1
|
Nayak SS, Krishna R. Phosphorylation at the D56 residue of MtrA in Mycobacterium tuberculosis enhances its DNA binding affinity by modulating inter-domain interaction. Comput Biol Chem 2024; 113:108222. [PMID: 39366081 DOI: 10.1016/j.compbiolchem.2024.108222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024]
Abstract
The response regulator, MtrA, plays a major role in adaptation to the host environment, cell division, replication, and dormancy activation of Mycobacterium tuberculosis (Mtb). The phosphorylation of the response regulator MtrA alters the downstream activity, typically involving changes in DNA binding activity. However, there is a substantial knowledge gap in understanding the phosphorylation-mediated structural changes in MtrA. Additionally, the active conformation of the protein has yet to be determined. Therefore, in this study, we have investigated the phosphorylation-induced conformational changes of MtrA using all-atom molecular dynamics simulations under various phosphorylation conditions. The results from this study demonstrate that the phosphorylation at D56 (pD56-MtrA) increases the compactness of the MtrA protein by stabilizing the inter-domain interaction between the regulatory domain and DNA binding domain. Notably, the higher occupancy H-bond (over 95 %) between Arg200-Asn100 in case of the pD56-MtrA condition, which is otherwise absent in the non-phosphorylated (uMtrA) condition, suggests the importance of this interaction in the active conformation of the protein. The dynamic cross-correlation analysis reveals that phosphorylation (especially pD56-MtrA) reduces the anti-correlated motions and increases correlated motions between different domains. Moreover, the higher DNA binding affinity of pD56-MtrA compared to uMtrA supported by molecular docking and MD simulation followed by MMPBSA analysis suggests that pD56-MtrA is the possible active conformation of the MtrA protein. Overall, this investigation elucidates the key structural changes in MtrA under different phosphorylated conditions, which might help in designing novel therapeutics against tuberculosis.
Collapse
Affiliation(s)
| | - Ramadas Krishna
- Department of Bioinformatics, Pondicherry University, Pondicherry 605014, India.
| |
Collapse
|
2
|
Kim NK, Baek JE, Lee YJ, Oh Y, Oh JI. Rel-dependent decrease in the expression of ribosomal protein genes by inhibition of the respiratory electron transport chain in Mycobacterium smegmatis. Front Microbiol 2024; 15:1448277. [PMID: 39188315 PMCID: PMC11345224 DOI: 10.3389/fmicb.2024.1448277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
In this study, we demonstrated that both the expression of most ribosomal protein genes and the amount of ribosomes were decreased in the Δaa 3 mutant of Mycobacterium smegmatis, in which the major terminal oxidase (aa 3 cytochrome c oxidase) of the respiratory electron transport chain (ETC) is inactivated, compared to those in the wild-type strain. Deletion of the rel gene encoding the major (p)ppGpp synthetase in the background of the Δaa 3 mutant restored the reduced expression of ribosomal protein genes, suggesting that inhibition of the respiratory ETC leads to the Rel-dependent stringent response (SR) in this bacterium. Both a decrease in the expression of ribosomal protein genes by overexpression of rel and the increased expression of rel in the Δaa 3 mutant relative to the wild-type strain support the Rel-dependent induction of SR in the Δaa 3 mutant. We also demonstrated that the expression of ribosomal protein genes was decreased in M. smegmatis exposed to respiration-inhibitory conditions, such as KCN and bedaquiline treatment, null mutation of the cytochrome bcc 1 complex, and hypoxia. The MprBA-SigE-SigB regulatory pathway was implicated in both the increased expression of rel and the decreased expression of ribosomal protein genes in the Δaa 3 mutant of M. smegmatis.
Collapse
Affiliation(s)
- Na-Kyeong Kim
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Jong-Eun Baek
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Ye-Jin Lee
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Yuna Oh
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Jeong-Il Oh
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
3
|
Luo G, Ming T, Yang L, He L, Tao T, Wang Y. Modulators targeting protein-protein interactions in Mycobacterium tuberculosis. Microbiol Res 2024; 284:127675. [PMID: 38636239 DOI: 10.1016/j.micres.2024.127675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024]
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis), mainly transmitted through droplets to infect the lungs, and seriously affecting patients' health and quality of life. Clinically, anti-TB drugs often entail side effects and lack efficacy against resistant strains. Thus, the exploration and development of novel targeted anti-TB medications are imperative. Currently, protein-protein interactions (PPIs) offer novel avenues for anti-TB drug development, and the study of targeted modulators of PPIs in M. tuberculosis has become a prominent research focus. Furthermore, a comprehensive PPI network has been constructed using computational methods and bioinformatics tools. This network allows for a more in-depth analysis of the structural biology of PPIs and furnishes essential insights for the development of targeted small-molecule modulators. Furthermore, this article provides a detailed overview of the research progress and regulatory mechanisms of PPI modulators in M. tuberculosis, the causative agent of TB. Additionally, it summarizes potential targets for anti-TB drugs and discusses the prospects of existing PPI modulators.
Collapse
Affiliation(s)
- Guofeng Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Luchuan Yang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Lei He
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Tao Tao
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Yanmei Wang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China.
| |
Collapse
|
4
|
Liu Y, Li H, Dai D, He J, Liang Z. Gene Regulatory Mechanism of Mycobacterium Tuberculosis during Dormancy. Curr Issues Mol Biol 2024; 46:5825-5844. [PMID: 38921019 PMCID: PMC11203133 DOI: 10.3390/cimb46060348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) complex, is a zoonotic disease that remains one of the leading causes of death worldwide. Latent tuberculosis infection reactivation is a challenging obstacle to eradicating TB globally. Understanding the gene regulatory network of Mtb during dormancy is important. This review discusses up-to-date information about TB gene regulatory networks during dormancy, focusing on the regulation of lipid and energy metabolism, dormancy survival regulator (DosR), White B-like (Wbl) family, Toxin-Antitoxin (TA) systems, sigma factors, and MprAB. We outline the progress in vaccine and drug development associated with Mtb dormancy.
Collapse
Affiliation(s)
- Yiduo Liu
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Han Li
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Dejia Dai
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Jiakang He
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Zhengmin Liang
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| |
Collapse
|
5
|
Prendergast KA, Nagalingam G, West NP, Triccas JA. Mycobacterium tuberculosis Deficient in PdtaS Cytosolic Histidine Kinase Displays Attenuated Growth and Affords Protective Efficacy against Aerosol M. tuberculosis Infection in Mice. Vaccines (Basel) 2024; 12:50. [PMID: 38250863 PMCID: PMC10821411 DOI: 10.3390/vaccines12010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
New control measures are urgently required to control tuberculosis (TB), as the current vaccine, Bacille Calmette-Guérin (BCG), has had a limited impact on disease spread. The identification of virulence mechanisms of Mycobacterium tuberculosis is an important strategy in vaccine design, as it permits the development of strains attenuated for growth that may have vaccine potential. In this report, we determined the role of the PdtaS response regulator in M. tuberculosis virulence and defined the vaccine potential of a pdtaS-deficient strain. Deletion of pdtaS (MtbΔpdtaS) resulted in reduced persistence of M. tuberculosis within mouse organs, which was equivalent to the persistence of the BCG vaccine in the lung and liver of infected mice. However, the generation of effector CD4+ and CD8+ T cells (CD44+CD62LloKLRG1+) was similar between wild-type M. tuberculosis and MtbΔpdtaS and greater than that elicited by BCG. Heightened immunity induced by MtbΔpdtaS compared to BCG was also observed by analysis of antigen-specific IFN-γ-secreting T cell responses induced by vaccination. MtbΔpdtaS displayed improved protection against aerosol M. tuberculosis compared to BCG, which was most apparent in the lung at 20 weeks post-infection. These results suggest that the deletion of the PdtaS response regulator warrants further appraisal as a tool to combat TB in humans.
Collapse
Affiliation(s)
- Kelly A. Prendergast
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (K.A.P.); (G.N.)
- School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Gayathri Nagalingam
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (K.A.P.); (G.N.)
- School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Nicholas P. West
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia;
| | - James A. Triccas
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (K.A.P.); (G.N.)
- School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
6
|
Singh PR, Goar H, Paul P, Mehta K, Bamniya B, Vijjamarri AK, Bansal R, Khan H, Karthikeyan S, Sarkar D. Dual functioning by the PhoR sensor is a key determinant to Mycobacterium tuberculosis virulence. PLoS Genet 2023; 19:e1011070. [PMID: 38100394 PMCID: PMC10723718 DOI: 10.1371/journal.pgen.1011070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
PhoP-PhoR, one of the 12 two-component systems (TCSs) that empower M. tuberculosis to sense and adapt to diverse environmental conditions, remains essential for virulence, and therefore, represents a major target to develop novel anti-TB therapies. Although both PhoP and PhoR have been structurally characterized, the signal(s) that this TCS responds to remains unknown. Here, we show that PhoR is a sensor of acidic pH/high salt conditions, which subsequently activate PhoP via phosphorylation. In keeping with this, transcriptomic data uncover that acidic pH- inducible expression of PhoP regulon is significantly inhibited in a PhoR-deleted M. tuberculosis. Strikingly, a set of PhoP regulon genes displayed a low pH-dependent activation even in the absence of PhoR, suggesting the presence of non-canonical mechanism(s) of PhoP activation. Using genome-wide interaction-based screening coupled with phosphorylation assays, we identify a non-canonical mechanism of PhoP phosphorylation by the sensor kinase PrrB. To investigate how level of P~PhoP is regulated, we discovered that in addition to its kinase activity PhoR functions as a phosphatase of P~PhoP. Our subsequent results identify the motif/residues responsible for kinase/phosphatase dual functioning of PhoR. Collectively, these results uncover that contrasting kinase and phosphatase functions of PhoR determine the homeostatic mechanism of regulation of intra-mycobacterial P~PhoP which controls the final output of the PhoP regulon. Together, these results connect PhoR to pH-dependent activation of PhoP with downstream functioning of the regulator. Thus, PhoR plays a central role in mycobacterial adaptation to low pH conditions within the host macrophage phagosome, and a PhoR-deleted M. tuberculosis remains significantly attenuated in macrophages and animal models.
Collapse
Affiliation(s)
| | - Harsh Goar
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
| | - Partha Paul
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
| | - Khushboo Mehta
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Bhanwar Bamniya
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Roohi Bansal
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
| | - Hina Khan
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
| | - Subramanian Karthikeyan
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Dibyendu Sarkar
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
Li Y, Kong X, Li Y, Tao N, Hou Y, Wang T, Li Y, Han Q, Liu Y, Li H. Association between two-component systems gene mutation and Mycobacterium tuberculosis transmission revealed by whole genome sequencing. BMC Genomics 2023; 24:718. [PMID: 38017383 PMCID: PMC10683263 DOI: 10.1186/s12864-023-09788-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Two-component systems (TCSs) assume a pivotal function in Mycobacterium tuberculosis (M.tuberculosis) growth. However, the exact regulatory mechanism of this system needs to be elucidated, and only a few studies have investigated the effect of gene mutations within TCSs on M.tuberculosis transmission. This research explored the relationship between TCSs gene mutation and the global transmission of (M.tuberculosis). RESULTS A total of 13531 M.tuberculosis strains were enrolled in the study. Most of the M.tuberculosis strains belonged to lineage4 (n=6497,48.0%), followed by lineage2 (n=5136,38.0%). Our results showed that a total of 36 single nucleotide polymorphisms (SNPs) were positively correlated with clustering of lineage2, such as Rv0758 (phoR, C820G), Rv1747(T1102C), and Rv1057(C1168T). A total of 30 SNPs showed positive correlation with clustering of lineage4, such as phoR(C182A, C1184G, C662T, T758G), Rv3764c (tcrY, G1151T), and Rv1747 C20T. A total of 19 SNPs were positively correlated with cross-country transmission of lineage2, such as phoR A575C, Rv1028c (kdpD, G383T, G1246C), and Rv1057 G817T. A total of 41 SNPs were positively correlated with cross-country transmission of lineage4, such as phoR(T758G, T327G, C284G), kdpD(G1755A, G625C), Rv1057 C980T, and Rv1747 T373G. CONCLUSIONS Our study identified that SNPs in genes of two-component systems were related to the transmission of M. tuberculosis. This finding adds another layer of complexity to M. tuberculosis virulence and provides insight into future research that will help to elucidate a novel mechanism of M. tuberculosis pathogenicity.
Collapse
Affiliation(s)
- Yameng Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, People's Republic of China
| | - Xianglong Kong
- Artificial Intelligence Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250011, People's Republic of China
| | - Yifan Li
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan, Shandong, 250031, People's Republic of China
| | - Ningning Tao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road, Huaiyin District, Jinan, Shandong, 250021, People's Republic of China
| | - Yawei Hou
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, People's Republic of China
| | - Tingting Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, People's Republic of China
| | - Yingying Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, People's Republic of China
| | - Qilin Han
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People's Republic of China
| | - Yao Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road, Huaiyin District, Jinan, Shandong, 250021, People's Republic of China.
| | - Huaichen Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, People's Republic of China.
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road, Huaiyin District, Jinan, Shandong, 250021, People's Republic of China.
| |
Collapse
|
8
|
Kumar G, Adhikrao PA. Targeting Mycobacterium tuberculosis iron-scavenging tools: a recent update on siderophores inhibitors. RSC Med Chem 2023; 14:1885-1913. [PMID: 37859726 PMCID: PMC10583813 DOI: 10.1039/d3md00201b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 10/21/2023] Open
Abstract
Among the various bacterial infections, tuberculosis (TB) remains a life-threatening infectious disease responsible as the most significant cause of mortality and morbidity worldwide. The co-infection of human immunodeficiency virus (HIV) in association with TB burdens the healthcare system substantially. Notably, M.tb possesses defence against most antitubercular antibiotic drugs, and the efficacy of existing frontline anti-TB drugs is waning. Also, new and recurring cases of TB from resistant bacteria such as multidrug-resistant TB (MDR), extensively drug-resistant TB (XDR), and totally drug-resistant TB (TDR) strains are increasing. Hence, TB begs the scientific community to explore the new therapeutic class of compounds with their novel mechanism. M.tb requires iron from host cells to sustain, grow, and carry out several biological processes. M.tb has developed strategic methods of acquiring iron from the surrounding environment. In this communication, we discuss an overview of M.tb iron-scavenging tools. Also, we have summarized recently identified MbtA and MbtI inhibitors, which prevent M.tb from scavenging iron. These iron-scavenging tool inhibitors have the potential to be developed as anti-TB agents/drugs.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad (NIPER-Hyderabad) Balanagar Hyderabad 500037 India
| | - Patil Amruta Adhikrao
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad (NIPER-Hyderabad) Balanagar Hyderabad 500037 India
| |
Collapse
|
9
|
Sankhe GD, Raja R, Singh DP, Bheemireddy S, Rana S, Athira PJ, Dixit NM, Saini DK. Sequestration of histidine kinases by non-cognate response regulators establishes a threshold level of stimulation for bacterial two-component signaling. Nat Commun 2023; 14:4483. [PMID: 37491529 PMCID: PMC10368727 DOI: 10.1038/s41467-023-40095-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/12/2023] [Indexed: 07/27/2023] Open
Abstract
Bacterial two-component systems (TCSs) consist of a sensor histidine kinase (HK) that perceives a specific signal, and a cognate response regulator (RR) that modulates the expression of target genes. Positive autoregulation improves TCS sensitivity to stimuli, but may trigger disproportionately large responses to weak signals, compromising bacterial fitness. Here, we combine experiments and mathematical modelling to reveal a general design that prevents such disproportionate responses: phosphorylated HKs (HK~Ps) can be sequestered by non-cognate RRs. We study five TCSs of Mycobacterium tuberculosis and find, for all of them, non-cognate RRs that show higher affinity than cognate RRs for HK~Ps. Indeed, in vitro assays show that HK~Ps preferentially bind higher affinity non-cognate RRs and get sequestered. Mathematical modelling indicates that this sequestration would introduce a 'threshold' stimulus strength for eliciting responses, thereby preventing responses to weak signals. Finally, we construct tunable expression systems in Mycobacterium bovis BCG to show that higher affinity non-cognate RRs suppress responses in vivo.
Collapse
Affiliation(s)
- Gaurav D Sankhe
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Rubesh Raja
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Devendra Pratap Singh
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Sneha Bheemireddy
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India
| | - Subinoy Rana
- Materials Research Centre, Indian Institute of Science, Bengaluru, India
| | - P J Athira
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Narendra M Dixit
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India.
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India.
| | - Deepak Kumar Saini
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India.
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
10
|
Dekhil N, Mardassi H. Genomic changes underpinning the emergence of a successful Mycobacterium tuberculosis Latin American and Mediterranean clonal complex. Front Microbiol 2023; 14:1159994. [PMID: 37425998 PMCID: PMC10325029 DOI: 10.3389/fmicb.2023.1159994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/26/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction The Latin American and Mediterranean sublineage (L4.3/LAM) is the most common generalist sublineage of Mycobacterium tuberculosis lineage 4 (L4), yet certain L4.3/LAM genotypes appear to be confined to particular geographic regions. This is typically the case of a L4.3/LAM clonal complex (CC), TUN4.3_CC1, which is the most preponderant in Tunisia (61.5% of L4.3/LAM). Methods Here, we used whole-genome sequencing data of 346 globally distributed L4 clinical strains, including 278 L4.3/LAM isolates, to reconstruct the evolutionary history of TUN4.3_CC1 and delineate critical genomic changes underpinning its success. Results and Discussion Phylogenomic coupled to phylogeographic analyses indicated that TUN4.3_CC1 has evolved locally, being confined mainly to North Africa. Maximum likelihood analyses using the site and branch-site models of the PAML package disclosed strong evidence of positive selection in the gene category "cell wall and cell processes" of TUN4.3_CC1. Collectively, the data indicate that TUN4.3_CC1 has inherited several mutations, which could have potentially contributed to its evolutionary success. Of particular interest are amino acid replacements at the esxK and eccC2 genes of the ESX/Type VII secretion system, which were found to be specific to TUN4.3_CC1, being common to almost all isolates. Because of its homoplastic nature, the esxK mutation could potentially have endowed TUN4.3_CC1 with a selective advantage. Moreover, we noticed the occurrence of additional, previously described homoplasic nonsense mutations in ponA1 and Rv0197. The mutation in the latter gene, a putative oxido-reductase, has previously been shown to be correlated with enhanced transmissibility in vivo. In sum, our findings unveiled several features underpinning the success of a locally evolved L4.3/LAM clonal complex, lending further support to the critical role of genes encoded by the ESX/type VII secretion system.
Collapse
|
11
|
Anes E, Pires D, Mandal M, Azevedo-Pereira JM. ESAT-6 a Major Virulence Factor of Mycobacterium tuberculosis. Biomolecules 2023; 13:968. [PMID: 37371548 DOI: 10.3390/biom13060968] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis (TB), is one of the most successfully adapted human pathogens. Human-to-human transmission occurs at high rates through aerosols containing bacteria, but the pathogen evolved prior to the establishment of crowded populations. Mtb has developed a particular strategy to ensure persistence in the host until an opportunity for transmission arises. It has refined its lifestyle to obviate the need for virulence factors such as capsules, flagella, pili, or toxins to circumvent mucosal barriers. Instead, the pathogen uses host macrophages, where it establishes intracellular niches for its migration into the lung parenchyma and other tissues and for the induction of long-lived latency in granulomas. Finally, at the end of the infection cycle, Mtb induces necrotic cell death in macrophages to escape to the extracellular milieu and instructs a strong inflammatory response that is required for the progression from latency to disease and transmission. Common to all these events is ESAT-6, one of the major virulence factors secreted by the pathogen. This narrative review highlights the recent advances in understanding the role of ESAT-6 in hijacking macrophage function to establish successful infection and transmission and its use as a target for the development of diagnostic tools and vaccines.
Collapse
Affiliation(s)
- Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - David Pires
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Center for Interdisciplinary Research in Health, Católica Medical School, Universidade Católica Portuguesa, Estrada Octávio Pato, 2635-631 Rio de Mouro, Portugal
| | - Manoj Mandal
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
12
|
Shi J, Feng Z, Xu J, Li F, Zhang Y, Wen A, Wang F, Song Q, Wang L, Cui H, Tong S, Chen P, Zhu Y, Zhao G, Wang S, Feng Y, Lin W. Structural insights into the transcription activation mechanism of the global regulator GlnR from actinobacteria. Proc Natl Acad Sci U S A 2023; 120:e2300282120. [PMID: 37216560 PMCID: PMC10235972 DOI: 10.1073/pnas.2300282120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
In actinobacteria, an OmpR/PhoB subfamily protein called GlnR acts as an orphan response regulator and globally coordinates the expression of genes responsible for nitrogen, carbon, and phosphate metabolism in actinobacteria. Although many researchers have attempted to elucidate the mechanisms of GlnR-dependent transcription activation, progress is impeded by lacking of an overall structure of GlnR-dependent transcription activation complex (GlnR-TAC). Here, we report a co-crystal structure of the C-terminal DNA-binding domain of GlnR (GlnR_DBD) in complex with its regulatory cis-element DNA and a cryo-EM structure of GlnR-TAC which comprises Mycobacterium tuberculosis RNA polymerase, GlnR, and a promoter containing four well-characterized conserved GlnR binding sites. These structures illustrate how four GlnR protomers coordinate to engage promoter DNA in a head-to-tail manner, with four N-terminal receiver domains of GlnR (GlnR-RECs) bridging GlnR_DBDs and the RNAP core enzyme. Structural analysis also unravels that GlnR-TAC is stabilized by complex protein-protein interactions between GlnR and the conserved β flap, σAR4, αCTD, and αNTD domains of RNAP, which are further confirmed by our biochemical assays. Taken together, these results reveal a global transcription activation mechanism for the master regulator GlnR and other OmpR/PhoB subfamily proteins and present a unique mode of bacterial transcription regulation.
Collapse
Affiliation(s)
- Jing Shi
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023Nanjing, China
- Department of Biophysics, Zhejiang University School of Medicine, 310058Hangzhou, China
- Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058Hangzhou, China
| | - Zhenzhen Feng
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023Nanjing, China
| | - Juncao Xu
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032Shanghai, China
| | - Fangfang Li
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023Nanjing, China
| | - Yuqiong Zhang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, 510631Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, 510631Guangzhou, Guangdong, China
- Songshan Lake Materials Laboratory, 523808Dongguan, Guangdong, China
| | - Aijia Wen
- Department of Biophysics, Zhejiang University School of Medicine, 310058Hangzhou, China
- Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058Hangzhou, China
| | - Fulin Wang
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023Nanjing, China
| | - Qian Song
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023Nanjing, China
| | - Lu Wang
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023Nanjing, China
| | - Hong Cui
- Pasteurien College, Suzhou Medical College of Soochow University, Soochow University, 251000Soochow, China
| | - Shujuan Tong
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023Nanjing, China
| | - Peiying Chen
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023Nanjing, China
| | - Yejin Zhu
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023Nanjing, China
| | - Guoping Zhao
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032Shanghai, China
| | - Shuang Wang
- Songshan Lake Materials Laboratory, 523808Dongguan, Guangdong, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190Beijing, China
| | - Yu Feng
- Department of Biophysics, Zhejiang University School of Medicine, 310058Hangzhou, China
- Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058Hangzhou, China
| | - Wei Lin
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023Nanjing, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai200237, China
- Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, 210023Nanjing, China
| |
Collapse
|
13
|
Yimcharoen M, Saikaew S, Wattananandkul U, Phunpae P, Intorasoot S, Tayapiwatana C, Butr-Indr B. Mycobacterium tuberculosis Adaptation in Response to Isoniazid Treatment in a Multi-Stress System That Mimics the Host Environment. Antibiotics (Basel) 2023; 12:antibiotics12050852. [PMID: 37237755 DOI: 10.3390/antibiotics12050852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Isoniazid (INH) is an antibiotic that is widely used to treat tuberculosis (TB). Adaptation to environmental stress is a survival strategy for Mycobacterium tuberculosis and is associated with antibiotic resistance development. Here, mycobacterial adaptation following INH treatment was studied using a multi-stress system (MS), which mimics host-derived stress. Mtb H37Rv (drug-susceptible), mono-isoniazid resistant (INH-R), mono-rifampicin resistant (RIF-R), and multidrug-resistant (MDR) strains were cultivated in the MS with or without INH. The expression of stress-response genes (hspX, tgs1, icl1, and sigE) and lipoarabinomannan (LAM)-related genes (pimB, mptA, mptC, dprE1, dprE2, and embC), which play important roles in the host-pathogen interaction, were measured using real-time PCR. The different adaptations of the drug-resistant (DR) and drug-susceptible (DS) strains were presented in this work. icl1 and dprE1 were up-regulated in the DR strains in the MS, implying their roles as markers of virulence and potential drug targets. In the presence of INH, hspX, tgs1, and sigE were up-regulated in the INH-R and RIF-R strains, while icl1 and LAM-related genes were up-regulated in the H37Rv strain. This study demonstrates the complexity of mycobacterial adaptation through stress response regulation and LAM expression in response to INH under the MS, which could potentially be applied for TB treatment and monitoring in the future.
Collapse
Affiliation(s)
- Manita Yimcharoen
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sukanya Saikaew
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Usanee Wattananandkul
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ponrut Phunpae
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sorasak Intorasoot
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bordin Butr-Indr
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
14
|
Simcox BS, Tomlinson BR, Shaw LN, Rohde KH. Mycobacterium abscessus DosRS two-component system controls a species-specific regulon required for adaptation to hypoxia. Front Cell Infect Microbiol 2023; 13:1144210. [PMID: 36968107 PMCID: PMC10034137 DOI: 10.3389/fcimb.2023.1144210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
Mycobacterium abscessus (Mab), an emerging opportunistic pathogen, predominantly infects individuals with underlying pulmonary diseases such as cystic fibrosis (CF). Current treatment outcomes for Mab infections are poor due to Mab's inherent antibiotic resistance and unique host interactions that promote phenotypic tolerance and hinder drug access. The hypoxic, mucus-laden airways in the CF lung and antimicrobial phagosome within macrophages represent hostile niches Mab must overcome via alterations in gene expression for survival. Regulatory mechanisms important for the adaptation and long-term persistence of Mab within the host are poorly understood, warranting further genetic and transcriptomics study of this emerging pathogen. DosRS Mab , a two-component signaling system (TCS), is one proposed mechanism utilized to subvert host defenses and counteract environmental stress such as hypoxia. The homologous TCS of Mycobacterium tuberculosis (Mtb), DosRS Mtb , is known to induce a ~50 gene regulon in response to hypoxia, carbon monoxide (CO) and nitric oxide (NO) in vitro and in vivo. Previously, a small DosR Mab regulon was predicted using bioinformatics based on DosR Mtb motifs however, the role and regulon of DosRS Mab in Mab pathogenesis have yet to be characterized in depth. To address this knowledge gap, our lab generated a Mab dosRS knockout strain (MabΔdosRS) to investigate differential gene expression, and phenotype in an in vitro hypoxia model of dormancy. qRT-PCR and lux reporter assays demonstrate Mab_dosR and 6 predicted downstream genes are induced in hypoxia. In addition, RNAseq revealed induction of a much larger hypoxia response comprised of >1000 genes, including 127 differentially expressed genes in a dosRS mutant strain. Deletion of DosRS Mab led to attenuated growth under low oxygen conditions, a shift in morphotype from smooth to rough, and down-regulation of 216 genes. This study provides the first look at the global transcriptomic response of Mab to low oxygen conditions encountered in the airways of CF patients and within macrophage phagosomes. Our data also demonstrate the importance of DosRS Mab for adaptation of Mab to hypoxia, highlighting a distinct regulon (compared to Mtb) that is significantly larger than previously described, including both genes conserved across mycobacteria as well as Mab-specific genes.
Collapse
Affiliation(s)
- Breven S. Simcox
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Brooke R. Tomlinson
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Kyle H. Rohde
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
15
|
Cioetto-Mazzabò L, Boldrin F, Beauvineau C, Speth M, Marina A, Namouchi A, Segafreddo G, Cimino M, Favre-Rochex S, Balasingham S, Trastoy B, Munier-Lehmann H, Griffiths G, Gicquel B, Guerin M, Manganelli R, Alonso-Rodríguez N. SigH stress response mediates killing of Mycobacterium tuberculosis by activating nitronaphthofuran prodrugs via induction of Mrx2 expression. Nucleic Acids Res 2022; 51:144-165. [PMID: 36546765 PMCID: PMC9841431 DOI: 10.1093/nar/gkac1173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/17/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
The emergence of drug-resistant Mycobacterium tuberculosis strains highlights the need to discover anti-tuberculosis drugs with novel mechanisms of action. Here we discovered a mycobactericidal strategy based on the prodrug activation of selected chemical derivatives classified as nitronaphthofurans (nNFs) mediated by the coordinated action of the sigH and mrx2 genes. The transcription factor SigH is a key regulator of an extensive transcriptional network that responds to oxidative, nitrosative, and heat stresses in M. tuberculosis. The nNF action induced the SigH stress response which in turn induced the mrx2 overexpression. The nitroreductase Mrx2 was found to activate nNF prodrugs, killing replicating, non-replicating and intracellular forms of M. tuberculosis. Analysis of SigH DNA sequences obtained from spontaneous nNF-resistant M. tuberculosis mutants suggests disruption of SigH binding to the mrx2 promoter site and/or RNA polymerase core, likely promoting the observed loss of transcriptional control over Mrx2. Mutations found in mrx2 lead to structural defects in the thioredoxin fold of the Mrx2 protein, significantly impairing the activity of the Mrx2 enzyme against nNFs. Altogether, our work brings out the SigH/Mrx2 stress response pathway as a promising target for future drug discovery programs.
Collapse
Affiliation(s)
| | | | - Claire Beauvineau
- Chemical Library Institut Curie/CNRS, CNRS UMR9187, INSERM U1196 and CNRS UMR3666, INSERM U1193, Université Paris-Saclay, Orsay 91405, France
| | - Martin Speth
- Department Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo 0371, Norway
| | - Alberto Marina
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio 48160 Spain
| | - Amine Namouchi
- Génétique Mycobactérienne, Institute Pasteur, Paris 75015, France,Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo 0371, Norway
| | - Greta Segafreddo
- Department of Molecular Medicine, University of Padova, Padova 35122, Italy
| | - Mena Cimino
- Génétique Mycobactérienne, Institute Pasteur, Paris 75015, France
| | | | | | - Beatriz Trastoy
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio 48160 Spain,Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Bizkaia 48903, Spain
| | - Hélène Munier-Lehmann
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR3523, Université de Paris, Paris 75015, France
| | - Gareth Griffiths
- Department Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo 0371, Norway
| | - Brigitte Gicquel
- Génétique Mycobactérienne, Institute Pasteur, Paris 75015, France,Department of Tuberculosis Control and Prevention, Shenzhen Nanshan Centre for Chronic Disease Control, Shenzhen 518054, China
| | - Marcelo E Guerin
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio 48160 Spain,Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Bizkaia 48903, Spain,IKERBASQUE, Basque Foundation for Science, Bilbao 48009, Spain
| | - Riccardo Manganelli
- Correspondence may also be addressed to Riccardo Manganelli. Tel: +39 049 827 2366; Fax: +39 049 827 2355;
| | | |
Collapse
|
16
|
Vemparala B, Valiya Parambathu A, Saini DK, Dixit NM. An Evolutionary Paradigm Favoring Cross Talk between Bacterial Two-Component Signaling Systems. mSystems 2022; 7:e0029822. [PMID: 36264076 PMCID: PMC9765234 DOI: 10.1128/msystems.00298-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/20/2022] [Indexed: 12/25/2022] Open
Abstract
The prevalent paradigm governing bacterial two-component signaling systems (TCSs) is specificity, wherein the histidine kinase (HK) of a TCS exclusively activates its cognate response regulator (RR). Cross talk, where HKs activate noncognate RRs, is considered evolutionarily disadvantageous because it can compromise adaptive responses by leaking signals. Yet cross talk is observed in several bacteria. Here, to resolve this paradox, we propose an alternative paradigm where cross talk can be advantageous. We envisioned programmed environments, wherein signals appear in predefined sequences. In such environments, cross talk that primes bacteria to upcoming signals may improve adaptive responses and confer evolutionary benefits. To test this hypothesis, we employed mathematical modeling of TCS signaling networks and stochastic evolutionary dynamics simulations. We considered the comprehensive set of bacterial phenotypes, comprising thousands of distinct cross talk patterns competing in varied signaling environments. Our simulations predicted that in programmed environments phenotypes with cross talk facilitating priming would outcompete phenotypes without cross talk. In environments where signals appear randomly, bacteria without cross talk would dominate, explaining the specificity widely seen. Additionally, a testable prediction was that the phenotypes selected in programmed environments would display one-way cross talk, ensuring priming to future signals. Interestingly, the cross talk networks we deduced from available data on TCSs of Mycobacterium tuberculosis all displayed one-way cross talk, which was consistent with our predictions. Our study thus identifies potential evolutionary underpinnings of cross talk in bacterial TCSs, suggests a reconciliation of specificity and cross talk, makes testable predictions of the nature of cross talk patterns selected, and has implications for understanding bacterial adaptation and the response to interventions. IMPORTANCE Bacteria use two-component signaling systems (TCSs) to sense and respond to environmental changes. The prevalent paradigm governing TCSs is specificity, where signal flow through TCSs is insulated; leakage to other TCSs is considered evolutionarily disadvantageous. Yet cross talk between TCSs is observed in many bacteria. Here, we present a potential resolution of this paradox. We envision programmed environments, wherein stimuli appear in predefined sequences. Cross talk that primes bacteria to upcoming stimuli could then confer evolutionary benefits. We demonstrate this benefit using mathematical modeling and evolutionary simulations. Interestingly, we found signatures of predicted cross talk patterns in Mycobacterium tuberculosis. Furthermore, specificity was selected in environments where stimuli occurred randomly, thus reconciling specificity and cross talk. Implications follow for understanding bacterial evolution and for interventions.
Collapse
Affiliation(s)
- Bharadwaj Vemparala
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Arjun Valiya Parambathu
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Deepak Kumar Saini
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, India
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Narendra M. Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
17
|
Tetz V, Tetz G. Novel prokaryotic system employing previously unknown nucleic acids-based receptors. Microb Cell Fact 2022; 21:202. [PMID: 36195904 PMCID: PMC9531389 DOI: 10.1186/s12934-022-01923-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/16/2022] [Indexed: 12/26/2022] Open
Abstract
The present study describes a previously unknown universal system that orchestrates the interaction of bacteria with the environment, named the Teazeled receptor system (TR-system). The identical system was recently discovered within eukaryotes. The system includes DNA- and RNA-based molecules named "TezRs", that form receptor's network located outside the membrane, as well as reverse transcriptases and integrases. TR-system takes part in the control of all major aspects of bacterial behavior, such as intra cellular communication, growth, biofilm formation and dispersal, utilization of nutrients including xenobiotics, virulence, chemo- and magnetoreception, response to external factors (e.g., temperature, UV, light and gas content), mutation events, phage-host interaction, and DNA recombination activity. Additionally, it supervises the function of other receptor-mediated signaling pathways. Importantly, the TR-system is responsible for the formation and maintenance of cell memory to preceding cellular events, as well the ability to "forget" preceding events. Transcriptome and biochemical analysis revealed that the loss of different TezRs instigates significant alterations in gene expression and proteins synthesis.
Collapse
Affiliation(s)
- Victor Tetz
- Human Microbiology Institute, New York, NY, 10013, USA
| | - George Tetz
- Human Microbiology Institute, New York, NY, 10013, USA.
| |
Collapse
|
18
|
Boopathi S, Ramasamy S, Haridevamuthu B, Murugan R, Veerabadhran M, Jia AQ, Arockiaraj J. Intercellular communication and social behaviors in mycobacteria. Front Microbiol 2022; 13:943278. [PMID: 36177463 PMCID: PMC9514802 DOI: 10.3389/fmicb.2022.943278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-to-cell communication is a fundamental process of bacteria to exert communal behaviors. Sputum samples of patients with cystic fibrosis have often been observed with extensive mycobacterial genetic diversity. The emergence of heterogenic mycobacterial populations is observed due to subtle changes in their morphology, gene expression level, and distributive conjugal transfer (DCT). Since each subgroup of mycobacteria has different hetero-resistance, they are refractory against several antibiotics. Such genetically diverse mycobacteria have to communicate with each other to subvert the host immune system. However, it is still a mystery how such heterogeneous strains exhibit synchronous behaviors for the production of quorum sensing (QS) traits, such as biofilms, siderophores, and virulence proteins. Mycobacteria are characterized by division of labor, where distinct sub-clonal populations contribute to the production of QS traits while exchanging complimentary products at the community level. Thus, active mycobacterial cells ensure the persistence of other heterogenic clonal populations through cooperative behaviors. Additionally, mycobacteria are likely to establish communication with neighboring cells in a contact-independent manner through QS signals. Hence, this review is intended to discuss our current knowledge of mycobacterial communication. Understanding mycobacterial communication could provide a promising opportunity to develop drugs to target key pathways of mycobacteria.
Collapse
Affiliation(s)
- Seenivasan Boopathi
- Key Laboratory of Tropical Biological Resources of Ministry Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subbiah Ramasamy
- Department of Biochemistry, Cardiac Metabolic Disease Laboratory, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - B. Haridevamuthu
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Raghul Murugan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Maruthanayagam Veerabadhran
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, Tamil Nadu, India
| | - Ai-Qun Jia
- Key Laboratory of Tropical Biological Resources of Ministry Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- *Correspondence: Ai-Qun Jia
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
- Jesu Arockiaraj ;
| |
Collapse
|
19
|
Shultis MW, Mulholland CV, Berney M. Are all antibiotic persisters created equal? Front Cell Infect Microbiol 2022; 12:933458. [PMID: 36061872 PMCID: PMC9428696 DOI: 10.3389/fcimb.2022.933458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Antibiotic persisters are a sub-population of bacteria able to survive in the presence of bactericidal antibiotic despite the lack of heritable drug resistance mechanisms. This phenomenon exists across many bacterial species and is observed for many different antibiotics. Though these bacteria are often described as “multidrug persisters” very few experiments have been carried out to determine the homogeneity of a persister population to different drugs. Further, there is much debate in the field as to the origins of a persister cell. Is it formed spontaneously? Does it form in response to stress? These questions are particularly pressing in the field of Mycobacterium tuberculosis, where persisters may play a crucial role in the required length of treatment and the development of multidrug resistant organisms. Here we aim to interpret the known mechanisms of antibiotic persistence and how they may relate to improving treatments for M. tuberculosis, exposing the gaps in knowledge that prevent us from answering the question: Are all antibiotic persisters created equal?
Collapse
|
20
|
Hariharan VN, Yadav R, Thakur C, Singh A, Gopinathan R, Singh DP, Sankhe G, Malhotra V, Chandra N, Bhatt A, Saini DK. Cyclic di-GMP sensing histidine kinase PdtaS controls mycobacterial adaptation to carbon sources. FASEB J 2021; 35:e21475. [PMID: 33772870 DOI: 10.1096/fj.202002537rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 11/11/2022]
Abstract
Cell signaling relies on second messengers to transduce signals from the sensory apparatus to downstream signaling pathway components. In bacteria, one of the most important and ubiquitous second messenger is the small molecule cyclic diguanosine monophosphate (c-di-GMP). While the biosynthesis, degradation, and regulatory pathways controlled by c-di-GMP are well characterized, the mechanisms through which c-di-GMP controls these processes are not entirely understood. Herein we present the report of a c-di-GMP sensing sensor histidine kinase PdtaS (Rv3220c), which binds to c-di-GMP at submicromolar concentrations, subsequently perturbing signaling of the PdtaS-PdtaR (Rv1626) two-component system. Aided by biochemical analysis, genetics, molecular docking, FRET microscopy, and structural modelling, we have characterized the binding of c-di-GMP in the GAF domain of PdtaS. We show that a pdtaS knockout in Mycobacterium smegmatis is severely compromised in growth on amino acid deficient media and exhibits global transcriptional dysregulation. The perturbation of the c-di-GMP-PdtaS-PdtaR axis results in a cascade of cellular changes recorded by a multiparametric systems' approach of transcriptomics, unbiased metabolomics, and lipid analyses.
Collapse
Affiliation(s)
- Vignesh Narayan Hariharan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Rahul Yadav
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Chandrani Thakur
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Albel Singh
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Renu Gopinathan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Devendra Pratap Singh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Gaurav Sankhe
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Vandana Malhotra
- Department of Biochemistry, Sri Venkateswara College, Delhi University, Delhi, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Apoorva Bhatt
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
21
|
Buglino JA, Sankhe GD, Lazar N, Bean JM, Glickman MS. Integrated sensing of host stresses by inhibition of a cytoplasmic two-component system controls M. tuberculosis acute lung infection. eLife 2021; 10:e65351. [PMID: 34003742 PMCID: PMC8131098 DOI: 10.7554/elife.65351] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/25/2021] [Indexed: 12/30/2022] Open
Abstract
Bacterial pathogens that infect phagocytic cells must deploy mechanisms that sense and neutralize host microbicidal effectors. For Mycobacterium tuberculosis, the causative agent of tuberculosis, these mechanisms allow the bacterium to rapidly adapt from aerosol transmission to initial growth in the lung alveolar macrophage. Here, we identify a branched signaling circuit in M. tuberculosis that controls growth in the lung through integrated direct sensing of copper ions and nitric oxide by coupled activity of the Rip1 intramembrane protease and the PdtaS/R two-component system. This circuit uses a two-signal mechanism to inactivate the PdtaS/PdtaR two-component system, which constitutively represses virulence gene expression. Cu and NO inhibit the PdtaS sensor kinase through a dicysteine motif in the N-terminal GAF domain. The NO arm of the pathway is further controlled by sequestration of the PdtaR RNA binding response regulator by an NO-induced small RNA, controlled by the Rip1 intramembrane protease. This coupled Rip1/PdtaS/PdtaR circuit controls NO resistance and acute lung infection in mice by relieving PdtaS/R-mediated repression of isonitrile chalkophore biosynthesis. These studies identify an integrated mechanism by which M. tuberculosis senses and resists macrophage chemical effectors to achieve pathogenesis.
Collapse
Affiliation(s)
- John A Buglino
- Immunology Program Sloan Kettering InstituteNew York CityUnited States
| | - Gaurav D Sankhe
- Immunology Program Sloan Kettering InstituteNew York CityUnited States
| | - Nathaniel Lazar
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate SchoolNew York CityUnited States
| | - James M Bean
- Immunology Program Sloan Kettering InstituteNew York CityUnited States
| | - Michael S Glickman
- Immunology Program Sloan Kettering InstituteNew York CityUnited States
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate SchoolNew York CityUnited States
- Division of Infectious Diseases, Memorial Sloan Kettering Cancer CenterNew York CityUnited States
| |
Collapse
|
22
|
Chaperone-Mediated Stress Sensing in Mycobacterium tuberculosis Enables Fast Activation and Sustained Response. mSystems 2021; 6:6/1/e00979-20. [PMID: 33594002 PMCID: PMC8561658 DOI: 10.1128/msystems.00979-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dynamical properties of gene regulatory networks are tuned to ensure bacterial survival. In mycobacteria, the MprAB-σE network responds to the presence of stressors, such as surfactants that cause surface stress. Positive feedback loops in this network were previously predicted to cause hysteresis, i.e., different responses to identical stressor levels for prestressed and unstressed cells. Here, we show that hysteresis does not occur in nonpathogenic Mycobacterium smegmatis but does occur in Mycobacterium tuberculosis However, the observed rapid temporal response in M. tuberculosis is inconsistent with the model predictions. To reconcile these observations, we implement a recently proposed mechanism for stress sensing, namely, the release of MprB from the inhibitory complex with the chaperone DnaK upon the stress exposure. Using modeling and parameter fitting, we demonstrate that this mechanism can accurately describe the experimental observations. Furthermore, we predict perturbations in DnaK expression that can strongly affect dynamical properties. Experiments with these perturbations agree with model predictions, confirming the role of DnaK in fast and sustained response.IMPORTANCE Gene regulatory networks controlling stress response in mycobacterial species have been linked to persistence switches that enable bacterial dormancy within a host. However, the mechanistic basis of switching and stress sensing is not fully understood. In this paper, combining quantitative experiments and mathematical modeling, we uncover how interactions between two master regulators of stress response-the MprAB two-component system (TCS) and the alternative sigma factor σE-shape the dynamical properties of the surface stress network. The result show hysteresis (history dependence) in the response of the pathogenic bacterium M. tuberculosis to surface stress and lack of hysteresis in nonpathogenic M. smegmatis Furthermore, to resolve the apparent contradiction between the existence of hysteresis and fast activation of the response, we utilize a recently proposed role of chaperone DnaK in stress sensing. These result leads to a novel system-level understanding of bacterial stress response dynamics.
Collapse
|
23
|
Singh KK, Athira PJ, Bhardwaj N, Singh DP, Watson U, Saini DK. Acetylation of Response Regulator Protein MtrA in M. tuberculosis Regulates Its Repressor Activity. Front Microbiol 2021; 11:516315. [PMID: 33519719 PMCID: PMC7843721 DOI: 10.3389/fmicb.2020.516315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/17/2020] [Indexed: 11/13/2022] Open
Abstract
MtrA is an essential response regulator (RR) protein in M. tuberculosis, and its activity is modulated after phosphorylation from its sensor kinase MtrB. Interestingly, many regulatory effects of MtrA have been reported to be independent of its phosphorylation, thereby suggesting alternate mechanisms of regulation of the MtrAB two-component system in M. tuberculosis. Here, we show that RR MtrA undergoes non-enzymatic acetylation through acetyl phosphate, modulating its activities independent of its phosphorylation status. Acetylated MtrA shows increased phosphorylation and enhanced interaction with SK MtrB assessed by phosphotransfer assays and FRET analysis. We also observed that acetylated MtrA loses its DNA-binding ability on gene targets that are otherwise enhanced by phosphorylation. More interestingly, acetylation is the dominant post-translational modification, overriding the effect of phosphorylation. Evaluation of the impact of MtrA and its lysine mutant overexpression on the growth of H37Ra bacteria under different conditions along with the infection studies on alveolar epithelial cells further strengthens the importance of acetylated MtrA protein in regulating the growth of M. tuberculosis. Overall, we show that both acetylation and phosphorylation regulate the activities of RR MtrA on different target genomic regions. We propose here that, although phosphorylation-dependent binding of MtrA drives its repressor activity on oriC and rpf, acetylation of MtrA turns this off and facilitates division in mycobacteria. Our findings, thus, reveal a more complex regulatory role of RR proteins in which multiple post-translational modifications regulate the activities at the levels of interaction with SK and the target gene expression.
Collapse
Affiliation(s)
- Krishna Kumar Singh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - P J Athira
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Neerupma Bhardwaj
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India
| | - Devendra Pratap Singh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Uchenna Watson
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India.,Department of Studies in Zoology, University of Mysore, Mysore, India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
24
|
Arora G, Bothra A, Prosser G, Arora K, Sajid A. Role of post-translational modifications in the acquisition of drug resistance in Mycobacterium tuberculosis. FEBS J 2020; 288:3375-3393. [PMID: 33021056 DOI: 10.1111/febs.15582] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022]
Abstract
Tuberculosis (TB) is one of the primary causes of deaths due to infectious diseases. The current TB regimen is long and complex, failing of which leads to relapse and/or the emergence of drug resistance. There is a critical need to understand the mechanisms of resistance development. With increasing drug pressure, Mycobacterium tuberculosis (Mtb) activates various pathways to counter drug-related toxicity. Signaling modules steer the evolution of Mtb to a variant that can survive, persist, adapt, and emerge as a form that is resistant to one or more drugs. Recent studies reveal that about 1/3rd of the annotated Mtb proteome is modified post-translationally, with a large number of these proteins being essential for mycobacterial survival. Post-translational modifications (PTMs) such as phosphorylation, acetylation, and pupylation play a salient role in mycobacterial virulence, pathogenesis, and metabolism. The role of many other PTMs is still emerging. Understanding the signaling pathways and PTMs may assist clinical strategies and drug development for Mtb. In this review, we explore the contribution of PTMs to mycobacterial physiology, describe the related cellular processes, and discuss how these processes are linked to drug resistance. A significant number of drug targets, InhA, RpoB, EmbR, and KatG, are modified at multiple residues via PTMs. A better understanding of drug-resistance regulons and associated PTMs will aid in developing effective drugs against TB.
Collapse
Affiliation(s)
- Gunjan Arora
- Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Ankur Bothra
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gareth Prosser
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Kriti Arora
- Proteus Digital Health, Inc., Redwood City, CA, USA
| | - Andaleeb Sajid
- Yale School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
25
|
Mahatha AC, Mal S, Majumder D, Saha S, Ghosh A, Basu J, Kundu M. RegX3 Activates whiB3 Under Acid Stress and Subverts Lysosomal Trafficking of Mycobacterium tuberculosis in a WhiB3-Dependent Manner. Front Microbiol 2020; 11:572433. [PMID: 33042081 PMCID: PMC7525159 DOI: 10.3389/fmicb.2020.572433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/10/2020] [Indexed: 11/17/2022] Open
Abstract
Two-component systems (TCSs) are central to the ability of Mycobacterium tuberculosis to respond to stress. One such paired TCS is SenX3-RegX3, which responds to phosphate starvation. Here we show that RegX3 is required for M. tuberculosis to withstand low pH, one of the challenges encountered by the bacterium in the host environment, and that RegX3 activates the cytosolic redox sensor WhiB3 to launch an appropriate response to acid stress. We show that the whiB3 promoter of M. tuberculosis harbors a RegX3 binding motif. Electrophoretic mobility shift assays (EMSAs) show that phosphorylated RegX3 (RegX3-P) (but not its unphosphorylated counterpart) binds to this motif, whereas a DNA binding mutant, RegX3 (K204A) fails to do so. Mutation of the putative RegX3 binding motif on the whiB3 promoter, abrogates the binding of RegX3-P. The significance of this binding is established by demonstrating that the expression of whiB3 is significantly attenuated under phosphate starvation or under acid stress in the regX3-inactivated mutant, ΔregX3. Green fluorescent protein (GFP)-based reporter assays further confirm the requirement of RegX3 for the activation of the whiB3 promoter. The compromised survival of ΔregX3 under acid stress and its increased trafficking to the lysosomal compartment are reversed upon complementation with either regX3 or whiB3, suggesting that RegX3 exerts its effects in a WhiB3-dependent manner. Finally, using an in vitro granuloma model, we show that granuloma formation is compromised in the absence of regX3, but restored upon complementation with either regX3 or whiB3. Our findings provide insight into an important role of RegX3 in the network that regulates the survival of M. tuberculosis under acid stress similar to that encountered in its intracellular niche. Our results argue strongly in favor of a role of the RegX3-WhiB3 axis in establishment of M. tuberculosis infection.
Collapse
Affiliation(s)
| | - Soumya Mal
- Department of Chemistry, Bose Institute, Kolkata, India
| | | | - Sudipto Saha
- Division of Bioinformatics, Bose Institute, Kolkata, India
| | - Abhirupa Ghosh
- Division of Bioinformatics, Bose Institute, Kolkata, India
| | - Joyoti Basu
- Department of Chemistry, Bose Institute, Kolkata, India
| | | |
Collapse
|
26
|
Sabio Y García J, Bigi MM, Klepp LI, García EA, Blanco FC, Bigi F. Does Mycobacterium bovis persist in cattle in a non-replicative latent state as Mycobacterium tuberculosis in human beings? Vet Microbiol 2020; 247:108758. [PMID: 32768211 DOI: 10.1016/j.vetmic.2020.108758] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
Members of the Mycobacterium tuberculosis complex (MTBC) are responsible for tuberculosis in several mammals. In this complex, Mycobacterium tuberculosis and Mycobacterium bovis, which are closely related, show host preference for humans and cattle, respectively. Although human and bovine tuberculosis are clinically similar, M. tuberculosis mostly causes latent infection in humans, whereas M. bovis frequently leads to an acute infection in cattle. This review attempts to connect the pathology in experimental animal models as well as the cellular responses to M. bovis and M. tuberculosis regarding the differences in protein expression and regulatory mechanisms of both pathogens that could explain their apparent divergent latency behaviour. The occurrence of latent bovine tuberculosis (bTB) would represent a serious complication for the eradication of the disease in cattle, with the risk of onward transmission to humans. Thus, understanding the physiological events that may lead to the state of latency in bTB could assist in the development of appropriate prevention and control tools.
Collapse
Affiliation(s)
- Julia Sabio Y García
- (Instituto de Biotecnología-IABIMO, INTA-CONICET), Institute of Biotechnology-IABIMO, National Institute of Agricultural Technology (INTA) and National Scientific and Technical Research Council (CONICET), Argentina.
| | - María M Bigi
- (Universidad de Buenos Aires, Facultad de Agronomía), University of Buenos Aires, School of Agronomy Facultad de Agronomía, UBA, Buenos Aires Argentina.
| | - Laura I Klepp
- (Instituto de Biotecnología-IABIMO, INTA-CONICET), Institute of Biotechnology-IABIMO, National Institute of Agricultural Technology (INTA) and National Scientific and Technical Research Council (CONICET), Argentina.
| | - Elizabeth A García
- (Instituto de Biotecnología-IABIMO, INTA-CONICET), Institute of Biotechnology-IABIMO, National Institute of Agricultural Technology (INTA) and National Scientific and Technical Research Council (CONICET), Argentina.
| | - Federico C Blanco
- (Instituto de Biotecnología-IABIMO, INTA-CONICET), Institute of Biotechnology-IABIMO, National Institute of Agricultural Technology (INTA) and National Scientific and Technical Research Council (CONICET), Argentina.
| | - Fabiana Bigi
- (Instituto de Biotecnología-IABIMO, INTA-CONICET), Institute of Biotechnology-IABIMO, National Institute of Agricultural Technology (INTA) and National Scientific and Technical Research Council (CONICET), Argentina.
| |
Collapse
|
27
|
Phosphatase-defective DevS sensor kinase mutants permit constitutive expression of DevR-regulated dormancy genes in Mycobacterium tuberculosis. Biochem J 2020; 477:1669-1682. [PMID: 32309848 DOI: 10.1042/bcj20200113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 11/17/2022]
Abstract
The DevR-DevS/DosR-DosS two-component system of Mycobacterium tuberculosis, that comprises of DevS sensor kinase and DevR response regulator, is essential for bacterial adaptation to hypoxia by inducing dormancy regulon expression. The dominant phosphatase activity of DevS under aerobic conditions enables tight negative control, whereas its kinase function activates DevR under hypoxia to induce the dormancy regulon. A net balance in these opposing kinase and phosphatase activities of DevS calibrates the response output of DevR. To gain mechanistic insights into the kinase-phosphatase balance of DevS, we generated alanine substitution mutants of five residues located in DHp α1 helix of DevS, namely Phe-403, Gly-406, Leu-407, Gly-411 and His-415. For the first time, we have identified kinase positive phosphatase negative (K+P-) mutants in DevS by a single-site mutation in either Gly-406 or Leu-407. M. tuberculosis Gly-406A and Leu-407A mutant strains constitutively expressed the DevR regulon under aerobic conditions despite the presence of negative signal, oxygen. These mutant proteins exhibited ∼2-fold interaction defect with DevR. We conclude that Gly-406 and Leu-407 residues are individually essential for the phosphatase function of DevS. Our study provides new insights into the negative control mechanism of DevS by demonstrating the importance of an optimal interaction between DevR and DevS, and local changes associated with individual residues, Gly-406 and Leu-407, which mimic ligand-free DevS. These K+P- mutant strains are expected to facilitate the rapid aerobic screening of DevR antagonists in M. tuberculosis, thereby eliminating the requirement for hypoxic culture conditions.
Collapse
|
28
|
Computational study of parameter sensitivity in DevR regulated gene expression. PLoS One 2020; 15:e0228967. [PMID: 32053690 PMCID: PMC7018068 DOI: 10.1371/journal.pone.0228967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/27/2020] [Indexed: 11/26/2022] Open
Abstract
The DevRS two-component system plays a pivotal role in signal transmission and downstream gene regulation in Mycobacterium tuberculosis. Under the hypoxic condition, phosphorylated DevR interacts with multiple binding sites at the promoter region of the target genes. In the present work, we carried out a detailed computational analysis to figure out the sensitivity of the kinetic parameters. The set of kinetic parameters takes care of the interaction among phosphorylated DevR and the binding sites, transcription and translation processes. We employ the method of stochastic optimization to quantitate the relevant kinetic parameter set necessary for DevR regulated gene expression. Measures of different correlation coefficients provide the relative ordering of kinetic parameters involved in gene regulation. Results obtained from correlation coefficients are further corroborated by sensitivity amplification.
Collapse
|
29
|
Abstract
Progress against tuberculosis (TB) requires faster-acting drugs. Mycobacterium tuberculosis (Mtb) is the leading cause of death by an infectious disease and its treatment is challenging and lengthy. Mtb is remarkably successful, in part, due to its ability to become dormant in response to host immune pressures. The DosRST two-component regulatory system is induced by hypoxia, nitric oxide and carbon monoxide and remodels Mtb physiology to promote nonreplicating persistence (NRP). NRP bacteria are thought to play a role in the long course of TB treatment. Therefore, inhibitors of DosRST-dependent adaptation may function to kill this reservoir of persisters and potentially shorten therapy. This review examines the function of DosRST, newly discovered compounds that inhibit DosRST signaling and considers future development of DosRST inhibitors as adjunct therapies.
Collapse
|
30
|
Baros SS, Blackburn JM, Soares NC. Phosphoproteomic Approaches to Discover Novel Substrates of Mycobacterial Ser/Thr Protein Kinases. Mol Cell Proteomics 2020; 19:233-244. [PMID: 31839597 PMCID: PMC7000118 DOI: 10.1074/mcp.r119.001668] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/15/2019] [Indexed: 12/21/2022] Open
Abstract
Mycobacterial Ser/Thr protein kinases (STPKs) play a critical role in signal transduction pathways that ultimately determine mycobacterial growth and metabolic adaptation. Identification of key physiological substrates of these protein kinases is, therefore, crucial to better understand how Ser/Thr phosphorylation contributes to mycobacterial environmental adaptation, including response to stress, cell division, and host-pathogen interactions. Various substrate detection methods have been employed with limited success, with direct targets of STPKs remaining elusive. Recently developed mass spectrometry (MS)-based phosphoproteomic approaches have expanded the list of potential STPK substrate identifications, yet further investigation is required to define the most functionally significant phosphosites and their physiological importance. Prior to the application of MS workflows, for instance, GarA was the only known and validated physiological substrate for protein kinase G (PknG) from pathogenic mycobacteria. A subsequent list of at least 28 candidate PknG substrates has since been reported with the use of MS-based analyses. Herein, we integrate and critically review MS-generated datasets available on novel STPK substrates and report new functional and subcellular localization enrichment analyses on novel candidate protein kinase A (PknA), protein kinase B (PknB) and PknG substrates to deduce the possible physiological roles of these kinases. In addition, we assess substrate specificity patterns across different mycobacterial STPKs by analyzing reported sets of phosphopeptides, in order to determine whether novel motifs or consensus regions exist for mycobacterial Ser/Thr phosphorylation sites. This review focuses on MS-based techniques employed for STPK substrate identification in mycobacteria, while highlighting the advantages and challenges of the various applications.
Collapse
Affiliation(s)
- Seanantha S Baros
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Jonathan M Blackburn
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa; Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Nelson C Soares
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
31
|
Evidence of Robustness in a Two-Component System Using a Synthetic Circuit. J Bacteriol 2020; 202:JB.00672-19. [PMID: 31792012 DOI: 10.1128/jb.00672-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/25/2019] [Indexed: 01/06/2023] Open
Abstract
Variation in the concentration of biological components is inescapable for any cell. Robustness in any biological circuit acts as a cushion against such variation and enables the cells to produce homogeneous output despite the fluctuation. The two-component system (TCS) with a bifunctional sensor kinase (that possesses both kinase and phosphatase activities) is proposed to be a robust circuit. Few theoretical models explain the robustness of a TCS, although the criteria and extent of robustness by these models differ. Here, we provide experimental evidence to validate the extent of the robustness of a TCS signaling pathway. We have designed a synthetic circuit in Escherichia coli using a representative TCS of Mycobacterium tuberculosis, MprAB, and monitored the in vivo output signal by systematically varying the concentration of either of the components or both. We observed that the output of the TCS is robust if the concentration of MprA is above a threshold value. This observation is further substantiated by two in vitro assays, in which we estimated the phosphorylated MprA pool or MprA-dependent transcription yield by varying either of the components of the TCS. This synthetic circuit could be used as a model system to analyze the relationship among different components of gene regulatory networks.IMPORTANCE Robustness in essential biological circuits is an important feature of the living organism. A few pieces of evidence support the existence of robustness in vivo in the two-component system (TCS) with a bifunctional sensor kinase (SK). The assays were done under physiological conditions in which the SK was much lower than the response regulator (RR). Here, using a synthetic circuit, we varied the concentrations of the SK and RR of a representative TCS to monitor output robustness in vivo. In vitro assays were also performed under conditions where the concentration of the SK was greater than that of the RR. Our results demonstrate the extent of output robustness in the TCS signaling pathway with respect to the concentrations of the two components.
Collapse
|
32
|
Liu X, Wang C, Yan B, Lyu L, Takiff HE, Gao Q. The potassium transporter KdpA affects persister formation by regulating ATP levels in Mycobacterium marinum. Emerg Microbes Infect 2020; 9:129-139. [PMID: 31913766 PMCID: PMC6968386 DOI: 10.1080/22221751.2019.1710090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mycobacterial persistence mechanisms remain to be fully characterized. Screening a transposon insertion library of Mycobacterium marinum identified kdpA, whose inactivation reduced the fraction of persisters after exposure to rifampicin. kdpA encodes a transmembrane protein that is part of the Kdp-ATPase, an ATP-dependent high-affinity potassium (K+) transport system. We found that kdpA is induced under low K+ conditions and is required for pH homeostasis and growth in media with low concentrations of K+. The inactivation of the Kdp system in a kdpA insertion mutant caused hyperpolarization of the cross-membrane potential, increased proton motive force (PMF) and elevated levels of intracellular ATP. The KdpA mutant phenotype could be complemented with a functional kdpA gene or supplementation with high K+ concentrations. Taken together, our results suggest that the Kdp system is required for ATP homeostasis and persister formation. The results also confirm that ATP-mediated regulation of persister formation is a general mechanism in bacteria, and suggest that K+ transporters could play a role in the regulation of ATP levels and persistence. These findings could have implications for the development of new drugs that could either target persisters or reduce their presence.
Collapse
Affiliation(s)
- Xiaofan Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Chuan Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Bo Yan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Liangdong Lyu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Howard E Takiff
- Integrated Mycobacterial Pathogenomics Unit, Institut Pasteur, Paris, France
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
33
|
Nandi M, Sikri K, Chaudhary N, Mande SC, Sharma RD, Tyagi JS. Multiple transcription factors co-regulate the Mycobacterium tuberculosis adaptation response to vitamin C. BMC Genomics 2019; 20:887. [PMID: 31752669 PMCID: PMC6868718 DOI: 10.1186/s12864-019-6190-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/15/2019] [Indexed: 11/25/2022] Open
Abstract
Background Latent tuberculosis infection is attributed in part to the existence of Mycobacterium tuberculosis in a persistent non-replicating dormant state that is associated with tolerance to host defence mechanisms and antibiotics. We have recently reported that vitamin C treatment of M. tuberculosis triggers the rapid development of bacterial dormancy. Temporal genome-wide transcriptome analysis has revealed that vitamin C-induced dormancy is associated with a large-scale modulation of gene expression in M. tuberculosis. Results An updated transcriptional regulatory network of M.tuberculosis (Mtb-TRN) consisting of 178 regulators and 3432 target genes was constructed. The temporal transcriptome data generated in response to vitamin C was overlaid on the Mtb-TRN (vitamin C Mtb-TRN) to derive insights into the transcriptional regulatory features in vitamin C-adapted bacteria. Statistical analysis using Fisher’s exact test predicted that 56 regulators play a central role in modulating genes which are involved in growth, respiration, metabolism and repair functions. Rv0348, DevR, MprA and RegX3 participate in a core temporal regulatory response during 0.25 h to 8 h of vitamin C treatment. Temporal network analysis further revealed Rv0348 to be the most prominent hub regulator with maximum interactions in the vitamin C Mtb-TRN. Experimental analysis revealed that Rv0348 and DevR proteins interact with each other, and this interaction results in an enhanced binding of DevR to its target promoter. These findings, together with the enhanced expression of devR and Rv0348 transcriptional regulators, indicate a second-level regulation of target genes through transcription factor- transcription factor interactions. Conclusions Temporal regulatory analysis of the vitamin C Mtb-TRN revealed that there is involvement of multiple regulators during bacterial adaptation to dormancy. Our findings suggest that Rv0348 is a prominent hub regulator in the vitamin C model and large-scale modulation of gene expression is achieved through interactions of Rv0348 with other transcriptional regulators.
Collapse
Affiliation(s)
- Malobi Nandi
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.,Amity Institute of Biotechnology, Amity University, Manesar, Haryana, 122413, India
| | - Kriti Sikri
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Neha Chaudhary
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.,Present address: Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Ravi Datta Sharma
- Amity Institute of Biotechnology, Amity University, Manesar, Haryana, 122413, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India. .,Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India.
| |
Collapse
|
34
|
Calvanese L, Squeglia F, Romano M, D'Auria G, Falcigno L, Berisio R. Structural and dynamic studies provide insights into specificity and allosteric regulation of ribonuclease as, a key enzyme in mycobacterial virulence. J Biomol Struct Dyn 2019; 38:2455-2467. [PMID: 31299874 DOI: 10.1080/07391102.2019.1643786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribonuclease AS (RNase AS) is a crucial enzyme for virulence of Mycobacterium tuberculosis. We previously observed that RNase AS structurally resembles RNase T from Escherichia coli, an important enzyme for tRNA maturation and turnover. Here, we combine X-ray crystallography and molecular dynamics (MD) to investigate the specificity and dynamic properties of substrate binding. Both X-ray and MD data provide structural determinants that corroborate the strict substrate specificity of RNase AS to cleave only adenosine residues, due to the structural features of adenine base. Beside suggesting tRNA as most likely substrate of RNase AS, MD and modeling studies identify key enzyme-ligand interactions, both involving the catalytic site and the double helix region of tRNA, which is locked by interactions with a set of arginine residues. The MD data also evidence a ligand-induced conformational change of the enzyme which is transferred from one chain to the adjacent one. These data will explain the dimeric nature of both RNase AS and RNase T, with two catalytic grooves composed of both chains. Also, they account for the dichotomy of tRNA, which contains both the substrate poly(A) chain and an inhibiting double strand RNA. Indeed, they provide a possible mechanism of allosteric regulation, which unlocks one catalytic groove when the second groove is inhibited by the double strand region of tRNA. Finally, a full comprehension of the molecular details of tRNA maturation processes is essential to develop novel strategies to modulate RNA processing, for therapeutic purposes. AbbreviationsMDmolecular dynamicsPDBProtein Data BankRMSDroot mean square deviationRMSFroot mean square fluctuationRNAribonucleotidic acidRNase ASRibonuclease ASCommunicated by Ramasamy H. Sarma.
Collapse
Affiliation(s)
- Luisa Calvanese
- CIRPeB, University of Naples Federico II, Naples, Italy.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Flavia Squeglia
- Institute of Bio-Structures and Bio-Imaging - CNR-IBB, Naples, Italy
| | - Maria Romano
- Department of Life Sciences, Imperial College London, London, UK
| | - Gabriella D'Auria
- CIRPeB, University of Naples Federico II, Naples, Italy.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Lucia Falcigno
- CIRPeB, University of Naples Federico II, Naples, Italy.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Rita Berisio
- Institute of Bio-Structures and Bio-Imaging - CNR-IBB, Naples, Italy
| |
Collapse
|
35
|
Tierney AR, Rather PN. Roles of two-component regulatory systems in antibiotic resistance. Future Microbiol 2019; 14:533-552. [PMID: 31066586 DOI: 10.2217/fmb-2019-0002] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Two-component regulatory systems (TCSs) are a major mechanism by which bacteria sense and respond to changes in their environment. TCSs typically consist of two proteins that bring about major regulation of the cell genome through coordinated action mediated by phosphorylation. Environmental conditions that activate TCSs are numerous and diverse and include exposure to antibiotics as well as conditions inside a host. The resulting regulatory action often involves activation of antibiotic defenses and changes to cell physiology that increase antibiotic resistance. Examples of resistance mechanisms enacted by TCSs contained in this review span those found in both Gram-negative and Gram-positive species and include cell surface modifications, changes in cell permeability, increased biofilm formation, and upregulation of antibiotic-degrading enzymes.
Collapse
Affiliation(s)
- Aimee Rp Tierney
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, 30322 USA
| | - Philip N Rather
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, 30322 USA.,Research Service, Department of Veterans' Affairs, Atlanta VA Health Care System, Decatur, GA, 30033 USA
| |
Collapse
|
36
|
Briffotaux J, Liu S, Gicquel B. Genome-Wide Transcriptional Responses of Mycobacterium to Antibiotics. Front Microbiol 2019; 10:249. [PMID: 30842759 PMCID: PMC6391361 DOI: 10.3389/fmicb.2019.00249] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/30/2019] [Indexed: 11/13/2022] Open
Abstract
Antibiotics can stimulate or depress gene expression in bacteria. The analysis of transcriptional responses of Mycobacterium to antimycobacterial compounds has improved our understanding of the mode of action of various drug classes and the efficacy and effect of such compounds on the global metabolism of Mycobacterium. This approach can provide new insights for known antibiotics, for example those currently used for tuberculosis treatment, as well as help to identify the mode of action and predict the targets of new compounds identified by whole-cell screening assays. In addition, changes in gene expression profiles after antimycobacterial treatment can provide information about the adaptive ability of bacteria to escape the effects of antibiotics and allow monitoring of the physiology of the bacteria during treatment. Genome-wide expression profiling also makes it possible to pinpoint genes differentially expressed between drug sensitive Mycobacterium and multidrug-resistant clinical isolates. Finally, genes involved in adaptive responses and drug tolerance could become new targets for improving the efficacy of existing antibiotics.
Collapse
Affiliation(s)
- Julien Briffotaux
- Department of Tuberculosis Control and Prevention, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China.,Emerging Bacterial Pathogens Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Shengyuan Liu
- Department of Tuberculosis Control and Prevention, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Brigitte Gicquel
- Department of Tuberculosis Control and Prevention, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China.,Emerging Bacterial Pathogens Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,Mycobacterial Genetics Unit, Institut Pasteur, Paris, France
| |
Collapse
|
37
|
Singh KK, Bhardwaj N, Sankhe GD, Udaykumar N, Singh R, Malhotra V, Saini DK. Acetylation of Response Regulator Proteins, TcrX and MtrA in M. tuberculosis Tunes their Phosphotransfer Ability and Modulates Two-Component Signaling Crosstalk. J Mol Biol 2019; 431:777-793. [DOI: 10.1016/j.jmb.2019.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/01/2019] [Accepted: 01/03/2019] [Indexed: 01/31/2023]
|
38
|
Shur KV, Bekker OB, Zaichikova MV, Maslov DA, Akimova NI, Zakharevich NV, Chekalina MS, Danilenko VN. Genetic Aspects of Drug Resistance and Virulence in Mycobacterium tuberculosis. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418120141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
39
|
Antczak M, Płocińska R, Płociński P, Rumijowska-Galewicz A, Żaczek A, Strapagiel D, Dziadek J. The NnaR orphan response regulator is essential for the utilization of nitrate and nitrite as sole nitrogen sources in mycobacteria. Sci Rep 2018; 8:17552. [PMID: 30510199 PMCID: PMC6277429 DOI: 10.1038/s41598-018-35844-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022] Open
Abstract
Nitrogen is an essential component of biological molecules and an indispensable microelement required for the growth of cells. Nitrogen metabolism of Mycobacterium smegmatis is regulated by a number of transcription factors, with the glnR gene product playing a major role. Under nitrogen-depletion conditions, GlnR controls the expression of many genes involved in nitrogen assimilation, including the msmeg_0432 gene encoding NnaR, the homologue of a nitrite/nitrate transport regulator from Streptomyces coelicolor. In the present study, the role of NnaR in the nitrogen metabolism of M. smegmatis was evaluated. The ∆glnR and ∆nnaR mutant strains were generated and cultured under nitrogen-depletion conditions. Total RNA profiling was used to investigate the potential role of NnaR in the GlnR regulon under nitrogen-depletion and in nitrogen-rich media. We found that disruption of MSMEG_0432 affected the expression of genes involved in nitrite/nitrate uptake, and its removal rendered mycobacteria unable to assimilate nitrogen from those sources, leading to cell death. RNA-Seq results were validated using quantitative real-time polymerase chain reaction (qRT-PCR) and electrophoretic mobility shift assays (EMSAs). The ability of mutants to grow on various nitrogen sources was evaluated using the BIOLOG Phenotype screening platform and confirmed on minimal Sauton's medium containing various sources of nitrogen. The ∆glnR mutant was not able to convert nitrates to nitrites. Interestingly, NnaR required active GlnR to prevent nitrogen starvation, and both proteins cooperated in the regulation of gene expression associated with nitrate/nitrite assimilation. The ∆nnaR mutant was able to convert nitrates to nitrites, but it could not assimilate the products of this conversion. Importantly, NnaR was the key regulator of the expression of the truncated haemoglobin trHbN, which is required to improve the survival of bacteria under nitrosative stress.
Collapse
Affiliation(s)
- Magdalena Antczak
- Institute for Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Renata Płocińska
- Institute for Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | | | | | - Anna Żaczek
- Department of Biochemistry and Cell Biology, University of Rzeszów, Rzeszów, Poland
| | - Dominik Strapagiel
- Biobank Lab, Department of Molecular Biophysics, University of Łódź, Łódź, Poland
| | - Jarosław Dziadek
- Institute for Medical Biology, Polish Academy of Sciences, Łódź, Poland.
| |
Collapse
|
40
|
Gorla P, Plocinska R, Sarva K, Satsangi AT, Pandeeti E, Donnelly R, Dziadek J, Rajagopalan M, Madiraju MV. MtrA Response Regulator Controls Cell Division and Cell Wall Metabolism and Affects Susceptibility of Mycobacteria to the First Line Antituberculosis Drugs. Front Microbiol 2018; 9:2839. [PMID: 30532747 PMCID: PMC6265350 DOI: 10.3389/fmicb.2018.02839] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/05/2018] [Indexed: 11/25/2022] Open
Abstract
The biological processes regulated by the essential response regulator MtrA and the growth conditions promoting its activation in Mycobacterium tuberculosis, a slow grower and pathogen, are largely unknown. Here, using a gain-of-function mutant, MtrAY 102C, which functions in the absence of the cognate MtrB sensor kinase, we show that the MtrA regulon includes several genes involved in the processes of cell division and cell wall metabolism. The expression of selected MtrA targets and intracellular MtrA levels were compromised under replication arrest induced by genetic manipulation and under stress conditions caused by toxic radicals. The loss of the mtrA gene in M. smegmatis, a rapid grower and non-pathogen, produced filamentous cells with branches and bulges, indicating defects in cell division and cell shape. The ΔmtrA mutant was sensitized to rifampicin and vancomycin and became more resistant to isoniazid, the first line antituberculosis drug. Our data are consistent with the proposal that MtrA controls the optimal cell division, cell wall integrity, and susceptibility to some antimycobacterial drugs.
Collapse
Affiliation(s)
- Purushotham Gorla
- Biomedical Research, The University of Texas Health Science Center, Tyler, TX, United States
| | - Renata Plocinska
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Krishna Sarva
- Biomedical Research, The University of Texas Health Science Center, Tyler, TX, United States
| | - Akash T Satsangi
- Biomedical Research, The University of Texas Health Science Center, Tyler, TX, United States
| | - Emmanuel Pandeeti
- Biomedical Research, The University of Texas Health Science Center, Tyler, TX, United States
| | - Robert Donnelly
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Jaroslaw Dziadek
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Malini Rajagopalan
- Biomedical Research, The University of Texas Health Science Center, Tyler, TX, United States
| | - Murty V Madiraju
- Biomedical Research, The University of Texas Health Science Center, Tyler, TX, United States
| |
Collapse
|
41
|
Abstract
Bacterial signal transduction systems are responsible for sensing environmental cues and adjusting the cellular behaviour and/or metabolism in response to these cues. They also monitor the intracellular conditions and the status of the cell envelope and the cytoplasmic membrane and trigger various stress responses to counteract adverse changes. This surveillance involves several classes of sensor proteins: histidine kinases; chemoreceptors; membrane components of the sugar phosphotransferase system; adenylate, diadenylate and diguanylate cyclases and certain cAMP, c-di-AMP and c-di-GMP phosphodiesterases; extracytoplasmic function sigma factors and Ser/Thr/Tyr protein kinases and phosphoprotein phosphatases. We have compiled a detailed listing of sensor proteins that are encoded in the genomes of Escherichia coli, Bacillus subtilis and 10 widespread pathogens: Chlamydia trachomatis, Haemophilus influenzae, Helicobacter pylori, Mycobacterium tuberculosis, Mycoplasma pneumoniae, Neisseria gonorrhoeae, Porphyromonas gingivalis, Rickettsia typhi, Streptococcus pyogenes and Treponema pallidum, and checked what, if anything, is known about their functions. This listing shows significant gaps in the understanding of which environmental and intracellular cues are perceived by these bacteria and which cellular responses are triggered by the changes in the respective parameters. A better understanding of bacterial preferences may suggest new ways to modulate the expression of virulence factors and therefore decrease the reliance on antibiotics to fight infection.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
42
|
Bretl DJ, Ladd KM, Atkinson SN, Müller S, Kirby JR. Suppressor mutations reveal an NtrC-like response regulator, NmpR, for modulation of Type-IV Pili-dependent motility in Myxococcus xanthus. PLoS Genet 2018; 14:e1007714. [PMID: 30346960 PMCID: PMC6211767 DOI: 10.1371/journal.pgen.1007714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 11/01/2018] [Accepted: 09/26/2018] [Indexed: 12/03/2022] Open
Abstract
Two-component signaling systems (TCS) regulate bacterial responses to environmental signals through the process of protein phosphorylation. Specifically, sensor histidine kinases (SK) recognize signals and propagate the response via phosphorylation of a cognate response regulator (RR) that functions to initiate transcription of specific genes. Signaling within a single TCS is remarkably specific and cross-talk between TCS is limited. However, regulation of the flow of information through complex signaling networks that include closely related TCS remains largely unknown. Additionally, many bacteria utilize multi-component signaling networks which provide additional genetic and biochemical interactions that must be regulated for signaling fidelity, input and output specificity, and phosphorylation kinetics. Here we describe the characterization of an NtrC-like RR that participates in regulation of Type-IV pilus-dependent motility of Myxococcus xanthus and is thus named NmpR, NtrC Modulator of Pili Regulator. A complex multi-component signaling system including NmpR was revealed by suppressor mutations that restored motility to cells lacking PilR, an evolutionarily conserved RR required for expression of pilA encoding the major Type-IV pilus monomer found in many bacterial species. The system contains at least four signaling proteins: a SK with a protoglobin sensor domain (NmpU), a hybrid SK (NmpS), a phospho-sink protein (NmpT), and an NtrC-like RR (NmpR). We demonstrate that ΔpilR bypass suppressor mutations affect regulation of the NmpRSTU multi-component system, such that NmpR activation is capable of restoring expression of pilA in the absence of PilR. Our findings indicate that pilus gene expression in M. xanthus is regulated by an extended network of TCS which interact to refine control of pilus function.
Collapse
Affiliation(s)
- Daniel J. Bretl
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Kayla M. Ladd
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Samantha N. Atkinson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States of America
- Department of Bioinformatics, University of Iowa, Iowa City, Iowa, United States of America
| | - Susanne Müller
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - John R. Kirby
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| |
Collapse
|
43
|
Manicheva OA, Dogonadze MZ, Melnikova NN, Vishnevskiy BI, Manichev SA. THE GROWTH RATE PHENOTYPIC PROPERTY OF MYCOBACTERIUM TUBERCULOSIS CLINICAL STRAINS: DEPENDENCE ON TUBERCULOSIS LOCALIZATION, TREATMENT, DRUG SUSCEPTIBILITY. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2018. [DOI: 10.15789/2220-7619-2018-2-175-186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The phenotypic properties of the M. tuberculosis strains obtained from patients with pulmonary or extra-pulmonary tuberculosis are determined by a complex set of factors: the genetic characteristics of the pathogen, its ability to adapt in vivo and in vitro, the influence of the host’s immune system and chemotherapy. The growth rate as the phenotypic property is the most accessible for the study of the host-pathogen relationships at the level of host/strain population interactions. The aim of the study is to assess in vitro of the growth rate of M. tuberculosis strains isolated from patients with pulmonary and extra-pulmonary tuberculosis: untreated and treated (with surgical and non-surgical treatment) and also sensitive and resistant isolates in comparison with the reference strain H37Rv. To estimate the growth rate of 116 clinical isolates we have used the modified method originally developed by von Groll and co-authors: to get the bacteria growth curve the fluorescence intensity of growing strains (with indicator resazurin) has been measured daily for 8 days in 96- well plate. The growth rate is determined as the slope of the growth curve. The mean values of the growth rate have been calculated in the following groups of patients: 1 — untreated patients with pulmonary tuberculosis (PT), respiratory material; 2 — non-surgical treated PT patients, respiratory material; 3 — surgical treated PT patients (mainly with chronic and hyperchronic process), respiratory material; 4 — patients like in 3rd group, surgical material; 5 — bone and joint tuberculosis (BJT), surgical material. In addition, groups of sensitive and resistant strains have been examined, but there are no significant differences in growth rates. It has been obtained that the growth rate of strains isolated from the PT patients is higher than in BJT patients: it can be explained less favorable conditions for the pathogen vegetation in the BJT. In the case of a closed tuberculous lesion where the pathogen transmission to another host is impossible, then the selection of strains with the property to survive in the tissues of the osteoarticular system is impossible too, therefor it should be observed only an adaptation of the pathogen strain population to the individual host. The growth rate of isolates from untreated PT patients is higher than that of the treated ones. Comparison of the growth parameters of only MDR strains 1–5 groups to eliminate the influence of the sensitivity/resistance has resulted in the same conclusions. We suggest that the decrease in the growth rate of strains from the treated PT patients is in not only result of the treatment, but also is conditioned by adaptation of the pathogen to its external environment, which is the internal environment of the macroorganism. To confirm this assumption, the bacterial load of 1,083 diagnostic specimens grouped in a similar manner has been estimated, taking into account only MDR/XDR strains. In the group of treated patients the frequency of high bacterial load (CFU ≥ 100) reached 52.5–63.8% that shows the conserved fitness of bacteria in such patients. The mean values of the growth rate of the strain H37Rv non-adapted to the macroorganism (due to numerous passages on artificial media) are higher than in all groups of clinical strains. Thus, heterogeneity of phenotypic properties of M. tuberculosis clinical strains on the basis of growth rate has been obtained. The growth rate of M. tuberculosis clinical strains is depended on the tuberculosis localization (PT, BJT) and on the joint effect of patient treatment and pathogen adaptation to the host.
Collapse
|
44
|
Acetylation of lysine 182 inhibits the ability of Mycobacterium tuberculosis DosR to bind DNA and regulate gene expression during hypoxia. Emerg Microbes Infect 2018; 7:108. [PMID: 29899473 PMCID: PMC5999986 DOI: 10.1038/s41426-018-0112-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/11/2018] [Accepted: 05/16/2018] [Indexed: 11/08/2022]
Abstract
The DosR regulon is believed to be a key factor in latency adaptation of Mycobacterium tuberculosis and is strongly induced by multiple stresses, including hypoxia. Previous studies have revealed reversible acetylation of the conserved core DNA-binding lysine residue 182 (K182) of DosR in M. tuberculosis. In this study, we demonstrated that acetylated K182 plays an important role in the DNA-binding ability of DosR and that acetylation of K182 completely abolished the affinity of DosR for DNA in vitro. Antibodies that specifically recognized acetyllysine at position 182 of DosR were used to monitor DosR acetylation. We found that in vitro acetylation of K182 could be removed by deacetylase Rv1151c and that either the deacetylase-deletion strain ∆npdA or treatment with a deacetylase inhibitor resulted in increased levels of K182 acetylation in vivo. The physiological significance of DosR acetylation was demonstrated by decreased levels of acetylated K182 in M. tuberculosis in response to hypoxia and by the effects of K182 acetylation on the transcript levels of DosR regulon genes. Since the DosR regulon plays a critical role during host infection by M. tuberculosis, our findings suggest that targeting DosR acetylation may be a viable strategy for antituberculosis drug development.
Collapse
|
45
|
Kundu M. The role of two-component systems in the physiology of Mycobacterium tuberculosis. IUBMB Life 2018; 70:710-717. [PMID: 29885211 DOI: 10.1002/iub.1872] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/22/2018] [Indexed: 12/14/2022]
Abstract
Tuberculosis is a global health problem, with a third of the world's population infected with the bacillus, Mycobacterium tuberculosis. The problem is exacerbated by the emergence of multidrug resistant and extensively drug resistant strains. The search for new drug targets is therefore a priority for researchers in the field. The two-component systems (TCSs) are central to the ability of the bacterium to sense and to respond appropriately to its environment. Here we summarize current knowledge on the paired TCSs of M. tuberculosis. We discuss what is currently understood regarding the signals to which each of the sensor kinases responds, and the regulons of each of the cognate response regulators. We also discuss what is known regarding attempts to inhibit the TCSs by small molecules and project their potential as pharmacological targets for the development of novel antimycobacterial agents. © 2018 IUBMB Life, 70(8):710-717, 2018.
Collapse
|
46
|
Activation of Bacterial Histidine Kinases: Insights into the Kinetics of the cis Autophosphorylation Mechanism. mSphere 2018; 3:3/3/e00111-18. [PMID: 29769379 PMCID: PMC5956149 DOI: 10.1128/msphere.00111-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/22/2018] [Indexed: 12/16/2022] Open
Abstract
Two-component signaling systems (TCSs) are central to bacterial adaptation. However, the mechanisms underlying the reactions involving TCS proteins and their reaction rates are largely undetermined. Here, we employed a combined experimental and theoretical approach to elucidate the kinetics of autophosphorylation of three histidine kinases (HKs) of Mycobacterium tuberculosis, viz., MtrB, PrrB, and PhoR, all known to play a role in regulating its virulence. Using wild-type and mutant proteins, we performed dimerization assays, thermophoretic-affinity measurements, and competition-based phosphorylation assays to establish that for HK, MtrB autophosphorylation occurs in cis, similar to what has been proposed for the PhoR and PrrB HKs. Next, to determine the kinetics of cis autophosphorylation, we used a quantitative high-throughput assay and identified a two-step mechanism of HK activation, involving (i) the reversible association of HK with ATP, followed by (ii) its phosphorylation. We developed a mathematical model based on this two-step cis mechanism that captured the experimental data. Best-fit parameter values yielded estimates of the extent of HK-ATP association and the rates of HK autophosphorylation, allowing quantification of the propensity of HK autophosphorylation. Our combined experimental and theoretical approach presents a facile, scalable tool to quantify reactions involving bacterial TCS proteins, useful in antibacterial drug development strategies.IMPORTANCE Two-component systems consisting of an input-sensing histidine kinase (HK) and an output-generating response regulator (RR) are one of the key apparatuses utilized by bacteria for adapting to the extracellular milieu. HK autophosphorylation is shown to occur primarily in trans (intermolecular) and more recently shown to occur in cis (intramolecular). Although the catalysis of HK activation remains universal, the reaction scheme for evaluation of the kinetic parameter differs between these designs and cis mode largely remains unexplored. We combined experimental and theoretical approach to unravel two-step mechanism of activation of three cis mode HKs of M. tuberculosis The new mathematical model yields best-fit parameters to estimate the rates of HK-ATP association and HK autophosphorylation.
Collapse
|
47
|
PhoPR Positively Regulates whiB3 Expression in Response to Low pH in Pathogenic Mycobacteria. J Bacteriol 2018; 200:JB.00766-17. [PMID: 29378889 DOI: 10.1128/jb.00766-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/22/2018] [Indexed: 01/18/2023] Open
Abstract
During infection, Mycobacterium tuberculosis colonizes macrophages or necrotic granulomas, in which low pH is one of the major challenges. The PhoPR two-component regulatory system and the cytosolic redox sensor WhiB3 both play important roles in the response to low pH by M. tuberculosis However, whether close association exists between PhoPR and WhiB3 remains unclear. In this study, the positive regulation of whiB3 by PhoPR in mycobacteria was characterized. We observed that the expression patterns of the whiB3 gene under acidic conditions are different among mycobacterial species, suggesting that the regulation of whiB3 differs among mycobacteria. A sequence analysis of the whiB3 promoters (whiB3p) from M. tuberculosis and two closely related species, namely, M. marinum and M. smegmatis, showed that the whiB3p regions from M. tuberculosis and M. marinum contain a new type of PhoP box that is absent in the M. smegmatiswhiB3p Direct binding of PhoP to whiB3p from M. tuberculosis and M. marinum but not that from M. smegmatis was validated by in vitro protein-DNA binding assays. The direct activation of whiB3 by PhoPR under acidic conditions was further verified by reverse transcription-quantitative PCR (qRT-PCR) analysis in M. marinum Moreover, mutating the residues important for the phosphorylation pathway of PhoPR in M. marinum abolished the activation of whiB3 expression by PhoPR under acidic conditions, suggesting that low pH triggers the phosphorylation of PhoPR, which in turn activates the transcription of whiB3 Since the PhoP box was only identified in whiB3p of pathogenic mycobacteria, we suggest that the PhoPR-whiB3 regulatory pathway may have evolved to facilitate mycobacterial infection.IMPORTANCE The low pH in macrophages is an important barrier for infection by microbes. The PhoPR two-component regulatory system is required for the response to low pH and plays a role in redox homeostasis in Mycobacterium tuberculosis WhiB3, a cytosolic redox-sensing transcriptional regulator, is also involved in these processes. However, there is no direct evidence to demonstrate the regulation of WhiB3 by PhoPR. In this study, we found that PhoPR directly activates whiB3 expression in response to low pH. An atypical PhoP box in the whiB3 promoters has been identified and is only found in pathogenic mycobacteria, which suggests that the PhoPR-whiB3 regulatory pathway may facilitate mycobacterial infection. This study provides novel information for further characterization of the PhoPR regulon.
Collapse
|
48
|
Zhou P, Wang X, Zhao Y, Yuan W, Xie J. Sigma factors mediated signaling in Mycobacterium tuberculosis. Future Microbiol 2018; 13:231-240. [DOI: 10.2217/fmb-2017-0127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Activation of signaling cascades is critical for Mycobacterium tuberculosis (Mtb) to adapt the macrophage lifestyle. Parallel to several signal systems, sigma factor systems, especially the extra-cytoplasmic function sigma factors, are crucial for Mtb signaling. Most sigma factors lack a signal sensory domain and often are activated by various proteins that perceive the environmental cues and relay the signals through variegated post-translational modifications via the activity of antisigma factor, protein kinase and related transcriptional regulators. Antisigma factors are further controlled by multiple mechanisms. SigK senses the environmental redox state directly. Phosphorylation and lysine acetylation added another dimension to the regulatory hierarchy. This review will provide insights into Mtb pathogenesis, and lay the foundation for the discovery of novel approaches for therapeutic interventions.
Collapse
Affiliation(s)
- Peifu Zhou
- Institute of Ethnic-Minority Medicine, School of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang 550025, PR China
| | - Xinpeng Wang
- School of Humanities & Sciences, Guizhou Minzu University, Guiyang 550025, PR China
| | - Yuzhong Zhao
- Institute of Ethnic-Minority Medicine, School of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang 550025, PR China
| | - Wei Yuan
- Institute of Tuberculosis Control & Prevention, Guizhou Provincial Center for Disease Control & Prevention, Guiyang 550004, PR China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
49
|
Zondervan NA, van Dam JCJ, Schaap PJ, Martins Dos Santos VAP, Suarez-Diez M. Regulation of Three Virulence Strategies of Mycobacterium tuberculosis: A Success Story. Int J Mol Sci 2018; 19:E347. [PMID: 29364195 PMCID: PMC5855569 DOI: 10.3390/ijms19020347] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 12/28/2022] Open
Abstract
Tuberculosis remains one of the deadliest diseases. Emergence of drug-resistant and multidrug-resistant M. tuberculosis strains makes treating tuberculosis increasingly challenging. In order to develop novel intervention strategies, detailed understanding of the molecular mechanisms behind the success of this pathogen is required. Here, we review recent literature to provide a systems level overview of the molecular and cellular components involved in divalent metal homeostasis and their role in regulating the three main virulence strategies of M. tuberculosis: immune modulation, dormancy and phagosomal rupture. We provide a visual and modular overview of these components and their regulation. Our analysis identified a single regulatory cascade for these three virulence strategies that respond to limited availability of divalent metals in the phagosome.
Collapse
Affiliation(s)
- Niels A Zondervan
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Jesse C J van Dam
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
- LifeGlimmer GmbH, Markelstrasse 38, 12163 Berlin, Germany.
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
50
|
Dual phosphorylation in response regulator protein PrrA is crucial for intracellular survival of mycobacteria consequent upon transcriptional activation. Biochem J 2017; 474:4119-4136. [PMID: 29101285 DOI: 10.1042/bcj20170596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 01/05/2023]
Abstract
The remarkable ability of Mycobacterium tuberculosis (Mtb) to survive inside human macrophages is attributed to the presence of a complex sensory and regulatory network. PrrA is a DNA-binding regulatory protein, belonging to an essential two-component system (TCS), PrrA/B, which is required for early phase intracellular replication of Mtb. Despite its importance, the mechanism of PrrA/B-mediated signaling is not well understood. In the present study, we demonstrate that the binding of PrrA on the promoter DNA and its consequent activation is cumulatively controlled via dual phosphorylation of the protein. We have further characterized the role of terminal phospho-acceptor domain in the physical interaction of PrrA with its cognate kinase PrrB. The genetic deletion of prrA/B in Mycobacterium smegmatis was possible only in the presence of ectopic copies of the genes, suggesting the essentiality of this TCS in fast-growing mycobacterial strains as well. The overexpression of phospho-mimetic mutant (T6D) altered the growth of M. smegmatis in an in vitro culture and affected the replication of Mycobacterium bovis BCG in mouse peritoneal macrophages. Interestingly, the Thr6 site was found to be conserved in Mtb complex, whereas it was altered in some fast-growing mycobacterial strains, indicating that this unique phosphorylation might be predominant in employing the regulatory circuit in M. bovis BCG and presumably also in Mtb complex.
Collapse
|