1
|
Swanepoel CM, Mueller JL. Out with the old, in with the new: Meiotic driving of sex chromosome evolution. Semin Cell Dev Biol 2024; 163:14-21. [PMID: 38664120 PMCID: PMC11351068 DOI: 10.1016/j.semcdb.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024]
Abstract
Chromosomal regions with meiotic drivers exhibit biased transmission (> 50 %) over their competing homologous chromosomal region. These regions often have two prominent genetic features: suppressed meiotic crossing over and rapidly evolving multicopy gene families. Heteromorphic sex chromosomes (e.g., XY) often share these two genetic features with chromosomal regions exhibiting meiotic drive. Here, we discuss parallels between meiotic drive and sex chromosome evolution, how the divergence of heteromorphic sex chromosomes can be influenced by meiotic drive, experimental approaches to study meiotic drive on sex chromosomes, and meiotic drive in traditional and non-traditional model organisms with high-quality genome assemblies. The newly available diversity of high-quality sex chromosome sequences allows us to revisit conventional models of sex chromosome evolution through the lens of meiotic drive.
Collapse
Affiliation(s)
- Callie M Swanepoel
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine St, Ann Arbor, MI, USA
| | - Jacob L Mueller
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine St, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Xu YH, Suo F, Zhang XR, Du TY, Hua Y, Jia GS, Zheng JX, Du LL. Evolutionary Modes of wtf Meiotic Driver Genes in Schizosaccharomyces pombe. Genome Biol Evol 2024; 16:evae221. [PMID: 39391964 PMCID: PMC11497594 DOI: 10.1093/gbe/evae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/22/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Killer meiotic drivers are a class of selfish genetic elements that bias inheritance in their favor by destroying meiotic progeny that do not carry them. How killer meiotic drivers evolve is not well understood. In the fission yeast, Schizosaccharomyces pombe, the largest gene family, known as the wtf genes, is a killer meiotic driver family that causes intraspecific hybrid sterility. Here, we investigate how wtf genes evolve using long-read-based genome assemblies of 31 distinct S. pombe natural isolates, which encompass the known genetic diversity of S. pombe. Our analysis, involving nearly 1,000 wtf genes in these isolates, yields a comprehensive portrayal of the intraspecific diversity of wtf genes. Leveraging single-nucleotide polymorphisms in adjacent unique sequences, we pinpoint wtf gene-containing loci that have recently undergone gene conversion events and infer their ancestral state. These events include the revival of wtf pseudogenes, lending support to the notion that gene conversion plays a role in preserving this gene family from extinction. Moreover, our investigation reveals that solo long terminal repeats of retrotransposons, frequently found near wtf genes, can act as recombination arms, influencing the upstream regulatory sequences of wtf genes. Additionally, our exploration of the outer boundaries of wtf genes uncovers a previously unrecognized type of directly oriented repeats flanking wtf genes. These repeats may have facilitated the early expansion of the wtf gene family in S. pombe. Our findings enhance the understanding of the mechanisms influencing the evolution of this killer meiotic driver gene family.
Collapse
Affiliation(s)
- Yan-Hui Xu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Fang Suo
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xiao-Ran Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Tong-Yang Du
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yu Hua
- National Institute of Biological Sciences, Beijing 102206, China
| | - Guo-Song Jia
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jin-Xin Zheng
- National Institute of Biological Sciences, Beijing 102206, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| |
Collapse
|
3
|
Zheng JX, Du TY, Shao GC, Ma ZH, Jiang ZD, Hu W, Suo F, He W, Dong MQ, Du LL. Ubiquitination-mediated Golgi-to-endosome sorting determines the toxin-antidote duality of fission yeast wtf meiotic drivers. Nat Commun 2023; 14:8334. [PMID: 38097609 PMCID: PMC10721834 DOI: 10.1038/s41467-023-44151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
Killer meiotic drivers (KMDs) skew allele transmission in their favor by killing meiotic progeny not inheriting the driver allele. Despite their widespread presence in eukaryotes, the molecular mechanisms behind their selfish behavior are poorly understood. In several fission yeast species, single-gene KMDs belonging to the wtf gene family exert selfish killing by expressing a toxin and an antidote through alternative transcription initiation. Here we investigate how the toxin and antidote products of a wtf-family KMD gene can act antagonistically. Both the toxin and the antidote are multi-transmembrane proteins, differing only in their N-terminal cytosolic tails. We find that the antidote employs PY motifs (Leu/Pro-Pro-X-Tyr) in its N-terminal cytosolic tail to bind Rsp5/NEDD4 family ubiquitin ligases, which ubiquitinate the antidote. Mutating PY motifs or attaching a deubiquitinating enzyme transforms the antidote into a toxic protein. Ubiquitination promotes the transport of the antidote from the trans-Golgi network to the endosome, thereby preventing it from causing toxicity. A physical interaction between the antidote and the toxin enables the ubiquitinated antidote to translocate the toxin to the endosome and neutralize its toxicity. We propose that post-translational modification-mediated protein localization and/or activity changes may be a common mechanism governing the antagonistic duality of single-gene KMDs.
Collapse
Affiliation(s)
- Jin-Xin Zheng
- National Institute of Biological Sciences, Beijing, 102206, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Tong-Yang Du
- National Institute of Biological Sciences, Beijing, 102206, China
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Guang-Can Shao
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Zhu-Hui Ma
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Zhao-Di Jiang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Wen Hu
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Fang Suo
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Wanzhong He
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, 102206, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
| |
Collapse
|
4
|
Barbash DA, Jin B, Wei KHC, Dion-Côté AM. Testing a candidate meiotic drive locus identified by pool sequencing. G3 (BETHESDA, MD.) 2023; 13:jkad225. [PMID: 37766472 PMCID: PMC10627268 DOI: 10.1093/g3journal/jkad225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Meiotic drive biases the transmission of alleles in heterozygous individuals, such that Mendel's law of equal segregation is violated. Most examples of meiotic drive have been discovered over the past century based on causing sex ratio distortion or the biased transmission of easily scoreable genetic markers that were linked to drive alleles. More recently, several approaches have been developed that attempt to identify distortions of Mendelian segregation genome wide. Here, we test a candidate female meiotic drive locus in Drosophila melanogaster, identified previously as causing a ∼54:46 distortion ratio using sequencing of large pools of backcross progeny. We inserted fluorescent visible markers near the candidate locus and scored transmission in thousands of individual progeny. We observed a small but significant deviation from the Mendelian expectation; however, it was in the opposite direction to that predicted based on the original experiments. We discuss several possible causes of the discrepancy between the 2 approaches, noting that subtle viability effects are particularly challenging to disentangle from potential small-effect meiotic drive loci. We conclude that pool sequencing approaches remain a powerful method to identify candidate meiotic drive loci but that genotyping of individual progeny at early developmental stages may be required for robust confirmation.
Collapse
Affiliation(s)
- Daniel A Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Bozhou Jin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Kevin H C Wei
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia V6T1Z3, Canada
| | - Anne-Marie Dion-Côté
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Département de Biologie, Université de Moncton, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
5
|
Aanen DK, van ’t Padje A, Auxier B. Longevity of Fungal Mycelia and Nuclear Quality Checks: a New Hypothesis for the Role of Clamp Connections in Dikaryons. Microbiol Mol Biol Rev 2023; 87:e0002221. [PMID: 37409939 PMCID: PMC10521366 DOI: 10.1128/mmbr.00022-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
This paper addresses the stability of mycelial growth in fungi and differences between ascomycetes and basidiomycetes. Starting with general evolutionary theories of multicellularity and the role of sex, we then discuss individuality in fungi. Recent research has demonstrated the deleterious consequences of nucleus-level selection in fungal mycelia, favoring cheaters with a nucleus-level benefit during spore formation but a negative effect on mycelium-level fitness. Cheaters appear to generally be loss-of-fusion (LOF) mutants, with a higher propensity to form aerial hyphae developing into asexual spores. Since LOF mutants rely on heterokaryosis with wild-type nuclei, we argue that regular single-spore bottlenecks can efficiently select against such cheater mutants. We then zoom in on ecological differences between ascomycetes being typically fast-growing but short-lived with frequent asexual-spore bottlenecks and basidiomycetes being generally slow-growing but long-lived and usually without asexual-spore bottlenecks. We argue that these life history differences have coevolved with stricter nuclear quality checks in basidiomycetes. Specifically, we propose a new function for clamp connections, structures formed during the sexual stage in ascomycetes and basidiomycetes but during somatic growth only in basidiomycete dikaryons. During dikaryon cell division, the two haploid nuclei temporarily enter a monokaryotic phase, by alternatingly entering a retrograde-growing clamp cell, which subsequently fuses with the subapical cell to recover the dikaryotic cell. We hypothesize that clamp connections act as screening devices for nuclear quality, with both nuclei continuously testing each other for fusion ability, a test that LOF mutants will fail. By linking differences in longevity of the mycelial phase to ecology and stringency of nuclear quality checks, we propose that mycelia have a constant and low lifetime cheating risk, irrespective of their size and longevity.
Collapse
Affiliation(s)
- Duur K. Aanen
- Department of Plant Sciences, Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | - Anouk van ’t Padje
- Department of Plant Sciences, Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | - Benjamin Auxier
- Department of Plant Sciences, Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
6
|
Silva DM, Akera T. Meiotic drive of noncentromeric loci in mammalian meiosis II eggs. Curr Opin Genet Dev 2023; 81:102082. [PMID: 37406428 PMCID: PMC10527070 DOI: 10.1016/j.gde.2023.102082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023]
Abstract
The germline produces haploid gametes through a specialized cell division called meiosis. In general, homologous chromosomes from each parent segregate randomly to the daughter cells during meiosis, providing parental alleles with an equal chance of transmission. Meiotic drivers are selfish elements who cheat this process to increase their transmission rate. In female meiosis, selfish centromeres and noncentromeric drivers cheat by preferentially segregating to the egg cell. Selfish centromeres cheat in meiosis I (MI), while noncentromeric drivers can cheat in both meiosis I and meiosis II (MII). Here, we highlight recent advances on our understanding of the molecular mechanisms underlying these genetic cheating strategies, especially focusing on mammalian systems, and discuss new models of how noncentromeric selfish drivers can cheat in MII eggs.
Collapse
Affiliation(s)
- Duilio Mza Silva
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Panstruga R, Antonin W, Lichius A. Looking outside the box: a comparative cross-kingdom view on the cell biology of the three major lineages of eukaryotic multicellular life. Cell Mol Life Sci 2023; 80:198. [PMID: 37418047 PMCID: PMC10329083 DOI: 10.1007/s00018-023-04843-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/08/2023]
Abstract
Many cell biological facts that can be found in dedicated scientific textbooks are based on findings originally made in humans and/or other mammals, including respective tissue culture systems. They are often presented as if they were universally valid, neglecting that many aspects differ-in part considerably-between the three major kingdoms of multicellular eukaryotic life, comprising animals, plants and fungi. Here, we provide a comparative cross-kingdom view on the basic cell biology across these lineages, highlighting in particular essential differences in cellular structures and processes between phyla. We focus on key dissimilarities in cellular organization, e.g. regarding cell size and shape, the composition of the extracellular matrix, the types of cell-cell junctions, the presence of specific membrane-bound organelles and the organization of the cytoskeleton. We further highlight essential disparities in important cellular processes such as signal transduction, intracellular transport, cell cycle regulation, apoptosis and cytokinesis. Our comprehensive cross-kingdom comparison emphasizes overlaps but also marked differences between the major lineages of the three kingdoms and, thus, adds to a more holistic view of multicellular eukaryotic cell biology.
Collapse
Affiliation(s)
- Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany.
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Alexander Lichius
- inncellys GmbH, Dorfstrasse 20/3, 6082, Patsch, Austria
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| |
Collapse
|
8
|
A Natural Fungal Gene Drive Enacts Killing via DNA Disruption. mBio 2023; 14:e0317322. [PMID: 36537809 PMCID: PMC9972908 DOI: 10.1128/mbio.03173-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fungal spore killers are a class of selfish genetic elements that positively bias their own inheritance by killing non-inheriting gametes following meiosis. As killing takes place specifically within the developing fungal ascus, a tissue which is experimentally difficult to isolate, our understanding of the mechanisms underlying spore killers are limited. In particular, how these loci kill other spores within the fungal ascus is largely unknown. Here, we overcome these experimental barriers by developing model systems in 2 evolutionary distant organisms, Escherichia coli (bacterium) and Saccharomyces cerevisiae (yeast), similar to previous approaches taken to examine the wtf spore killers. Using these systems, we show that the Podospora anserina spore killer protein SPOK1 enacts killing through targeting DNA. IMPORTANCE Natural gene drives have shaped the genomes of many eukaryotes and recently have been considered for applications to control undesirable species. In fungi, these loci are called spore killers. Despite their importance in evolutionary processes and possible applications, our understanding of how they enact killing is limited. We show that the spore killer protein Spok1, which has homologues throughout the fungal tree of life, acts via DNA disruption. Spok1 is only the second spore killer locus in which the cellular target of killing has been identified and is the first known to target DNA. We also show that the DNA disrupting activity of Spok1 is functional in both bacteria and yeast suggesting a highly conserved mode of action.
Collapse
|
9
|
Zhou X, Zhong C, Xie J, Jin J, Shen B, Chen L, Liu H, Zhang S. Optimization of the Solid-State Culture Conditions and Chemical Component Analysis of Poria cocos (Agaricomycetes). Int J Med Mushrooms 2023; 25:65-80. [PMID: 37947065 DOI: 10.1615/intjmedmushrooms.2023050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The optimal cultivation conditions and chemical components of Poria cocos fruiting bodies were examined by employing the single factor and response surface methods to screen for optimal conditions for artificial cultivation. The differences in chemical composition among the fruiting bodies, fermented mycelium, and sclerotia of P. cocos were compared using UV spectrophotometry and high-performance liquid chromatography (HPLC). The optimal growth conditions for P. cocos fruiting bodies were 28.5°C temperature, 60% light intensity, and 2.5 g pine sawdust, which resulted in the production of numerous basidiocarps and basidiospores under microscopic examination. Polysaccharides, triterpenoids, and other main active components of P. cocos were found in the fruiting bodies, sclerotia, and fermented mycelium. The triterpenoid components of the fruiting bodies were consistent with those of the sclerotia. The content of pachymic acid in the fruiting bodies was significantly higher than that in the sclerotia, with a value of 33.37 ± 0.1902 mg/g. These findings provide novel insights into the sexual breeding and comprehensive development and utilization of P. cocos.
Collapse
Affiliation(s)
- Xin Zhou
- Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410013, P.R. China; Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan 410013, P.R. China
| | - Can Zhong
- Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410013, P.R. China; Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan 410013, P.R. China
| | - Jing Xie
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan 410013, P.R. China
| | - Jian Jin
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan 410013, P.R. China
| | - Bingbing Shen
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan 410013, P.R. China
| | - Lin Chen
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan 410013, P.R. China
| | - Hao Liu
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan 410013, P.R. China
| | - Shuihan Zhang
- Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410013, P.R. China; Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
10
|
Chou JY, Hsu PC, Leu JY. Enforcement of Postzygotic Species Boundaries in the Fungal Kingdom. Microbiol Mol Biol Rev 2022; 86:e0009822. [PMID: 36098649 PMCID: PMC9769731 DOI: 10.1128/mmbr.00098-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Understanding the molecular basis of speciation is a primary goal in evolutionary biology. The formation of the postzygotic reproductive isolation that causes hybrid dysfunction, thereby reducing gene flow between diverging populations, is crucial for speciation. Using various advanced approaches, including chromosome replacement, hybrid introgression and transcriptomics, population genomics, and experimental evolution, scientists have revealed multiple mechanisms involved in postzygotic barriers in the fungal kingdom. These results illuminate both unique and general features of fungal speciation. Our review summarizes experiments on fungi exploring how Dobzhansky-Muller incompatibility, killer meiotic drive, chromosome rearrangements, and antirecombination contribute to postzygotic reproductive isolation. We also discuss possible evolutionary forces underlying different reproductive isolation mechanisms and the potential roles of the evolutionary arms race under the Red Queen hypothesis and epigenetic divergence in speciation.
Collapse
Affiliation(s)
- Jui-Yu Chou
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Po-Chen Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
11
|
Salzberg LI, Martos AAR, Lombardi L, Jermiin LS, Blanco A, Byrne KP, Wolfe KH. A widespread inversion polymorphism conserved among Saccharomyces species is caused by recurrent homogenization of a sporulation gene family. PLoS Genet 2022; 18:e1010525. [PMID: 36441813 PMCID: PMC9731477 DOI: 10.1371/journal.pgen.1010525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/08/2022] [Accepted: 11/12/2022] [Indexed: 11/29/2022] Open
Abstract
Saccharomyces genomes are highly collinear and show relatively little structural variation, both within and between species of this yeast genus. We investigated the only common inversion polymorphism known in S. cerevisiae, which affects a 24-kb 'flip/flop' region containing 15 genes near the centromere of chromosome XIV. The region exists in two orientations, called reference (REF) and inverted (INV). Meiotic recombination in this region is suppressed in crosses between REF and INV orientation strains such as the BY x RM cross. We find that the inversion polymorphism is at least 17 million years old because it is conserved across the genus Saccharomyces. However, the REF and INV isomers are not ancient alleles but are continually being re-created by re-inversion of the region within each species. Inversion occurs due to continual homogenization of two almost identical 4-kb sequences that form an inverted repeat (IR) at the ends of the flip/flop region. The IR consists of two pairs of genes that are specifically and strongly expressed during the late stages of sporulation. We show that one of these gene pairs, YNL018C/YNL034W, codes for a protein that is essential for spore formation. YNL018C and YNL034W are the founder members of a gene family, Centroid, whose members in other Saccharomycetaceae species evolve fast, duplicate frequently, and are preferentially located close to centromeres. We tested the hypothesis that Centroid genes are a meiotic drive system, but found no support for this idea.
Collapse
Affiliation(s)
- Letal I. Salzberg
- Conway Institute, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Alexandre A. R. Martos
- Conway Institute, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Lisa Lombardi
- Conway Institute, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Lars S. Jermiin
- School of Medicine, University College Dublin, Dublin, Ireland
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Earth Institute, University College Dublin, Dublin, Ireland
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Alfonso Blanco
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Kevin P. Byrne
- Conway Institute, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Kenneth H. Wolfe
- Conway Institute, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
12
|
Lohmar JM, Rhoades NA, Hammond TM, Brown DW. Gene drive by Fusarium SKC1 is dependent on its competing allele. Fungal Genet Biol 2022; 163:103749. [PMID: 36341840 DOI: 10.1016/j.fgb.2022.103749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 01/06/2023]
Abstract
The Fusarium verticillioides SKC1 gene driver is transmitted to offspring in a biased manner through spore killing. The mechanism that allows SKC1 to kill non-SKC1 offspring while sparing others is poorly understood. Here we report that gene drive by SKC1 is dependent on SKC1's competing allele. We propose that SKC1's competing allele influences the ability of a genome defense process to detect SKC1, and we provide evidence that this genome defense process is meiotic silencing by unpaired DNA (MSUD). Our findings suggest that the successful deployment of gene drivers to control pathogenic fungi will require researchers to consider how competing alleles influence the ability of gene drivers to be detected by genome defense processes.
Collapse
Affiliation(s)
- Jessica M Lohmar
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Unit, 1815 N. University St., Peoria, IL 61604, USA
| | - Nicholas A Rhoades
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Thomas M Hammond
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA.
| | - Daren W Brown
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Unit, 1815 N. University St., Peoria, IL 61604, USA.
| |
Collapse
|
13
|
De Carvalho M, Jia GS, Nidamangala Srinivasa A, Billmyre RB, Xu YH, Lange JJ, Sabbarini IM, Du LL, Zanders SE. The wtf meiotic driver gene family has unexpectedly persisted for over 100 million years. eLife 2022; 11:e81149. [PMID: 36227631 PMCID: PMC9562144 DOI: 10.7554/elife.81149] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
Abstract
Meiotic drivers are selfish elements that bias their own transmission into more than half of the viable progeny produced by a driver+/driver- heterozygote. Meiotic drivers are thought to exist for relatively short evolutionary timespans because a driver gene or gene family is often found in a single species or in a group of very closely related species. Additionally, drivers are generally considered doomed to extinction when they spread to fixation or when suppressors arise. In this study, we examine the evolutionary history of the wtf meiotic drivers first discovered in the fission yeast Schizosaccharomyces pombe. We identify homologous genes in three other fission yeast species, S. octosporus, S. osmophilus, and S. cryophilus, which are estimated to have diverged over 100 million years ago from the S. pombe lineage. Synteny evidence supports that wtf genes were present in the common ancestor of these four species. Moreover, the ancestral genes were likely drivers as wtf genes in S. octosporus cause meiotic drive. Our findings indicate that meiotic drive systems can be maintained for long evolutionary timespans.
Collapse
Affiliation(s)
- Mickaël De Carvalho
- Stowers Institute for Medical ResearchKansas CityUnited States
- Open UniversityMilton KeynesUnited Kingdom
| | - Guo-Song Jia
- PTN Joint Graduate Program, School of Life Sciences, Tsinghua UniversityBeijingChina
- National Institute of Biological Sciences, BeijingBeijingChina
| | - Ananya Nidamangala Srinivasa
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Molecular and Integrative Physiology, University of Kansas Medical CenterKansas CityUnited States
| | | | - Yan-Hui Xu
- National Institute of Biological Sciences, BeijingBeijingChina
| | - Jeffrey J Lange
- Stowers Institute for Medical ResearchKansas CityUnited States
| | | | - Li-Lin Du
- National Institute of Biological Sciences, BeijingBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua UniversityBeijingChina
| | - Sarah E Zanders
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Molecular and Integrative Physiology, University of Kansas Medical CenterKansas CityUnited States
| |
Collapse
|
14
|
Melesse Vergara M, Labbé J, Tannous J. Reflection on the Challenges, Accomplishments, and New Frontiers of Gene Drives. BIODESIGN RESEARCH 2022; 2022:9853416. [PMID: 37850135 PMCID: PMC10521683 DOI: 10.34133/2022/9853416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/19/2022] [Indexed: 10/19/2023] Open
Abstract
Ongoing pest and disease outbreaks pose a serious threat to human, crop, and animal lives, emphasizing the need for constant genetic discoveries that could serve as mitigation strategies. Gene drives are genetic engineering approaches discovered decades ago that may allow quick, super-Mendelian dissemination of genetic modifications in wild populations, offering hopes for medicine, agriculture, and ecology in combating diseases. Following its first discovery, several naturally occurring selfish genetic elements were identified and several gene drive mechanisms that could attain relatively high threshold population replacement have been proposed. This review provides a comprehensive overview of the recent advances in gene drive research with a particular emphasis on CRISPR-Cas gene drives, the technology that has revolutionized the process of genome engineering. Herein, we discuss the benefits and caveats of this technology and place it within the context of natural gene drives discovered to date and various synthetic drives engineered. Later, we elaborate on the strategies for designing synthetic drive systems to address resistance issues and prevent them from altering the entire wild populations. Lastly, we highlight the major applications of synthetic CRISPR-based gene drives in different living organisms, including plants, animals, and microorganisms.
Collapse
Affiliation(s)
| | - Jesse Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Invaio Sciences, Cambridge, MA 02138USA
| | - Joanna Tannous
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
15
|
Abstract
Inheriting the wrong number of chromosomes is one of the leading causes of infertility and birth defects in humans. However, in many organisms, individual chromosomes vary dramatically in both organization, sequence, and size. Chromosome segregation systems must be capable of accounting for these differences to reliably segregate chromosomes. During gametogenesis, meiosis ensures that all chromosomes segregate properly into gametes (i.e., egg or sperm). Interestingly, not all chromosomes exhibit the same dynamics during meiosis, which can lead to chromosome-specific behaviors and defects. This review will summarize some of the chromosome-specific meiotic events that are currently known and discuss their impact on meiotic outcomes.
Collapse
|
16
|
Velazquez A, Webber E, O'Neil D, Hammond T, Rhoades N. Isolation of rfk-2 UV , a mutation that blocks spore killing by Neurospora Spore killer-3. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000604. [PMID: 35903779 PMCID: PMC9315408 DOI: 10.17912/micropub.biology.000604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/17/2022] [Accepted: 07/12/2022] [Indexed: 11/08/2022]
Abstract
Neurospora Spore killer-3 ( Sk-3 ) is a selfish genetic element that kills spores to achieve gene drive. Here, we describe the isolation and mapping of rfk-2 UV , a mutation that disrupts spore killing. The rfk-2 UV mutation is located 15.6 cM from mus-52 on Chromosome III. The significance of this discovery with respect to Sk-3 evolution is discussed.
Collapse
Affiliation(s)
- Abraham Velazquez
- Illinois State University, School of Biological Sciences, Normal, IL 61790 USA
| | - Elise Webber
- Illinois State University, School of Biological Sciences, Normal, IL 61790 USA
| | - Devonte O'Neil
- Illinois State University, School of Biological Sciences, Normal, IL 61790 USA
| | - Thomas Hammond
- Illinois State University, School of Biological Sciences, Normal, IL 61790 USA
,
Correspondence to: Thomas Hammond (
)
| | - Nicholas Rhoades
- Illinois State University, School of Biological Sciences, Normal, IL 61790 USA
| |
Collapse
|
17
|
A gene cluster with positive and negative elements controls bistability and hysteresis of the Crippled versus Normal growth in the fungus Podospora anserina. Fungal Genet Biol 2022; 161:103711. [PMID: 35597448 DOI: 10.1016/j.fgb.2022.103711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/06/2022] [Accepted: 05/15/2022] [Indexed: 11/23/2022]
Abstract
The Crippled Growth (CG) cell degeneration of the model ascomycete Podospora anserina (strain S) is controlled by a prion-like element and has been linked to the self-activation of the PaMpk1 MAP kinase cascade. Here, we report on the identification of the "86-11" locus containing twelve genes, ten of which are involved either in setting up the self-activation loop of CG or in inhibiting this loop, as demonstrated by targeted gene deletion. Interestingly, deletion of the whole locus results only in the elimination of CG and in no detectable additional physiological defect. Sequence comparison shows that these ten genes belong to four different families, each one endowed with a specific activity: two encode factors activating the loop, a third one encodes a factor crucial for inhibition of the loop and the fourth one participates in inhibiting the loop in a pathway parallel to the one controlled by the previously described PDC1 gene. Intriguingly, a very distant homologue of this "86-11" locus is present at the syntenic position in Podospora comata (strain T) that do not present Crippled Growth. Introgression of the P. comata strain T locus in P. anserina strain S and the P. anserina strain S in P. comata strain T showed that both drive CG in the P. anserina strain S genetic background, but not in the genetic background of strain P. comata T, indicating that genetic determinants outside the twelve-gene locus are responsible for lack of CG in P. comata strain T. Our data question the role of this twelve-gene locus in the physiology of P. anserina.
Collapse
|
18
|
Keegan G, Patten MM. Selfish evolution of placental hormones. Evol Med Public Health 2022; 10:391-397. [PMID: 36050940 PMCID: PMC9426663 DOI: 10.1093/emph/eoac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/16/2022] [Indexed: 12/03/2022] Open
Abstract
We hypothesize that some placental hormones—specifically those that arise by tandem duplication of genes for maternal hormones—may behave as gestational drivers, selfish genetic elements that encourage the spontaneous abortion of offspring that fail to inherit them. Such drivers are quite simple to evolve, requiring just three things: a decrease in expression or activity of some essential maternal hormone during pregnancy; a compensatory increase in expression or activity of the homologous hormone by the placenta; and genetic linkage between the two effects. Gestational drive may therefore be a common selection pressure experienced by any of the various hormones of mammalian pregnancy that have arisen by tandem gene duplication. We examine the evolution of chorionic gonadotropin in the human lineage in light of this hypothesis. Finally, we postulate that some of the difficulties of human pregnancy may be a consequence of the action of selfish genes.
Collapse
Affiliation(s)
- Grace Keegan
- Department of Biology, Georgetown University , Washington, DC 20057, USA
| | - Manus M Patten
- Department of Biology, Georgetown University , Washington, DC 20057, USA
| |
Collapse
|