey.
| |
Collapse
|
44
|
Yang M, Li X, Tian Z, Ma L, Ma J, Liu Y, Shang G, Liang A, Wu W, Chen Z. Structures of MPND Reveal the Molecular Recognition of Nucleosomes. Int J Mol Sci 2023; 24:ijms24043368. [PMID: 36834777 PMCID: PMC9963953 DOI: 10.3390/ijms24043368] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Adenine N6 methylation in DNA (6mA) is a well-known epigenetic modification in bacteria, phages, and eukaryotes. Recent research has identified the Mpr1/Pad1 N-terminal (MPN) domain-containing protein (MPND) as a sensor protein that may recognize DNA 6mA modification in eukaryotes. However, the structural details of MPND and the molecular mechanism of their interaction remain unknown. Herein, we report the first crystal structures of the apo-MPND and MPND-DNA complex at resolutions of 2.06 Å and 2.47 Å, respectively. In solution, the assemblies of both apo-MPND and MPND-DNA are dynamic. In addition, MPND was found to possess the ability to bind directly to histones, no matter the N-terminal restriction enzyme-adenine methylase-associated domain or the C-terminal MPN domain. Moreover, the DNA and the two acidic regions of MPND synergistically enhance the interaction between MPND and histones. Therefore, our findings provide the first structural information regarding the MPND-DNA complex and also provide evidence of MPND-nucleosome interactions, thereby laying the foundation for further studies on gene control and transcriptional regulation.
Collapse
|
45
|
Gao Q, Lu S, Wang Y, He L, Wang M, Jia R, Chen S, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Mao S, Ou X, Sun D, Tian B, Cheng A. Bacterial DNA methyltransferase: A key to the epigenetic world with lessons learned from proteobacteria. Front Microbiol 2023; 14:1129437. [PMID: 37032876 PMCID: PMC10073500 DOI: 10.3389/fmicb.2023.1129437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Epigenetics modulates expression levels of various important genes in both prokaryotes and eukaryotes. These epigenetic traits are heritable without any change in genetic DNA sequences. DNA methylation is a universal mechanism of epigenetic regulation in all kingdoms of life. In bacteria, DNA methylation is the main form of epigenetic regulation and plays important roles in affecting clinically relevant phenotypes, such as virulence, host colonization, sporulation, biofilm formation et al. In this review, we survey bacterial epigenomic studies and focus on the recent developments in the structure, function, and mechanism of several highly conserved bacterial DNA methylases. These methyltransferases are relatively common in bacteria and participate in the regulation of gene expression and chromosomal DNA replication and repair control. Recent advances in sequencing techniques capable of detecting methylation signals have enabled the characterization of genome-wide epigenetic regulation. With their involvement in critical cellular processes, these highly conserved DNA methyltransferases may emerge as promising targets for developing novel epigenetic inhibitors for biomedical applications.
Collapse
Affiliation(s)
- Qun Gao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Shuwei Lu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuwei Wang
- Key Laboratory of Livestock and Poultry Provenance Disease Research in Mianyang, Sichuan, China
| | - Longgui He
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juan Huang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Sai Mao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xumin Ou
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Di Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bin Tian
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
46
|
A regulatory hydrogenase gene cluster observed in the thioautotrophic symbiont of Bathymodiolus mussel in the East Pacific Rise. Sci Rep 2022; 12:22232. [PMID: 36564432 PMCID: PMC9789115 DOI: 10.1038/s41598-022-26669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The mytilid mussel Bathymodiolus thermophilus lives in the deep-sea hydrothermal vent regions due to its relationship with chemosynthetic symbiotic bacteria. It is well established that symbionts reside in the gill bacteriocytes of the mussel and can utilize hydrogen sulfide, methane, and hydrogen from the surrounding environment. However, it is observed that some mussel symbionts either possess or lack genes for hydrogen metabolism within the single-ribotype population and host mussel species level. Here, we found a hydrogenase cluster consisting of additional H2-sensing hydrogenase subunits in a complete genome of B. thermophilus symbiont sampled from an individual mussel from the East Pacific Rise (EPR9N). Also, we found methylated regions sparsely distributed throughout the EPR9N genome, mainly in the transposase regions and densely present in the rRNA gene regions. CRISPR diversity analysis confirmed that this genome originated from a single symbiont strain. Furthermore, from the comparative analysis, we observed variation in genome size, gene content, and genome re-arrangements across individual hosts suggesting multiple symbiont strains can associate with B. thermophilus. The ability to acquire locally adaptive various symbiotic strains may serve as an effective mechanism for successfully colonizing different chemosynthetic environments across the global oceans by host mussels.
Collapse
|
47
|
An Emerging Lineage of Uropathogenic Extended Spectrum β-Lactamase Escherichia coli ST127. Microbiol Spectr 2022; 10:e0251122. [PMID: 36416548 PMCID: PMC9769692 DOI: 10.1128/spectrum.02511-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is one of the most common causes of urinary tract infections. Here, we report for the first time the whole-genome sequencing (WGS) and analysis of four extended-spectrum β-lactamase (ESBL), UPEC sequence type (ST) 127 isolates that were recovered from patients in five hospitals in Armenia from January to August of 2019. A phylogenetic comparison revealed that our isolates were closely related to each other by their core and accessory genomes, despite having been isolated from different regions and hospitals in Armenia. We identified unique genes in our isolates and in a closely related isolate recovered in France. The unique genes (hemolysin E virulence gene, lactate utilization operon lutABC, and endonuclease restriction modification operon hsdMSR) were identified in three separate genomic regions that were adjacent to prophage genes, including one region containing the TonB-dependent iron siderophore receptor gene ireA, which was only found in 5 other ST127 isolates from the European Nucleotide Archive (ENA). We further identified that these isolates possessed unique virulence and metabolic genes and harbored antibiotic resistance genes, including the ESBL genes blaCTX-M-3 (n = 3), blaCTX-M-236 (n = 1), and blaTEM-1 (n = 1), in addition to a quinolone resistance protein gene qnrD1 (n = 1), which was absent in the ST127 isolates obtained from the ENA. Moreover, a plasmid replicon gene IncI2 (n = 1) was unique to ARM88 of the Armenian isolates. Our findings demonstrate that at the time of this study, E. coli ST127 was a cause of urinary tract infections in patients in different regions of Armenia, with a possibility of cross-country transmission between Armenia and France. IMPORTANCE Whole-genome sequencing studies of pathogens causing infectious diseases are seriously lacking in Armenia, hampering global efforts to track, trace and contain infectious disease outbreaks. In this study, we report for the first-time the whole-genome sequencing and analysis of ESBL UPEC ST127 isolates recovered from hospitalized patients in Armenia and compare them with other E. coli ST127 retrieved from the ENA. We found close genetic similarities of the Armenian isolates, indicating that E. coli ST127 was potentially a dominant lineage causing urinary tract infections in Armenia. Furthermore, we identified unique genes that were horizontally acquired in the clusters of Armenian and French isolates that were absent in other ST127 isolates obtained from the ENA. Our findings highlight a possible cross-country transmission between Armenia and France and the idea that the implementation of WGS surveillance could contribute to global efforts in tackling antibiotic resistance, as bacteria carrying antimicrobial resistance (AMR) genes do not recognize borders.
Collapse
|
48
|
Kim H, Kim JH, Cho H, Ko KS. Overexpression of a DNA Methyltransferase Increases Persister Cell Formation in Acinetobacter baumannii. Microbiol Spectr 2022; 10:e0265522. [PMID: 36416541 PMCID: PMC9769888 DOI: 10.1128/spectrum.02655-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
Many mechanisms have been proposed to be involved in the formation of bacterial persister cells. In this study, we investigated the impact of dam encoding DNA methylation on persister cell formation in Acinetobacter. We constructed plasmids overexpressing dam encoding DNA-(adenine N6)-methyltransferase and four genes as possibly involved in persistence and introduced them into three A. baumannii strains. For persister cell formation assays, bacteria were exposed to ciprofloxacin, imipenem, cefotaxime, and rifampin, and the transcription levels of the genes were measured by qRT-PCR. In addition, growth curves of strains were determined. We found that all five genes were upregulated following antibiotic exposure. Dam overexpression increased persister cell formation rates and activated the four persister cell-involved genes. Among the four persister cell-involved genes, only RecC overexpression increase persister cell formation rates. While recC-overexpressing strains showed higher growth rates, dam-overexpressing strains showed decreased growth rates. In this study, we revealed that a DNA methyltransferase may regulate persister cell formation in A. baumannii, while RecC seems to mediate epigenetic regulation of persister cell formation. However, Dam and RecC may act at different persister cell formation states. IMPORTANCE Bacterial persister cells are not killed by high concentration of antibiotics, despite its antibiotic susceptibility. It has been known that they may cause antibiotic treatment failure and contribute to the evolution of antibiotic resistance. Although many mechanisms have been suggested and verified for persister cell formation, many remains to be uncovered. In this study, we report that DNA methyltransferase leads to an increase in persister cell formation, through transcriptional activation of several regulatory genes. Our results suggest that DNA methyltransferases could be target proteins to prevent formation of persister cells.
Collapse
Affiliation(s)
- Hyunkeun Kim
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Jee Hong Kim
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Hongbaek Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kwan Soo Ko
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
49
|
Hamid Hassan K, Asaad Ebrahim A. Epigenetic effects on broiler exposure to magnetic field on progeny meat production traits. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.04.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This experiment was conducted to determine the effect of the exposure of Ross 308 broiler breeders to a magnetic field on the meat production traits of progeny. The experimental flock consisted of 60 hens and ten cocks of Ross 308 broiler breeders at 36 weeks of age, divided randomly into four groups; each group applied for treatment with three replicates. The treatments were control (T1), storage of semen in an 803 gauss magnetic field for 24 h (T2), storage of fertilized eggs in a magnetic field of 250 gausses for 72 h before entering the incubator (T3), and exposing individual cages to 250 gausses of magnetic field for 8 Weeks (T4). The progeny result from the broiler breeders groups was recorded for body weight and feed intake, compared with the control (T1). The results showed no significant differences among progeny groups in body weight, weekly weight gain and weekly feed intake during the rearing period.
Keywords: Epigenetic, magnetic broiler breeders, broiler progeny performance
Collapse
|
50
|
Breckell GL, Silander OK. Growth condition-dependent differences in methylation imply transiently differentiated DNA methylation states in Escherichia coli. G3 (BETHESDA, MD.) 2022; 13:6858946. [PMID: 36454087 PMCID: PMC9911048 DOI: 10.1093/g3journal/jkac310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 12/05/2022]
Abstract
DNA methylation in bacteria frequently serves as a simple immune system, allowing recognition of DNA from foreign sources, such as phages or selfish genetic elements. However, DNA methylation also affects other cell phenotypes in a heritable manner (i.e. epigenetically). While there are several examples of methylation affecting transcription in an epigenetic manner in highly localized contexts, it is not well-established how frequently methylation serves a more general epigenetic function over larger genomic scales. To address this question, here we use Oxford Nanopore sequencing to profile DNA modification marks in three natural isolates of Escherichia coli. We first identify the DNA sequence motifs targeted by the methyltransferases in each strain. We then quantify the frequency of methylation at each of these motifs across the entire genome in different growth conditions. We find that motifs in specific regions of the genome consistently exhibit high or low levels of methylation. Furthermore, we show that there are replicable and consistent differences in methylated regions across different growth conditions. This suggests that during growth, E. coli transiently differentiate into distinct methylation states that depend on the growth state, raising the possibility that measuring DNA methylation alone can be used to infer bacterial growth states without additional information such as transcriptome or proteome data. These results show the utility of using Oxford Nanopore sequencing as an economic means to infer DNA methylation status. They also provide new insights into the dynamics of methylation during bacterial growth and provide evidence of differentiated cell states, a transient analog to what is observed in the differentiation of cell types in multicellular organisms.
Collapse
Affiliation(s)
- Georgia L Breckell
- Corresponding author: School of Natural and Sciences, Massey University, Auckland 0745, New Zealand. ; Corresponding author: School of Natural and Sciences, Massey University, Auckland 0745, New Zealand. Present address: Ministry for Primary Industries, Auckland 2022, New Zealand
| | - Olin K Silander
- Corresponding author: School of Natural and Sciences, Massey University, Auckland 0745, New Zealand. ; Corresponding author: School of Natural and Sciences, Massey University, Auckland 0745, New Zealand. Present address: Ministry for Primary Industries, Auckland 2022, New Zealand
| |
Collapse
|