1
|
Sawant K, Shashidhar R. The cAMP receptor protein (CRP) enhances the competitive nature of Salmonella Typhimurium. Arch Microbiol 2023; 205:197. [PMID: 37067650 DOI: 10.1007/s00203-023-03528-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/18/2023]
Abstract
The cAMP receptor protein (CRP) is a global regulatory protein. We evaluated the role of CRP in starvation physiology in Salmonella Typhimurium. The Δcrp mutant survived 10 days of starvation. However, in a co-culture with the wild type in nutrient-rich medium, Δcrp died within 48 h. Similar co-culture results were observed with Escherichia coli and Staphylococcus aureus. Our study showed that the Δcrp mutant was not killed by toxins and the Type IV secretion system of the WT. The possibility of viable but non-culturable cells (VBNC) was also ruled out. However, when the overall metabolism of the co-culture was slowed down (anaerobic condition, inhibition by antibiotics and low temperature) that improved the survival of Δcrp in co-culture. But one more significant observation was that the Δcrp mutant survived in nutrient-free co-culture conditions. These two observations suggest that CRP protein is essential for efficient nutrient assimilation in a competitive environment. The cells without CRP protein are unable to evaluate the energy balance within the cell, and the cell spends energy to absorb nutrients. But the wild type cell absorbs nutrients at a faster rate than Δcrp mutant. This leads to a situation wherein the Δcrp is spending energy to absorb the nutrients but is unable to compete with the wild type. This futile metabolism leads to death. Hence, this study shows that CRP is a metabolism modulator in a complex nutrient environment. This study also highlights the need for innovative growth conditions to understand the unique function of a gene.
Collapse
Affiliation(s)
- Kirti Sawant
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Ravindranath Shashidhar
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.
- Life Sciences, Homi Bhabha National Institute (Deemed to be University), Mumbai, India.
| |
Collapse
|
2
|
Agarwal G, Gitaitis RD, Dutta B. Pan-Genome of Novel Pantoea stewartii subsp. indologenes Reveals Genes Involved in Onion Pathogenicity and Evidence of Lateral Gene Transfer. Microorganisms 2021; 9:1761. [PMID: 34442840 PMCID: PMC8399035 DOI: 10.3390/microorganisms9081761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
Pantoea stewartii subsp. indologenes (Psi) is a causative agent of leafspot on foxtail millet and pearl millet; however, novel strains were recently identified that are pathogenic on onions. Our recent host range evaluation study identified two pathovars; P. stewartii subsp. indologenes pv. cepacicola pv. nov. and P. stewartii subsp. indologenes pv. setariae pv. nov. that are pathogenic on onions and millets or on millets only, respectively. In the current study, we developed a pan-genome using the whole genome sequencing of newly identified/classified Psi strains from both pathovars [pv. cepacicola (n = 4) and pv. setariae (n = 13)]. The full spectrum of the pan-genome contained 7030 genes. Among these, 3546 (present in genomes of all 17 strains) were the core genes that were a subset of 3682 soft-core genes (present in ≥16 strains). The accessory genome included 1308 shell genes and 2040 cloud genes (present in ≤2 strains). The pan-genome showed a clear linear progression with >6000 genes, suggesting that the pan-genome of Psi is open. Comparative phylogenetic analysis showed differences in phylogenetic clustering of Pantoea spp. using PAVs/wgMLST approach in comparison with core genome SNPs-based phylogeny. Further, we conducted a horizontal gene transfer (HGT) study using Psi strains from both pathovars along with strains from other Pantoea species, namely, P. stewartii subsp. stewartii LMG 2715T, P. ananatis LMG 2665T, P. agglomerans LMG L15, and P. allii LMG 24248T. A total of 317 HGT events among four Pantoea species were identified with most gene transfer events occurring between Psi pv. cepacicola and Psi pv. setariae. Pan-GWAS analysis predicted a total of 154 genes, including seven gene-clusters, which were associated with the pathogenicity phenotype (necrosis on seedling) on onions. One of the gene-clusters contained 11 genes with known functions and was found to be chromosomally located.
Collapse
Affiliation(s)
- Gaurav Agarwal
- Department of Plant Pathology, Coastal Plain Experiment Station, University of Georgia, Tifton, GA 31793, USA;
| | | | - Bhabesh Dutta
- Department of Plant Pathology, Coastal Plain Experiment Station, University of Georgia, Tifton, GA 31793, USA;
| |
Collapse
|
3
|
Angeloni J, Dong Y, Wang Z, Cao M. Bacterial second messenger 3',5'-cyclic diguanylate attracts Caenorhabditis elegans and suppresses its immunity. Commun Biol 2020; 3:700. [PMID: 33219258 PMCID: PMC7679379 DOI: 10.1038/s42003-020-01436-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/26/2020] [Indexed: 11/29/2022] Open
Abstract
Cyclic di-nucleotides are important secondary signaling molecules in bacteria that regulate a wide range of processes. In this study, we found that Caenorhabditis elegans can detect and are attracted to multiple signal molecules produced by Vibrio cholerae, specifically the 3′,5′-cyclic diguanylate (c-di-GMP), even though this bacterium kills the host at a high rate. C-di-GMP is sensed through C. elegans olfactory AWC neurons, which then evokes a series of signal transduction pathways that lead to reduced activity of two key stress response transcription factors, SKN-1 and HSF-1, and weakened innate immunity. Taken together, our study elucidates the role of c-di-GMP in interkingdom communication. For C. elegans, bacterial c-di-GMP may serve as a cue that they can use to detect food. On the other hand, preexposure to low concentrations of c-di-GMP may impair their immune response, which could facilitate bacterial invasion and survival. Joseph Angeloni et al. show that Caenorhabditis elegans can detect and are attracted to multiple signal molecules produced by the bacterium Vibrio cholerae, specifically the 3′,5′-cyclic diguanylate (c-di-GMP), even though this bacterium kills the host at a high rate. This study reveals how bacterial c-di-GMP may serve as a cue for C. elegans that they can use to detect food or alternatively, impair their immune response, which could facilitate bacterial invasion and survival.
Collapse
Affiliation(s)
- Joseph Angeloni
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29634, USA
| | - Yuqing Dong
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29634, USA.,Institute for Engaged Aging, Clemson University, 2037 Barre Hall, Clemson, SC, 29634, USA
| | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Min Cao
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29634, USA. .,Institute for Engaged Aging, Clemson University, 2037 Barre Hall, Clemson, SC, 29634, USA.
| |
Collapse
|
4
|
Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems. Nat Microbiol 2020; 5:1608-1615. [PMID: 32839535 DOI: 10.1038/s41564-020-0777-y] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023]
Abstract
Cyclic-oligonucleotide-based anti-phage signalling systems (CBASS) are a family of defence systems against bacteriophages (hereafter phages) that share ancestry with the cGAS-STING innate immune pathway in animals. CBASS systems are composed of an oligonucleotide cyclase, which generates signalling cyclic oligonucleotides in response to phage infection, and an effector that is activated by the cyclic oligonucleotides and promotes cell death. Cell death occurs before phage replication is completed, therefore preventing the spread of phages to nearby cells. Here, we analysed 38,000 bacterial and archaeal genomes and identified more than 5,000 CBASS systems, which have diverse architectures with multiple signalling molecules, effectors and ancillary genes. We propose a classification system for CBASS that groups systems according to their operon organization, signalling molecules and effector function. Four major CBASS types were identified, sharing at least six effector subtypes that promote cell death by membrane impairment, DNA degradation or other means. We observed evidence of extensive gain and loss of CBASS systems, as well as shuffling of effector genes between systems. We expect that our classification and nomenclature scheme will guide future research in the developing CBASS field.
Collapse
|
5
|
A MARTX Toxin rtxA Gene Is Controlled by Host Environmental Signals through a CRP-Coordinated Regulatory Network in Vibrio vulnificus. mBio 2020; 11:mBio.00723-20. [PMID: 32723914 PMCID: PMC7387792 DOI: 10.1128/mbio.00723-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A MARTX toxin, RtxA, is an essential virulence factor of many pathogens, including Vibrio species. H-NS and HlyU repress and derepress, respectively, rtxA expression of a life-threatening pathogen, Vibrio vulnificus. We found that Lrp directly activates rtxA independently of H-NS and HlyU, and leucine inhibits the Lrp-mediated activation of rtxA. Furthermore, we demonstrated that CRP represses rtxA but derepresses in the presence of exogenous glucose. CRP represses rtxA not only directly by binding to upstream of rtxA but also indirectly by repressing lrp and hlyU. This is the first report of a regulatory network comprising CRP, Lrp, H-NS, and HlyU, which coordinates the rtxA expression in response to environmental signals such as leucine and glucose during infection. This elaborate regulatory network will enhance the fitness of V. vulnificus and contribute to its successful infection within the host. A multifunctional autoprocessing repeats-in-toxin (MARTX) toxin plays an essential role in the virulence of many pathogens, including a fulminating human pathogen Vibrio vulnificus. H-NS and HlyU repress and derepress expression of the MARTX toxin gene rtxA in V. vulnificus, respectively. However, little is known about other regulatory proteins and environmental signals involved in rtxA regulation. In this study, we found that a leucine-responsive regulatory protein (Lrp) activates rtxA by binding directly and specifically to the rtxA promoter, PrtxA. Phased hypersensitivity resulting from DNase I cleavage of the PrtxA regulatory region suggests that Lrp probably induces DNA bending in PrtxA. Lrp activates PrtxA independently of H-NS and HlyU, and leucine inhibits Lrp binding to PrtxA and reduces the Lrp-mediated activation. Furthermore, a cyclic AMP receptor protein (CRP) represses PrtxA, and exogenous glucose relieves the CRP-mediated repression. Biochemical and mutational analyses demonstrated that CRP binds directly and specifically to the upstream region of PrtxA, which presumably alters the DNA conformation in PrtxA and thus represses rtxA. Moreover, CRP represses expression of lrp and hlyU by binding directly to their upstream regions, forming coherent feed-forward loops with Lrp and HlyU. In conclusion, expression of rtxA is controlled by a regulatory network comprising CRP, Lrp, H-NS, and HlyU in response to changes in host environmental signals such as leucine and glucose. This collaborative regulation enables the elaborate expression of rtxA, thereby enhancing the fitness and pathogenesis of V. vulnificus during the course of infection.
Collapse
|
6
|
Joshi SR, Jagtap S, Basu B, Deobagkar DD, Ghosh P. Construction, analysis and validation of co-expression network to understand stress adaptation in Deinococcus radiodurans R1. PLoS One 2020; 15:e0234721. [PMID: 32579573 PMCID: PMC7314050 DOI: 10.1371/journal.pone.0234721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 06/02/2020] [Indexed: 01/12/2023] Open
Abstract
Systems biology based approaches have been effectively utilized to mine high throughput data. In the current study, we have performed system-level analysis for Deinococcus radiodurans R1 by constructing a gene co-expression network based on several microarray datasets available in the public domain. This condition-independent network was constructed by Weighted Gene Co-expression Network Analysis (WGCNA) with 61 microarray samples from 9 different experimental conditions. We identified 13 co-expressed modules, of which, 11 showed functional enrichments of one or more pathway/s or biological process. Comparative analysis of differentially expressed genes and proteins from radiation and desiccation stress studies with our co-expressed modules revealed the association of cyan with radiation response. Interestingly, two modules viz darkgreen and tan was associated with radiation as well as desiccation stress responses. The functional analysis of these modules showed enrichment of pathways important for adaptation of radiation or desiccation stress. To decipher the regulatory roles of these stress responsive modules, we identified transcription factors (TFs) and then calculated a Biweight mid correlation between modules hub gene and the identified TFs. We obtained 7 TFs for radiation and desiccation responsive modules. The expressions of 3 TFs were validated in response to gamma radiation using qRT-PCR. Along with the TFs, selected close neighbor genes of two important TFs, viz., DR_0997 (CRP) and DR_2287 (AsnC family transcriptional regulator) in the darkgreen module were also validated. In our network, among 13 hub genes associated with 13 modules, the functionality of 5 hub genes which are annotated as hypothetical proteins (hypothetical hub genes) in D. radiodurans genome has been revealed. Overall the study provided a better insight of pathways and regulators associated with relevant DNA damaging stress response in D. radiodurans.
Collapse
Affiliation(s)
- Suraj R. Joshi
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
- Molecular Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Surabhi Jagtap
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Deepti D. Deobagkar
- Molecular Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Payel Ghosh
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
- * E-mail: ,
| |
Collapse
|
7
|
Phenotype, Virulence and Immunogenicity of Edwardsiella piscicida Cyclic AMP Receptor Protein (Crp) Mutants in Catfish Host. Microorganisms 2020; 8:microorganisms8040517. [PMID: 32260465 PMCID: PMC7232391 DOI: 10.3390/microorganisms8040517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/23/2020] [Accepted: 04/02/2020] [Indexed: 11/29/2022] Open
Abstract
Edwardsiella piscicida, a facultative aerobic pathogen belonging to the Enterobacteriaceae family, is the etiological agent of edwardsiellosis that causes significant economic loses in the aquaculture industry. cAMP receptor protein (CRP) is one of the most important transcriptional regulators, which can regulate large quantities of operons in different bacteria. Here we characterize the crp gene and report the effect of a crp deletion in E. piscicida. The crp-deficient mutant lost the capacity to utilize maltose, and showed significantly reduced motility due to the lack of flagella synthesis. We further constructed a ΔPcrp mutant to support that the phenotype above was caused by the crp deletion. Evidence obtained in fish serum killing assay and competitive infection assay strongly indicated that the inactivation of crp impaired the ability of E. piscicida to evade host immune clearance. More importantly, the virulence of the crp mutant was attenuated in both zebrafish and channel catfish, with reductions in mortality rates. In the end, we found that crp mutant could confer immune protection against E. piscicida infection to zebrafish and channel catfish, indicating its potential as a live attenuated vaccine.
Collapse
|
8
|
Sulaiman JE, Lam H. Proteomic Investigation of Tolerant Escherichia coli Populations from Cyclic Antibiotic Treatment. J Proteome Res 2020; 19:900-913. [PMID: 31920087 DOI: 10.1021/acs.jproteome.9b00687] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Persisters are a subpopulation of cells that have enhanced abilities to survive antibiotics and other stressful conditions. Recently, it was found that when persisters were repeatedly regrown and retreated with the same antibiotic for several cycles, the new population will become tolerant to the drug. In this study, we applied such cyclic antibiotic treatment on Escherichia coli populations using different classes of antibiotics (ampicillin, ciprofloxacin, and apramycin) during the exponential phase. After a few cycles, we observed that the evolved populations exhibit high tolerance to the specific class of antibiotic used during the evolution experiments, which are achieved by single-point mutations in one or several genes. Interestingly, all evolved populations show multidrug tolerance at the stationary phase, indicating that they have higher triggered persister fraction. Proteomic analysis and cross-comparison of the regulated proteomes of the tolerant populations during the stationary phase identified protein candidates with similar expression profiles that might be important for the tolerance phenotype. Susceptibility tests of mutants lacking gene coding for these protein candidates showed that they have significantly reduced survival toward antibiotics not only during the stationary phase, but also during the exponential phase. We demonstrated how proteomics, combined with cyclic antibiotic treatment as a means to enrich tolerant populations, is a promising avenue to obtain fresh insights into the phenomenon of persistence.
Collapse
Affiliation(s)
- Jordy Evan Sulaiman
- Department of Chemical and Biological Engineering , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon 999077 , Hong Kong , China
| | - Henry Lam
- Department of Chemical and Biological Engineering , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon 999077 , Hong Kong , China
| |
Collapse
|
9
|
Rebollo-Ramirez S, Larrouy-Maumus G. NaCl triggers the CRP-dependent increase of cAMP in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2019; 116:8-16. [PMID: 31153521 DOI: 10.1016/j.tube.2019.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 11/19/2022]
Abstract
The second messenger 3',5'-cyclic adenosine monophosphate (3',5'-cAMP) has been shown to be involved in the regulation of many biological processes ranging from carbon catabolite repression in bacteria to cell signalling in eukaryotes. In mycobacteria, the role of cAMP and the mechanisms utilized by the bacterium to adapt to and resist immune and pharmacological sterilization remain poorly understood. Among the stresses encountered by bacteria, ionic and non-ionic osmotic stresses are among the best studied. However, in mycobacteria, the link between ionic osmotic stress, particularly sodium chloride, and cAMP has been relatively unexplored. Using a targeted metabolic analysis combined with stable isotope tracing, we show that the pathogenic Mycobacterium tuberculosis but not the opportunistic pathogen Mycobacterium marinum nor the non-pathogenic Mycobacterium smegmatis responds to NaCl stress via an increase in intracellular cAMP levels. We further showed that this increase in cAMP is dependent on the cAMP receptor protein and in part on the threonine/serine kinase PnkD, which has previously been associated with the NaCl stress response in mycobacteria.
Collapse
Affiliation(s)
- Sonia Rebollo-Ramirez
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK.
| |
Collapse
|
10
|
Hirose A, Kasai T, Koga R, Suzuki Y, Kouzuma A, Watanabe K. Understanding and engineering electrochemically active bacteria for sustainable biotechnology. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0245-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
11
|
Abstract
In the biosciences, there has been growing interest in the elucidation of gene function. Consequently, metabolomics has garnered a lot of attention of late due to its provision of metabolic information pertaining to both function and phenotype. Furthermore, when metabolomics data is integrated with other "omics" data, precise characterization of metabolic activity can be achieved. This chapter briefly introduces a few important aspects of the metabolome, the challenges faced when acquiring metabolomic information and the steps that are necessary to overcoming them. This chapter also briefly covers current analytical technologies and some microbial metabolomic applications.
Collapse
Affiliation(s)
- Edward E K Baidoo
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,Joint BioEnergy Institute, Emeryville, CA, USA.
| |
Collapse
|
12
|
Saha A, Chakraborti S. Effect of ZnO quantum dots on Escherichia coli global transcription regulator: A molecular investigation. Int J Biol Macromol 2018; 117:1280-1288. [PMID: 29870809 DOI: 10.1016/j.ijbiomac.2018.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 11/17/2022]
Abstract
ZnO quantum dots (QDs) are very well known for their antimicrobial activity against several bacteria, however, we still do not know any protein targets of ZnO QDs. In order to determine possible protein target, interaction of ZnO QDs was studied with CRP (Cyclic AMP Receptor Protein), a global transcription regulator protein. Binding between ZnO QDs and E. coli CRP was mainly studied by isothermal titration calorimetry (ITC), structural changes of protein were monitored by fluorescence and circular dichroism spectroscopy, and in-vitro transcription assay was used to asses CRP activity. Result shows that both electrostatic and hydrophobic interactions are involved in CRP-ZnO binding. Different spectroscopic investigation revealed that ZnO binding to CRP leads to extensive unfolding and destabilization, which ultimately leads to protein aggregation. It was also observed that in presence of ZnO dimerization ability of CRP was sharply reduced. In-vitro transcription assay also shows that CRP activity gets severely compromised on ZnO binding. All our data suggests that ZnO QD binding to CRP and consequent structural and functional changes most probably plays a crucial role in ZnO QD induced antimicrobial action.
Collapse
Affiliation(s)
- Abinit Saha
- Department of Biochemistry, Bose Institute, P-1/12, C.I.T. Scheme VIIM, Kolkata 700054, India; Adamas University, Barasat-Barrackpore Road Jagannathpur, Kolkata 700126, India
| | - Soumyananda Chakraborti
- Department of Biochemistry, Bose Institute, P-1/12, C.I.T. Scheme VIIM, Kolkata 700054, India; Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| |
Collapse
|
13
|
Abstract
The discovery of the globin-coupled sensor (GCS) family of haem proteins has provided new insights into signalling proteins and pathways by which organisms sense and respond to changing oxygen levels. GCS proteins consist of a sensor globin domain linked to a variety of output domains, suggesting roles in controlling numerous cellular pathways, and behaviours in response to changing oxygen concentration. Members of this family of proteins have been identified in the genomes of numerous organisms and characterization of GCS with output domains, including methyl accepting chemotaxis proteins, kinases, and diguanylate cyclases, have yielded an understanding of the mechanism by which oxygen controls activity of GCS protein output domains, as well as downstream proteins and pathways regulated by GCS signalling. Future studies will expand our understanding of these proteins both in vitro and in vivo, likely demonstrating broad roles for GCS in controlling oxygen-dependent microbial physiology and phenotypes.
Collapse
|
14
|
Bennett AF, Lenski RE. EVOLUTIONARY ADAPTATION TO TEMPERATURE. V. ADAPTIVE MECHANISMS AND CORRELATED RESPONSES IN EXPERIMENTAL LINES OF
ESCHERICHIA COLI. Evolution 2017; 50:493-503. [DOI: 10.1111/j.1558-5646.1996.tb03862.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/1994] [Accepted: 03/21/1995] [Indexed: 11/27/2022]
Affiliation(s)
- Albert F. Bennett
- Department of Ecology and Evolutionary Biology University of California Irvine California 92717
| | - Richard E. Lenski
- Center for Microbial Ecology Michigan State University East Lansing Michigan 48824‐1325
| |
Collapse
|
15
|
Kasai T, Kouzuma A, Watanabe K. CRP Regulates D-Lactate Oxidation in Shewanella oneidensis MR-1. Front Microbiol 2017; 8:869. [PMID: 28559887 PMCID: PMC5432575 DOI: 10.3389/fmicb.2017.00869] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/28/2017] [Indexed: 01/11/2023] Open
Abstract
Shewanella oneidensis MR-1 is a heterotrophic facultative anaerobe that respires using various organic and inorganic compounds. This organism has served as a model to study bacterial metabolic and regulatory systems that facilitate their survival in redox-stratified environments. The expression of many anaerobic respiratory genes in MR-1, including those for the reduction of fumarate, dimethyl sulfoxide, and metal oxides, is regulated by cyclic AMP receptor protein (CRP). However, relatively little is known about how this organism regulates the expression of catabolic enzymes catalyzing the oxidation of organic compounds, including lactate. Here, we investigated transcriptional mechanisms for the lldP (SO_1522) and dld (SO_1521) genes, which encode putative lactate permease and D-lactate dehydrogenase, respectively, and demonstrate that CRP regulates their expression in MR-1. We found that a crp-deletion mutant of MR-1 (Δcrp) showed impaired growth on D-lactate. Complementary expression of dld in Δcrp restored the ability to grow on D-lactate, indicating that the deficient growth of Δcrp on D-lactate is attributable to decreased expression of dld. In vivo transcription and in vitro electrophoretic mobility shift assays reveal that CRP positively regulates the expression of the lldP and dld genes by directly binding to an upstream region of lldP. Taken together, these results indicate that CRP is a global transcriptional regulator that coordinately regulates the expression of catabolic and respiratory pathways in MR-1, including D-lactate dehydrogenase and anaerobic terminal reductases.
Collapse
Affiliation(s)
- Takuya Kasai
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences,Hachioji, Japan
| | - Atsushi Kouzuma
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences,Hachioji, Japan
| | - Kazuya Watanabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences,Hachioji, Japan
| |
Collapse
|
16
|
Kurabayashi K, Tanimoto K, Tomita H, Hirakawa H. Cooperative Actions of CRP-cAMP and FNR Increase the Fosfomycin Susceptibility of Enterohaemorrhagic Escherichia coli (EHEC) by Elevating the Expression of glpT and uhpT under Anaerobic Conditions. Front Microbiol 2017; 8:426. [PMID: 28360903 PMCID: PMC5352689 DOI: 10.3389/fmicb.2017.00426] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/28/2017] [Indexed: 11/15/2022] Open
Abstract
Bacterial infections to anaerobic site are often hard to be treated because the activity of most of antimicrobials decreases under anaerobic conditions. However, fosfomycin rather provides a greater activity under anaerobic conditions than aerobic conditions. Previously, we found that expression of glpT and uhpT, fosfomycin symporters in enterohaemorrhagic Escherichia coli (EHEC) was upregulated by FNR, a global regulator during the anaerobiosis of the bacterium, which led to increased uptake and susceptibility to this drug. In this study, we showed that expression of glpT and uhpT is induced by CRP-cAMP, the regulator complex under both aerobic and anaerobic conditions. The activity of CRP-cAMP in EHEC was elevated under anaerobic conditions because levels of both CRP and cAMP were higher in the cells when grown anaerobically than those when grown aerobically. Results of expression study using mutants indicated that CRP-cAMP is indispensable for expression of glpT but not uhpT—whereas that of uhpT requires UhpA that is the response regulator composing of two-component system with the sensor kinase, UhpB. The CRP-cAMP protein bound to a region that overlaps RNA polymerase binding site for glpT and region upstream of UhpA binding site for uhpT. FNR bound to a region further upstream of CRP-cAMP binding site on region upstream of the glpT gene. These combined results suggested that increased antibacterial activity of fosfomycin to EHEC under anaerobic conditions is due to activation of FNR and increment of CRP-cAMP activity. Then, FNR enhances the expression of glpT activated by CRP-cAMP while CRP-cAMP and FNR cooperatively aids the action of UhpA to express uhpT to maximum level.
Collapse
Affiliation(s)
- Kumiko Kurabayashi
- Advanced Scientific Research Leaders Development Unit, Graduate School of Medicine, Gunma University Gunma, Japan
| | - Koichi Tanimoto
- Laboratory of Bacterial Drug Resistance, Gunma University, Graduate School of Medicine Gunma, Japan
| | - Haruyoshi Tomita
- Laboratory of Bacterial Drug Resistance, Gunma University, Graduate School of MedicineGunma, Japan; Department of Bacteriology, Gunma University, Graduate School of MedicineGunma, Japan
| | - Hidetada Hirakawa
- Advanced Scientific Research Leaders Development Unit, Graduate School of Medicine, Gunma University Gunma, Japan
| |
Collapse
|
17
|
Rodriguez A, Martínez JA, Millard P, Gosset G, Portais JC, Létisse F, Bolivar F. Plasmid-encoded biosynthetic genes alleviate metabolic disadvantages while increasing glucose conversion to shikimate in an engineeredEscherichia colistrain. Biotechnol Bioeng 2017; 114:1319-1330. [DOI: 10.1002/bit.26264] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/17/2017] [Accepted: 02/08/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Alberto Rodriguez
- Instituto de Biotecnología; Universidad Nacional Autónoma de México (UNAM); Cuernavaca Morelos Mexico
| | - Juan A. Martínez
- Instituto de Biotecnología; Universidad Nacional Autónoma de México (UNAM); Cuernavaca Morelos Mexico
| | - Pierre Millard
- LISBP, Université de Toulouse, CNRS, INRA; INSA; Toulouse France
| | - Guillermo Gosset
- Instituto de Biotecnología; Universidad Nacional Autónoma de México (UNAM); Cuernavaca Morelos Mexico
| | | | - Fabien Létisse
- LISBP, Université de Toulouse, CNRS, INRA; INSA; Toulouse France
| | - Francisco Bolivar
- Instituto de Biotecnología; Universidad Nacional Autónoma de México (UNAM); Cuernavaca Morelos Mexico
| |
Collapse
|
18
|
Cai W, Cai X, Yang Y, Yan S, Zhang H. Transcriptional Control of Dual Transporters Involved in α-Ketoglutarate Utilization Reveals Their Distinct Roles in Uropathogenic Escherichia coli. Front Microbiol 2017; 8:275. [PMID: 28270808 PMCID: PMC5318444 DOI: 10.3389/fmicb.2017.00275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/09/2017] [Indexed: 12/14/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) are the primary causative agents of urinary tract infections. Some UPEC isolates are able to infect renal proximal tubule cells, and can potentially cause pyelonephritis. We have previously shown that to fulfill their physiological roles renal proximal tubule cells accumulate high concentrations of α-ketoglutarate (KG) and that gene cluster c5032–c5039 contribute to anaerobic utilization of KG by UPEC str. CFT073, thereby promoting its in vivo fitness. Given the importance of utilizing KG for UPEC, this study is designed to investigate the roles of two transporters KgtP and C5038 in KG utilization, their transcriptional regulation, and their contributions to UPEC fitness in vivo. Our phylogenetic analyses support that kgtP is a widely conserved locus in commensal and pathogenic E. coli, while UPEC-associated c5038 was acquired through horizontal gene transfer. Global anaerobic transcriptional regulators Fumarate and nitrate reduction (FNR) and ArcA induced c5038 expression in anaerobiosis, and C5038 played a major role in anaerobic growth on KG. KgtP was required for aerobic growth on KG, and its expression was repressed by FNR and ArcA under anaerobic conditions. Analyses of FNR and ArcA binding sites and results of EMS assays suggest that FNR and ArcA likely inhibit kgtP expression through binding to the –35 region of kgtP promoter and occluding the occupancy of RNA polymerases. Gene c5038 can be specifically induced by KG, whereas the expression of kgtP does not respond to KG, yet can be stimulated during growth on glycerol. In addition, c5038 and kgtP expression were further shown to be controlled by different alternative sigma factors RpoN and RpoS, respectively. Furthermore, dual-strain competition assays in a murine model showed that c5038 mutant but not kgtP mutant was outcompeted by the wild-type strain during the colonization of murine bladders and kidneys, highlighting the importance of C5038 under in vivo conditions. Therefore, different transcriptional regulation led to distinct roles played by C5038 and KgtP in KG utilization and fitness in vivo. This study thus potentially expanded our understanding of UPEC pathobiology.
Collapse
Affiliation(s)
- Wentong Cai
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Xuwang Cai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Yongwu Yang
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Shigan Yan
- School of Bioengineering, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology Jinan, China
| | - Haibin Zhang
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China; Department of Clinical Veterinary Science, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
19
|
Kasahara M, Suetsugu N, Urano Y, Yamamoto C, Ohmori M, Takada Y, Okuda S, Nishiyama T, Sakayama H, Kohchi T, Takahashi F. An adenylyl cyclase with a phosphodiesterase domain in basal plants with a motile sperm system. Sci Rep 2016; 6:39232. [PMID: 27982074 PMCID: PMC5159850 DOI: 10.1038/srep39232] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/18/2016] [Indexed: 01/03/2023] Open
Abstract
Adenylyl cyclase (AC), which produces the signalling molecule cAMP, has numerous important cellular functions in diverse organisms from prokaryotes to eukaryotes. Here we report the identification and characterization of an AC gene from the liverwort Marchantia polymorpha. The encoded protein has both a C-terminal AC catalytic domain similar to those of class III ACs and an N-terminal cyclic nucleotide phosphodiesterase (PDE) domain that degrades cyclic nucleotides, thus we designated the gene MpCAPE (COMBINED AC with PDE). Biochemical analyses of recombinant proteins showed that MpCAPE has both AC and PDE activities. In MpCAPE-promoter-GUS lines, GUS activity was specifically detected in the male sexual organ, the antheridium, suggesting MpCAPE and thus cAMP signalling may be involved in the male reproductive process. CAPE orthologues are distributed only in basal land plants and charophytes that use motile sperm as the male gamete. CAPE is a subclass of class III AC and may be important in male organ and cell development in basal plants.
Collapse
Affiliation(s)
- Masahiro Kasahara
- Graduate School of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
- College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Noriyuki Suetsugu
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yuki Urano
- Graduate School of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Chiaki Yamamoto
- College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Mikiya Ohmori
- College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Yuki Takada
- College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Shujiro Okuda
- Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, Ishikawa 920-0934, Japan
| | - Hidetoshi Sakayama
- Department of Biology, Graduate School of Science, Kobe University, Hyogo 657-8501, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Fumio Takahashi
- Graduate School of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| |
Collapse
|
20
|
Schulte J, Baumgart M, Bott M. Identification of the cAMP phosphodiesterase CpdA as novel key player in cAMP-dependent regulation in Corynebacterium glutamicum. Mol Microbiol 2016; 103:534-552. [PMID: 27862445 DOI: 10.1111/mmi.13574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2016] [Indexed: 02/03/2023]
Abstract
The second messenger cyclic AMP (cAMP) plays an important role in the metabolism of Corynebacterium glutamicum, as the global transcriptional regulator GlxR requires complex formation with cAMP to become active. Whereas a membrane-bound adenylate cyclase, CyaB, was shown to be involved in cAMP synthesis, enzymes catalyzing cAMP degradation have not been described yet. In this study we identified a class II cAMP phosphodiesterase named CpdA (Cg2761), homologs of which are present in many Actinobacteria. The purified enzyme has a Kmapp value of 2.5 ± 0.3 mM for cAMP and a Vmaxapp of 33.6 ± 4.3 µmol min-1 mg-1 . A ΔcpdA mutant showed a twofold increased cAMP level on glucose and reduced growth rates on all carbon sources tested. A transcriptome comparison revealed 247 genes with a more than twofold altered mRNA level in the ΔcpdA mutant, 82 of which are known GlxR targets. Expression of cpdA was positively regulated by GlxR, thereby creating a negative feedback loop allowing to counteract high cAMP levels. The results show that CpdA plays a key role in the control of the cellular cAMP concentration and GlxR activity and is crucial for optimal metabolism and growth of C. glutamicum.
Collapse
Affiliation(s)
- Julia Schulte
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, 52425, Germany
| | - Meike Baumgart
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, 52425, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, 52425, Germany
| |
Collapse
|
21
|
Barahona E, Navazo A, Garrido-Sanz D, Muriel C, Martínez-Granero F, Redondo-Nieto M, Martín M, Rivilla R. Pseudomonas fluorescens F113 Can Produce a Second Flagellar Apparatus, Which Is Important for Plant Root Colonization. Front Microbiol 2016; 7:1471. [PMID: 27713729 PMCID: PMC5031763 DOI: 10.3389/fmicb.2016.01471] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/02/2016] [Indexed: 12/30/2022] Open
Abstract
The genomic sequence of Pseudomonas fluorescens F113 has shown the presence of a 41 kb cluster of genes that encode the production of a second flagellar apparatus. Among 2,535 pseudomonads strains with sequenced genomes, these genes are only present in the genomes of F113 and other six strains, all but one belonging to the P. fluorescens cluster of species, in the form of a genetic island. The genes are homologous to the flagellar genes of the soil bacterium Azotobacter vinelandii. Regulation of these genes is mediated by the flhDC master operon, instead of the typical regulation in pseudomonads, which is through fleQ. Under laboratory conditions, F113 does not produce this flagellum and the flhDC operon is not expressed. However, ectopic expression of the flhDC operon is enough for its production, resulting in a hypermotile strain. This flagellum is also produced under laboratory conditions by the kinB and algU mutants. Genetic analysis has shown that kinB strongly represses the expression of the flhDC operon. This operon is activated by the Vfr protein probably in a c-AMP dependent way. The strains producing this second flagellum are all hypermotile and present a tuft of polar flagella instead of the single polar flagellum produced by the wild-type strain. Phenotypic variants isolated from the rhizosphere produce this flagellum and mutation of the genes encoding it, results in a defect in competitive colonization, showing its importance for root colonization.
Collapse
Affiliation(s)
- Emma Barahona
- Departamento de Biología, Universidad Autónoma de Madrid Madrid, Spain
| | - Ana Navazo
- Departamento de Biología, Universidad Autónoma de Madrid Madrid, Spain
| | | | - Candela Muriel
- Departamento de Biología, Universidad Autónoma de Madrid Madrid, Spain
| | | | | | - Marta Martín
- Departamento de Biología, Universidad Autónoma de Madrid Madrid, Spain
| | - Rafael Rivilla
- Departamento de Biología, Universidad Autónoma de Madrid Madrid, Spain
| |
Collapse
|
22
|
Lin CT, Lin TH, Wu CC, Wan L, Huang CF, Peng HL. CRP-Cyclic AMP Regulates the Expression of Type 3 Fimbriae via Cyclic di-GMP in Klebsiella pneumoniae. PLoS One 2016; 11:e0162884. [PMID: 27631471 PMCID: PMC5025149 DOI: 10.1371/journal.pone.0162884] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/30/2016] [Indexed: 12/18/2022] Open
Abstract
Klebsiella pneumoniae is the predominant pathogen isolated from liver abscesses of diabetic patients in Asian countries. However, the effects of elevated blood glucose levels on the virulence of this pathogen remain largely unknown. Type 3 fimbriae, encoded by the mrkABCDF genes, are important virulence factors in K. pneumoniae pathogenesis. In this study, the effects of exogenous glucose and the intracellular cyclic AMP (cAMP) signaling pathway on type 3 fimbriae expression regulation were investigated. The production of MrkA, the major subunit of type 3 fimbriae, was increased in glucose-rich medium, whereas cAMP supplementation reversed the effect. MrkA production was markedly increased by cyaA or crp deletion, but slightly decreased by cpdA deletion. In addition, the mRNA levels of mrkABCDF genes and the activity of PmrkA were increased in Δcrp strain, as well as the mRNA levels of mrkHIJ genes that encode cyclic di-GMP (c-di-GMP)-related regulatory proteins that influence type 3 fimbriae expression. Moreover, the activities of PmrkHI and PmrkJ were decreased in ΔlacZΔcrp strain. These results indicate that CRP-cAMP down-regulates mrkABCDF and mrkHIJ at the transcriptional level. Further deletion of mrkH or mrkI in Δcrp strain diminished the production of MrkA, indicating that MrkH and MrkI are required for the CRP regulation of type 3 fimbriae expression. Furthermore, the high activity of PmrkHI in the ΔlacZΔcrp strain was diminished in ΔlacZΔcrpΔmrkHI, but increased in the ΔlacZΔcrpΔmrkJ strain. Deletion of crp increased the intracellular c-di-GMP concentration and reduced the phosphodiesterase activity. Moreover, we found that the mRNA levels of multiple genes related to c-di-GMP metabolism were altered in Δcrp strain. These indicate that CRP regulates type 3 fimbriae expression indirectly via the c-di-GMP signaling pathway. In conclusion, we found evidence of a coordinated regulation of type 3 fimbriae expression by the CRP-cAMP and c-di-GMP signaling pathways in K. pneumoniae.
Collapse
Affiliation(s)
- Ching-Ting Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan, Republic of China
- * E-mail: (CTL); (HLP)
| | - Tien-Huang Lin
- Division of Urology, Taichung Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, Republic of China
- Tzu Chi University School of Post-Baccalaureate Chinese Medicine, Hualien, Taiwan, Republic of China
| | - Chien-Chen Wu
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Lei Wan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan, Republic of China
| | - Chun-Fa Huang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan, Republic of China
| | - Hwei-Ling Peng
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
- * E-mail: (CTL); (HLP)
| |
Collapse
|
23
|
Jin M, Fu H, Yin J, Yuan J, Gao H. Molecular Underpinnings of Nitrite Effect on CymA-Dependent Respiration in Shewanella oneidensis. Front Microbiol 2016; 7:1154. [PMID: 27493647 PMCID: PMC4954811 DOI: 10.3389/fmicb.2016.01154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/11/2016] [Indexed: 12/31/2022] Open
Abstract
Shewanella exhibit a remarkable versatility of respiration, with a diverse array of electron acceptors (EAs). In environments where these bacteria thrive, multiple EAs are usually present. However, we know little about strategies by which these EAs and their interaction affect ecophysiology of Shewanella. In this study, we demonstrate in the model strain, Shewanella oneidensis MR-1, that nitrite, not through nitric oxide to which it may convert, inhibits respiration of fumarate, and probably many other EAs whose reduction depends on quinol dehydrogenase CymA. This is achieved via the repression of cyclic adenosine monophosphate (cAMP) production, a second messenger required for activation of cAMP-receptor protein (Crp) which plays a primary role in regulation of respiration. If nitrite is not promptly removed, intracellular cAMP levels drop, and this impairs Crp activity. As a result, the production of nitrite reductase NrfA, CymA, and fumarate reductase FccA is substantially reduced. In contrast, nitrite can be simultaneously respired with trimethylamine N-oxide, resulting in enhanced biomass.
Collapse
Affiliation(s)
- Miao Jin
- Institute of Microbiology and College of Life Sciences, Zhejiang University Hangzhou, China
| | - Huihui Fu
- Institute of Microbiology and College of Life Sciences, Zhejiang University Hangzhou, China
| | - Jianhua Yin
- Institute of Microbiology and College of Life Sciences, Zhejiang University Hangzhou, China
| | - Jie Yuan
- Institute of Microbiology and College of Life Sciences, Zhejiang University Hangzhou, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University Hangzhou, China
| |
Collapse
|
24
|
Reduced expression of cytochrome oxidases largely explains cAMP inhibition of aerobic growth in Shewanella oneidensis. Sci Rep 2016; 6:24449. [PMID: 27076065 PMCID: PMC4830989 DOI: 10.1038/srep24449] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/29/2016] [Indexed: 12/20/2022] Open
Abstract
Inhibition of bacterial growth under aerobic conditions by elevated levels of cyclic adenosine 3′,5′-monophosphate (cAMP), first revealed more than 50 years ago, was attributed to accumulation of toxic methylglyoxal (MG). Here, we report a Crp-dependent mechanism rather than MG accumulation that accounts for the phenotype in Shewanella oneidensis, an emerging research model for the bacterial physiology. We show that a similar phenotype can be obtained by removing CpdA, a cAMP phosphodiesterase that appears more effective than its Escherichia coli counterpart. Although production of heme c and cytochromes c is correlated well with cAMP levels, neither is sufficient for the retarded growth. Quantities of overall cytochromes c increased substantially in the presence of elevated cAMP, a phenomenon resembling cells respiring on non-oxygen electron acceptors. In contrast, transcription of Crp-dependent genes encoding both cytochromes bd and cbb3 oxidases is substantially repressed under the same condition. Overall, our results suggest that cAMP of elevated levels drives cells into a low-energetic status, under which aerobic respiration is inhibited.
Collapse
|
25
|
Wei H, Dai J, Xia M, Romine MF, Shi L, Beliav A, Tiedje JM, Nealson KH, Fredrickson JK, Zhou J, Qiu D. Functional roles of CymA and NapC in reduction of nitrate and nitrite by Shewanella putrefaciens W3-18-1. MICROBIOLOGY-SGM 2016; 162:930-941. [PMID: 27010745 DOI: 10.1099/mic.0.000285] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Shewanella putrefaciens W3-18-1 harbours two periplasmic nitrate reductase (Nap) gene clusters, NapC-associated nap-alpha (napEDABC) and CymA-dependent nap-beta (napDAGHB), for dissimilatory nitrate respiration. CymA is a member of the NapC/NirT quinol dehydrogenase family and acts as a hub to support different respiratory pathways, including those on iron [Fe(III)] and manganese [Mn(III, IV)] (hydr)oxide, nitrate, nitrite, fumarate and arsenate in Shewanella strains. However, in our analysis it was shown that another NapC/NirT family protein, NapC, was only involved in nitrate reduction, although both CymA and NapC can transfer quinol-derived electrons to a periplasmic terminal reductase or an electron acceptor. Furthermore, our results showed that NapC could only interact specifically with the Nap-alpha nitrate reductase while CymA could interact promiscuously with Nap-alpha, Nap-beta and the NrfA nitrite reductase for nitrate and nitrite reduction. To further explore the difference in specificity, site-directed mutagenesis on both CymA and NapC was conducted and the phenotypic changes in nitrate and nitrite reduction were tested. Our analyses demonstrated that the Lys-91 residue played a key role in nitrate reduction for quinol oxidation and the Asp-166 residue might influence the maturation of CymA. The Asp-97 residue might be one of the key factors that influence the interaction of CymA with the cytochromes NapB and NrfA.
Collapse
Affiliation(s)
- Hehong Wei
- Institute of hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jingcheng Dai
- Institute of hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Ming Xia
- Institute of hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | | | - Liang Shi
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Alex Beliav
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824, USA
| | - Kenneth H Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Plant Biology and Microbiology, University of Oklahoma, OK, Norman, OK 73019, USA
| | - Dongru Qiu
- Institute of hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| |
Collapse
|
26
|
Abstract
Environmental citrate or malonate is degraded by a variety of aerobic or anaerobic bacteria. For selected examples, the genes encoding the specific enzymes of the degradation pathway are described together with the encoded proteins and their catalytic mechanisms. Aerobic bacteria degrade citrate readily by the basic enzyme equipment of the cell if a specific transporter for citrate is available. Anaerobic degradation of citrate in Klebsiella pneumoniae requires the so-called substrate activation module to convert citrate into its thioester with the phosphoribosyl dephospho-CoA prosthetic group of citrate lyase. The citryl thioester is subsequently cleaved into oxaloacetate and the acetyl thioester, from which a new citryl thioester is formed as the turnover continues. The degradation of malonate likewise includes a substrate activation module with a phosphoribosyl dephospho-CoA prosthetic group. The machinery gets ready for turnover after forming the acetyl thioester with the prosthetic group. The acetyl residue is then exchanged by a malonyl residue, which is easily decarboxylated with the regeneration of the acetyl thioester. This equipment suffices for aerobic growth on malonate, since ATP is produced via the oxidation of acetate. Anaerobic growth on citrate or malonate, however, depends on additional enzymes of a so-called energy conservation module. This allows the conversion of decarboxylation energy into an electrochemical gradient of Na+ ions. In citrate-fermenting K. pneumoniae, the Na+ gradient is formed by the oxaloacetate decarboxylase and mainly used to drive the active transport of citrate into the cell. To use this energy source for this purpose is possible, since ATP is generated by substrate phosphorylation in the well-known sequence from pyruvate to acetate. In the malonate-fermenting bacterium Malonomonas rubra, however, no reactions for substrate level phosphorylation are available and the Na+ gradient formed in the malonate decarboxylation reaction must therefore be used as the driving force for ATP synthesis.
Collapse
|
27
|
Zahid MSH, Awasthi SP, Asakura M, Chatterjee S, Hinenoya A, Faruque SM, Yamasaki S. Suppression of Virulence of Toxigenic Vibrio cholerae by Anethole through the Cyclic AMP (cAMP)-cAMP Receptor Protein Signaling System. PLoS One 2015; 10:e0137529. [PMID: 26361388 PMCID: PMC4567338 DOI: 10.1371/journal.pone.0137529] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/19/2015] [Indexed: 11/18/2022] Open
Abstract
Use of natural compounds as antivirulence drugs could be an alternative therapeutic approach to modify the outcome of bacterial infections, particularly in view of growing resistance to available antimicrobials. Here, we show that sub-bactericidal concentration of anethole, a component of sweet fennel seed, could suppress virulence potential in O1 El Tor biotype strains of toxigenic Vibrio cholerae, the causative agent of the ongoing 7th cholera pandemic. The expression of cholera toxin (CT) and toxin coregulated pilus (TCP), the major virulence factors of V. cholerae, is controlled through a regulatory cascade involving activation of ToxT with synergistic coupling interaction of ToxR/ToxS with TcpP/TcpH. We present evidence that anethole inhibits in vitro expression of CT and TCP in a toxT-dependent but toxR/toxS-independent manner and through repression of tcpP/tcpH, by using bead-ELISA, western blotting and quantitative real-time RT-PCR assays. The cyclic AMP (cAMP)-cAMP receptor protein (CRP) is a well-studied global signaling system in bacterial pathogens, and this complex is known to suppress expression of tcpP/tcpH in V. cholerae. We find that anethole influences the virulence regulatory cascade by over-expressing cyaA and crp genes. Moreover, suppression of toxigenic V. cholerae-mediated fluid accumulation in ligated ileum of rabbit by anethole demonstrates its potentiality as an antivirulence drug candidate against the diseases caused by toxigenic V. cholerae. Taken altogether, these results revealing a mechanism of virulence inhibition in V. cholerae by the natural compound anethole, may have relevance in designing antivirulence compounds, particularly against multiple antibiotic resistant bacterial pathogens.
Collapse
Affiliation(s)
- M. Shamim Hasan Zahid
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Sharda Prasad Awasthi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Masahiro Asakura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Shruti Chatterjee
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Atsushi Hinenoya
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Shah M. Faruque
- Centre for Food and Water Borne Diseases, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Shinji Yamasaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
- * E-mail:
| |
Collapse
|
28
|
Gumpenberger T, Vorkapic D, Zingl FG, Pressler K, Lackner S, Seper A, Reidl J, Schild S. Nucleoside uptake in Vibrio cholerae and its role in the transition fitness from host to environment. Mol Microbiol 2015. [PMID: 26202476 DOI: 10.1111/mmi.13143] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
As it became evident recently, extracellular DNA could be a versatile nutrient source of the facultative pathogen Vibrio cholerae along the different stages of its life cycle. By the use of two extracellular nucleases and periplasmic phosphatases, V. cholerae degrades extracellular DNA to nucleosides. In this study, we investigated the nucleoside uptake via identification and characterization of VCA0179, VC1953 and VC2352 representing the three nucleoside transport systems in V. cholerae. Based on our results VC2352 seems to be the dominant nucleoside transporter. Nevertheless, all three transporters are functional and can contribute to the utilization of nucleosides as a sole source of carbon or nitrogen. We found that the transcriptional activity of these three distal genes is equally promoted or antagonized by CRP or CytR respectively. Finally, mutants impaired for nucleoside uptake exhibit decreased transition fitness from the host into low carbon environments along the life cycle of V. cholerae.
Collapse
Affiliation(s)
- Tanja Gumpenberger
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, Graz, 8010, Austria
| | - Dina Vorkapic
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, Graz, 8010, Austria
| | - Franz G Zingl
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, Graz, 8010, Austria
| | - Katharina Pressler
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, Graz, 8010, Austria
| | - Stefanie Lackner
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, Graz, 8010, Austria
| | - Andrea Seper
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, Graz, 8010, Austria
| | - Joachim Reidl
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, Graz, 8010, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, Graz, 8010, Austria
| |
Collapse
|
29
|
Colton DM, Stabb EV. Rethinking the roles of CRP, cAMP, and sugar-mediated global regulation in the Vibrionaceae. Curr Genet 2015. [PMID: 26215147 DOI: 10.1007/s00294-015-0508-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Many proteobacteria modulate a suite of catabolic genes using the second messenger cyclic 3', 5'-AMP (cAMP) and the cAMP receptor protein (CRP). Together, the cAMP-CRP complex regulates target promoters, usually by activating transcription. In the canonical model, the phosphotransferase system (PTS), and in particular the EIIA(Glc) component for glucose uptake, provides a mechanistic link that modulates cAMP levels depending on glucose availability, resulting in more cAMP and activation of alternative catabolic pathways when glucose is unavailable. Within the Vibrionaceae, cAMP-CRP appears to play the classical role in modulating metabolic pathways; however, it also controls functions involved in natural competence, bioluminescence, pheromone signaling, and colonization of animal hosts. For this group of marine bacteria, chitin is an ecologically relevant resource, and chitin's monomeric sugar N-acetylglucosamine (NAG) supports robust growth while also triggering regulatory responses. Recent studies with Vibrio fischeri indicate that NAG and glucose uptake share EIIA(Glc), yet the responses of cAMP-CRP to these two carbon sources are starkly different. Moreover, control of cAMP levels appears to be more dominantly controlled by export and degradation. Perhaps more surprisingly, although CRP may require cAMP, its activity can be controlled in response to glucose by a mechanism independent of cAMP levels. Future studies in this area promise to shed new light on the role of cAMP and CRP.
Collapse
Affiliation(s)
- Deanna M Colton
- Department of Microbiology, University of Georgia, 120 Cedar Street, Athens, GA, 30602, USA
| | - Eric V Stabb
- Department of Microbiology, University of Georgia, 120 Cedar Street, Athens, GA, 30602, USA.
| |
Collapse
|
30
|
Colton DM, Stoudenmire JL, Stabb EV. Growth on glucose decreases cAMP-CRP activity while paradoxically increasing intracellular cAMP in the light-organ symbiont Vibrio fischeri. Mol Microbiol 2015; 97:1114-27. [PMID: 26062003 DOI: 10.1111/mmi.13087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2015] [Indexed: 12/25/2022]
Abstract
Proteobacteria often co-ordinate responses to carbon sources using CRP and the second messenger cyclic 3', 5'-AMP (cAMP), which combine to control transcription of genes during growth on non-glucose substrates as part of the catabolite-repression response. Here we show that cAMP-CRP is active and important in Vibrio fischeri during colonization of its host squid Euprymna scolopes. Moreover, consistent with a classical role in catabolite repression, a cAMP-CRP-dependent reporter showed lower activity in cells grown in media amended with glucose rather than glycerol. Surprisingly though, intracellular cAMP levels were higher in glucose-grown cells. Mutant analyses were consistent with predictions that CyaA was responsible for cAMP generation, that the EIIA(Glc) component of glucose transport could enhance cAMP production and that the phophodiesterases CpdA and CpdP consumed intracellular and extracellular cAMP respectively. However, the observation of lower cAMP levels in glycerol-grown cells seemed best explained by changes in cAMP export, via an unknown mechanism. Our data also indicated that cAMP-CRP activity decreased during growth on glucose independently of crp's native transcriptional regulation or cAMP levels. We speculate that some unknown mechanism, perhaps carbon-source-dependent post-translational modulation of CRP, may help control cAMP-CRP activity in V.fischeri.
Collapse
Affiliation(s)
- Deanna M Colton
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | | | - Eric V Stabb
- Department of Microbiology, University of Georgia, Athens, GA, USA
| |
Collapse
|
31
|
An integrated approach to reconstructing genome-scale transcriptional regulatory networks. PLoS Comput Biol 2015; 11:e1004103. [PMID: 25723545 PMCID: PMC4344238 DOI: 10.1371/journal.pcbi.1004103] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 12/23/2014] [Indexed: 11/24/2022] Open
Abstract
Transcriptional regulatory networks (TRNs) program cells to dynamically alter their gene expression in response to changing internal or environmental conditions. In this study, we develop a novel workflow for generating large-scale TRN models that integrates comparative genomics data, global gene expression analyses, and intrinsic properties of transcription factors (TFs). An assessment of this workflow using benchmark datasets for the well-studied γ-proteobacterium Escherichia coli showed that it outperforms expression-based inference approaches, having a significantly larger area under the precision-recall curve. Further analysis indicated that this integrated workflow captures different aspects of the E. coli TRN than expression-based approaches, potentially making them highly complementary. We leveraged this new workflow and observations to build a large-scale TRN model for the α-Proteobacterium Rhodobacter sphaeroides that comprises 120 gene clusters, 1211 genes (including 93 TFs), 1858 predicted protein-DNA interactions and 76 DNA binding motifs. We found that ~67% of the predicted gene clusters in this TRN are enriched for functions ranging from photosynthesis or central carbon metabolism to environmental stress responses. We also found that members of many of the predicted gene clusters were consistent with prior knowledge in R. sphaeroides and/or other bacteria. Experimental validation of predictions from this R. sphaeroides TRN model showed that high precision and recall was also obtained for TFs involved in photosynthesis (PpsR), carbon metabolism (RSP_0489) and iron homeostasis (RSP_3341). In addition, this integrative approach enabled generation of TRNs with increased information content relative to R. sphaeroides TRN models built via other approaches. We also show how this approach can be used to simultaneously produce TRN models for each related organism used in the comparative genomics analysis. Our results highlight the advantages of integrating comparative genomics of closely related organisms with gene expression data to assemble large-scale TRN models with high-quality predictions. The ever growing amount of genomic data enables the assembly of large-scale network models that can provide important new insights into living systems. However, assembly and validation of such large-scale models can be challenging, since we often lack sufficient information to make accurate predictions. This work describes a new approach for constructing large-scale transcriptional regulatory networks of individual cells. We show that the reconstructed network captures a significantly larger fraction of cellular regulatory processes than networks generated by other existing approaches. We predict this approach, with appropriate refinements, will allow reconstruction of large-scale transcriptional network models for a variety of other organisms. As we work towards modeling the function of cells or complex ecosystems, individually reconstructed network models of signaling, information transfer and metabolism, can be integrated to provide high information predictions and insights not otherwise obtainable.
Collapse
|
32
|
Van Damme T, Blancquaert D, Couturon P, Van Der Straeten D, Sandra P, Lynen F. Wounding stress causes rapid increase in concentration of the naturally occurring 2',3'-isomers of cyclic guanosine- and cyclic adenosine monophosphate (cGMP and cAMP) in plant tissues. PHYTOCHEMISTRY 2014; 103:59-66. [PMID: 24735826 DOI: 10.1016/j.phytochem.2014.03.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 02/16/2014] [Accepted: 03/10/2014] [Indexed: 05/21/2023]
Abstract
3',5'-Cyclic guanosine monophosphate (cGMP) and 3',5'-cyclic adenosine monophosphate (cAMP) are well reported second messenger molecules involved in cellular signal transduction, in physiological functions such as neurotransmission in animals and in the modulation of cell growth and differentiation. In plants, 3',5'-cyclic nucleotides have been implicated in the regulation of ion homeostasis, hormone and stress responses. The behavior of the 2',3'-cyclic nucleotide variants is also known in animal tissue but no quantitative information is available about 2',3'-cAMP and 2',3'-cGMP in plant material. A recently developed HILIC-SPE/LC-MS/MS method for the analysis of cyclic nucleotides in blood and animal tissue was therefore adapted to measure 2',3'-cAMP and 2',3'-cGMP concentrations in plant material. Cyclic nucleotide concentrations were measured in Arabidopsis thaliana (Col-0) leaves before and after the application of wounding stress. A significant (∼5-fold) up-regulation of 2',3'-cAMP and 2',3'-cGMP was measured in Arabidopsis leaves compared to the control samples. The results indicate a thus far unreported strong correlation between plant stress and both 2',3'-cAMP and 2',3'-cGMP levels in plant material, and may open new avenues towards understanding the role of cyclic nucleotides in plants.
Collapse
Affiliation(s)
- Thomas Van Damme
- Department of Organic Chemistry, Pfizer Analytical Research Center, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium
| | - Dieter Blancquaert
- Laboratory of Functional Plant Biology, Department of Physiology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Pauline Couturon
- Department of Organic Chemistry, Separation Science Group, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Physiology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Pat Sandra
- Department of Organic Chemistry, Pfizer Analytical Research Center, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium; Department of Organic Chemistry, Separation Science Group, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium
| | - Frédéric Lynen
- Department of Organic Chemistry, Pfizer Analytical Research Center, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium; Department of Organic Chemistry, Separation Science Group, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium.
| |
Collapse
|
33
|
Liu WJ, Dong H, Peng XW, Wu QM. The Cyclic AMP-binding protein CbpB in Brucella melitensis and its role in cell envelope integrity, resistance to detergent and virulence. FEMS Microbiol Lett 2014; 356:79-88. [PMID: 24850100 DOI: 10.1111/1574-6968.12472] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 11/30/2022] Open
Abstract
Brucella melitensis possesses an operon with two components: the response regulator OtpR and a putative cAMP-dependent protein kinase regulatory subunit encoded by the BMEI0067 gene. In the previous study, the function of OtpR has been studied, while little is known about the function of the BMEI0067 gene. Using a bioinformatics approach, we showed that the BMEI0067 gene encodes an additional putative cAMP-binding protein, which we refer to as CbpB. Structural modeling predicted that CbpB has a cAMP-binding protein (CAP) domain and is structurally similar to eukaryotic protein kinase A regulatory subunits. Here, we report the characterization of CbpB, a cAMP-binding protein in Brucella melitensis, showed to be involved in mouse persistent infections. ∆cbpB::km possessed cell elongation, bubble-like protrusions on cell surface and its resistance to environmental stresses (temperature, osmotic stress and detergent). Interestingly, comparative real-time qPCR assays, the cbpB mutation resulted in significantly different expression of aqpX and several penicillin-binding proteins and cell division proteins in Brucella. Combined, these results demonstrated characterization of CbpB in B. melitensis and its key role for intracellular multiplication.
Collapse
Affiliation(s)
- Wen-Juan Liu
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | | | | | | |
Collapse
|
34
|
Seok SH, Im H, Won HS, Seo MD, Lee YS, Yoon HJ, Cha MJ, Park JY, Lee BJ. Structures of inactive CRP species reveal the atomic details of the allosteric transition that discriminates cyclic nucleotide second messengers. ACTA ACUST UNITED AC 2014; 70:1726-42. [PMID: 24914983 DOI: 10.1107/s139900471400724x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 04/01/2014] [Indexed: 11/10/2022]
Abstract
The prokaryotic global transcription factor CRP has been considered to be an ideal model for in-depth study of both the allostery of the protein and the differential utilization of the homologous cyclic nucleotide second messengers cAMP and cGMP. Here, atomic details from the crystal structures of two inactive CRP species, an apo form and a cGMP-bound form, in comparison with a known active conformation, the cAMP-CRP complex, provide macroscopic and microscopic insights into CRP allostery, which is coupled to specific discrimination between the two effectors. The cAMP-induced conformational transition, including dynamic fluctuations, can be driven by the fundamental folding forces that cause water-soluble globular proteins to construct an optimized hydrophobic core, including secondary-structure formation. The observed conformational asymmetries underlie a negative cooperativity in the sequential binding of cyclic nucleotides and a stepwise manner of binding with discrimination between the effector molecules. Additionally, the finding that cGMP, which is specifically recognized in a syn conformation, induces an inhibitory conformational change, rather than a null effect, on CRP supports the intriguing possibility that cGMP signalling could be widely utilized in prokaryotes, including in aggressive inhibition of CRP-like proteins.
Collapse
Affiliation(s)
- Seung-Hyeon Seok
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hookang Im
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyung-Sik Won
- Department of Biotechnology, RIBHS and RIID, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk 380-701, Republic of Korea
| | - Min-Duk Seo
- College of Pharmacy, Ajou University, Suwon, Kyeonggi 443-749, Republic of Korea
| | - Yoo-Sup Lee
- Department of Biotechnology, RIBHS and RIID, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk 380-701, Republic of Korea
| | - Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Min-Jeong Cha
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jin-Young Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
35
|
Serra DO, Hengge R. Stress responses go three dimensional - the spatial order of physiological differentiation in bacterial macrocolony biofilms. Environ Microbiol 2014; 16:1455-71. [PMID: 24725389 PMCID: PMC4238805 DOI: 10.1111/1462-2920.12483] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/28/2014] [Indexed: 11/30/2022]
Abstract
In natural habitats, bacteria often occur in multicellular communities characterized by a robust extracellular matrix of proteins, amyloid fibres, exopolysaccharides and extracellular DNA. These biofilms show pronounced stress resistance including a resilience against antibiotics that causes serious medical and technical problems. This review summarizes recent studies that have revealed clear spatial physiological differentiation, complex supracellular architecture and striking morphology in macrocolony biofilms. By responding to gradients of nutrients, oxygen, waste products and signalling compounds that build up in growing biofilms, various stress responses determine whether bacteria grow and proliferate or whether they enter into stationary phase and use their remaining resources for maintenance and survival. As a consequence, biofilms differentiate into at least two distinct layers of vegetatively growing and stationary phase cells that exhibit very different cellular physiology. This includes a stratification of matrix production with a major impact on microscopic architecture, biophysical properties and directly visible morphology of macrocolony biofilms. Using Escherichia coli as a model system, this review also describes our detailed current knowledge about the underlying molecular control networks – prominently featuring sigma factors, transcriptional cascades and second messengers – that drive this spatial differentiation and points out directions for future research.
Collapse
Affiliation(s)
- Diego O Serra
- Institute of Biology/Microbiology, Humboldt Universität zu Berlin, Chausseestr. 117, Berlin, 10115, Germany
| | | |
Collapse
|
36
|
Li X, Zhang H, Ma Y, Liu P, Krumholz LR. Genes required for alleviation of uranium toxicity in sulfate reducing bacterium Desulfovibrio alaskensis G20 [corrected]. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:726-733. [PMID: 24510447 DOI: 10.1007/s10646-014-1201-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2014] [Indexed: 06/03/2023]
Abstract
The sulfate reducing bacterium Desulfovibrio alaskensis strain G20 can grow in lactate sulfate medium with up to 4 mM uranyl acetate. In order to identify the genes that are required for the growth of strain G20 at toxic levels of uranium(VI) (U(VI)), 5,760 transposon insertion mutants were screened for U(VI) resistance defects, and 24 of them showed loss of U(VI) resistance in lactate sulfate medium with 2 mM uranyl acetate. In the 24 mutants, 23 genes were disrupted by transposon insertions, and one transposon is located in a non-coding region. In the ten mutants that were completely inhibited by 2 mM uranyl acetate, the disrupted genes are involved in DNA repair, rRNA methylation, regulation of expression and RNA polymerase renaturation. The remaining 14 mutants showed partial inhibition of growth by 2 mM U(VI), in which the disrupted genes participate in DNA repair, regulation of transcription, membrane transport, etc. In addition, none except one of these 24 mutants showed loss in its ability to reduce U(VI) to U(IV) in the washed cell test. These results altogether suggest that U(VI) toxicity mainly involves damage to nucleic acids and proteins.
Collapse
Affiliation(s)
- Xiangkai Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, 730000, Gansu, People's Republic of China
| | | | | | | | | |
Collapse
|
37
|
Stella NA, Shanks RMQ. Cyclic-AMP inhibition of fimbriae and prodigiosin production by Serratia marcescens is strain-dependent. Arch Microbiol 2014; 196:323-30. [PMID: 24619531 DOI: 10.1007/s00203-014-0970-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 02/07/2014] [Accepted: 02/24/2014] [Indexed: 12/26/2022]
Abstract
The cyclic-nucleotide 3',5'-cyclic AMP (cAMP) is an ancient and widespread regulatory molecule. Previous studies have shown that fimbria production and secondary metabolite production are inhibited by cAMP in the prokaryote Serratia marcescens. This study used genetic manipulations to test the strain specificity of cAMP-cyclic-AMP receptor protein regulation of fimbria production and of the red pigment, prodigiosin. A surprising amount of variation was observed, as multicopy expression of the cAMP-phosphodiesterase gene, cpdS, conferred either an increase or decrease in fimbriae-dependent yeast agglutination and prodigiosin production depending upon the strain background. Mutation of crp, the gene coding for the cAMP-receptor protein, similarly conferred strain-dependent phenotypes. This study shows that three distinct biological properties, modulated by a conserved genetic regulatory molecule, can vary significantly among strains. Such variation can complicate the functional analysis of bacterial phenotypic properties which are dependent upon global genetic regulators such as cAMP.
Collapse
Affiliation(s)
- Nicholas A Stella
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA,
| | | |
Collapse
|
38
|
Casey SJ, Ford MJ, Gazdik MA. The role of transcriptional regulation in maintaining the availability of mycobacterial adenylate cyclases. PeerJ 2014; 2:e298. [PMID: 24688874 PMCID: PMC3961136 DOI: 10.7717/peerj.298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/11/2014] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium species have a complex cAMP regulatory network indicated by the high number of adenylate cyclases annotated in their genomes. However the need for a high level of redundancy in adenylate cyclase genes remains unknown. We have used semiquantitiative RT-PCR to examine the expression of eight Mycobacterium smegmatis cyclases with orthologs in the human pathogen Mycobacterium tuberculosis, where cAMP has recently been shown to be important for virulence. All eight cyclases were transcribed in all environments tested, and only four demonstrated environmental-mediated changes in transcription. M. smegmatis genes MSMEG_0545 and MSMEG_4279 were upregulated during starvation conditions while MSMEG_0545 and MSMEG_4924 were downregulated in H2O2 and MSMEG_3780 was downregulated in low pH and starvation. Promoter fusion constructs containing M. tuberculosis H37Rv promoters showed consistent regulation compared to their M. smegmatis orthologs. Overall our findings indicate that while low levels of transcriptional regulation occur, regulation at the mRNA level does not play a major role in controlling cellular cyclase availability in a given environment.
Collapse
Affiliation(s)
- Sarah J Casey
- Biology Department, Ferrum College , Ferrum, VA , United States ; Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine , Blacksburg, VA , United States
| | - Mica J Ford
- Biology Department, Ferrum College , Ferrum, VA , United States
| | | |
Collapse
|
39
|
Crowning: a novel Escherichia coli colonizing behaviour generating a self-organized corona. BMC Res Notes 2014; 7:108. [PMID: 24568619 PMCID: PMC3936827 DOI: 10.1186/1756-0500-7-108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/17/2014] [Indexed: 12/03/2022] Open
Abstract
Background Encased in a matrix of extracellular polymeric substances (EPS) composed of flagella, adhesins, amyloid fibers (curli), and exopolysaccharides (cellulose, β-1,6-N-acetyl-D-glucosamine polymer-PGA-, colanic acid), the bacteria Escherichia coli is able to attach to and colonize different types of biotic and abiotic surfaces forming biofilms and colonies of intricate morphological architectures. Many of the biological aspects that underlie the generation and development of these E. coli’s formations are largely poorly understood. Results Here, we report the characterization of a novel E. coli sessile behaviour termed "crowning" due to the bacterial generation of a new 3-D architectural pattern: a corona. This bacterial pattern is formed by joining bush-like multilayered "coronal flares or spikes" arranged in a ring, which self-organize through the growth, self-clumping and massive self-aggregation of cells tightly interacting inside semisolid agar on plastic surfaces. Remarkably, the corona’s formation is developed independently of the adhesiveness of the major components of E. coli’s EPS matrix, the function of chemotaxis sensory system, type 1 pili and the biofilm master regulator CsgD, but its formation is suppressed by flagella-driven motility and glucose. Intriguingly, this glucose effect on the corona development is not mediated by the classical catabolic repression system, the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex. Thus, corona formation departs from the canonical regulatory transcriptional core that controls biofilm formation in E. coli. Conclusions With this novel "crowning" activity, E. coli expands its repertoire of colonizing collective behaviours to explore, invade and exploit environments whose critical viscosities impede flagella driven-motility.
Collapse
|
40
|
Ono K, Oka R, Toyofuku M, Sakaguchi A, Hamada M, Yoshida S, Nomura N. cAMP signaling affects irreversible attachment during biofilm formation by Pseudomonas aeruginosa PAO1. Microbes Environ 2014; 29:104-6. [PMID: 24553108 PMCID: PMC4041239 DOI: 10.1264/jsme2.me13151] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pseudomonas aeruginosa responds to environmental changes and regulates its life cycle from planktonic to biofilm modes of growth. The control of cell attachment to surfaces is one of the critical processes that determine this transition. Environmental signals are typically relayed to the cytoplasm by second messenger systems. We here demonstrated that the second messenger, cAMP, regulated the attachment of cells. Our results suggest cAMP inhibited the transition from reversible to irreversible attachment. Further analyses revealed that cell surface hydrophobicity, one of the key factors in cell attachment, was altered by cAMP.
Collapse
Affiliation(s)
- Kaori Ono
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | | | | | | | | | | | | |
Collapse
|
41
|
Two-step synthesis and hydrolysis of cyclic di-AMP in Mycobacterium tuberculosis. PLoS One 2014; 9:e86096. [PMID: 24465894 PMCID: PMC3900455 DOI: 10.1371/journal.pone.0086096] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/10/2013] [Indexed: 12/04/2022] Open
Abstract
Cyclic di-AMP is a recently discovered signaling molecule which regulates various aspects of bacterial physiology and virulence. Here we report the characterization of c-di-AMP synthesizing and hydrolyzing proteins from Mycobacterium tuberculosis. Recombinant Rv3586 (MtbDisA) can synthesize c-di-AMP from ATP through the diadenylate cyclase activity. Detailed biochemical characterization of the protein revealed that the diadenylate cyclase (DAC) activity is allosterically regulated by ATP. We have identified the intermediates of the DAC reaction and propose a two-step synthesis of c-di-AMP from ATP/ADP. MtbDisA also possesses ATPase activity which is suppressed in the presence of the DAC activity. Investigations by liquid chromatography -electrospray ionization mass spectrometry have detected multimeric forms of c-di-AMP which have implications for the regulation of c-di-AMP cellular concentration and various pathways regulated by the dinucleotide. We have identified Rv2837c (MtbPDE) to have c-di-AMP specific phosphodiesterase activity. It hydrolyzes c-di-AMP to 5′-AMP in two steps. First, it linearizes c-di-AMP into pApA which is further hydrolyzed to 5′-AMP. MtbPDE is novel compared to c-di-AMP specific phosphodiesterase, YybT (or GdpP) in being a soluble protein and hydrolyzing c-di-AMP to 5′-AMP. Our results suggest that the cellular concentration of c-di-AMP can be regulated by ATP concentration as well as the hydrolysis by MtbPDE.
Collapse
|
42
|
Physiological and Molecular Timing of the Glucose to Acetate Transition in Escherichia coli. Metabolites 2013; 3:820-37. [PMID: 24958151 PMCID: PMC3901295 DOI: 10.3390/metabo3030820] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/28/2013] [Accepted: 09/04/2013] [Indexed: 11/17/2022] Open
Abstract
The glucose-acetate transition in Escherichia coli is a classical model of metabolic adaptation. Here, we describe the dynamics of the molecular processes involved in this metabolic transition, with a particular focus on glucose exhaustion. Although changes in the metabolome were observed before glucose exhaustion, our results point to a massive reshuffling at both the transcriptome and metabolome levels in the very first min following glucose exhaustion. A new transcriptional pattern, involving a change in genome expression in one-sixth of the E. coli genome, was established within 10 min and remained stable until the acetate was completely consumed. Changes in the metabolome took longer and stabilized 40 min after glucose exhaustion. Integration of multi-omics data revealed different modifications and timescales between the transcriptome and metabolome, but both point to a rapid adaptation of less than an hour. This work provides detailed information on the order, timing and extent of the molecular and physiological events that occur during the glucose-acetate transition and that are of particular interest for the development of dynamic models of metabolism.
Collapse
|
43
|
Marisch K, Bayer K, Scharl T, Mairhofer J, Krempl PM, Hummel K, Razzazi-Fazeli E, Striedner G. A comparative analysis of industrial Escherichia coli K-12 and B strains in high-glucose batch cultivations on process-, transcriptome- and proteome level. PLoS One 2013; 8:e70516. [PMID: 23950949 PMCID: PMC3738542 DOI: 10.1371/journal.pone.0070516] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 06/24/2013] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli K-12 and B strains are among the most frequently used bacterial hosts for production of recombinant proteins on an industrial scale. To improve existing processes and to accelerate bioprocess development, we performed a detailed host analysis. We investigated the different behaviors of the E. coli production strains BL21, RV308, and HMS174 in response to high-glucose concentrations. Tightly controlled cultivations were conducted under defined environmental conditions for the in-depth analysis of physiological behavior. In addition to acquisition of standard process parameters, we also used DNA microarray analysis and differential gel electrophoresis (Ettan(TM) DIGE). Batch cultivations showed different yields of the distinct strains for cell dry mass and growth rate, which were highest for BL21. In addition, production of acetate, triggered by excess glucose supply, was much higher for the K-12 strains compared to the B strain. Analysis of transcriptome data showed significant alteration in 347 of 3882 genes common among all three hosts. These differentially expressed genes included, for example, those involved in transport, iron acquisition, and motility. The investigation of proteome patterns additionally revealed a high number of differentially expressed proteins among the investigated hosts. The subsequently selected 38 spots included proteins involved in transport and motility. The results of this comprehensive analysis delivered a full genomic picture of the three investigated strains. Differentially expressed groups for targeted host modification were identified like glucose transport or iron acquisition, enabling potential optimization of strains to improve yield and process quality. Dissimilar growth profiles of the strains confirm different genotypes. Furthermore, distinct transcriptome patterns support differential regulation at the genome level. The identified proteins showed high agreement with the transcriptome data and suggest similar regulation within a host at both levels for the identified groups. Such host attributes need to be considered in future process design and operation.
Collapse
Affiliation(s)
- Karoline Marisch
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Kalivoda EJ, Brothers KM, Stella NA, Schmitt MJ, Shanks RMQ. Bacterial cyclic AMP-phosphodiesterase activity coordinates biofilm formation. PLoS One 2013; 8:e71267. [PMID: 23923059 PMCID: PMC3726613 DOI: 10.1371/journal.pone.0071267] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/27/2013] [Indexed: 12/26/2022] Open
Abstract
Biofilm-related infections are a major contributor to human disease, and the capacity for surface attachment and biofilm formation are key attributes for the pathogenesis of microbes. Serratia marcescens type I fimbriae-dependent biofilms are coordinated by the adenylate cyclase, CyaA, and the cyclic 3′,5′-adenosine monophosphate (cAMP)-cAMP receptor protein (CRP) complex. This study uses S. marcescens as a model system to test the role of cAMP-phosphodiesterase activity in controlling biofilm formation. Herein we describe the characterization of a putative S. marcescens cAMP-phosphodiesterase gene (SMA3506), designated as cpdS, and demonstrated to be a functional cAMP-phosphodiesterase both in vitro and in vivo. Deletion of cpdS resulted in defective biofilm formation and reduced type I fimbriae production, whereas multicopy expression of cpdS conferred a type I fimbriae-dependent hyper-biofilm. Together, these results support a model in which bacterial cAMP-phosphodiesterase activity modulates biofilm formation.
Collapse
Affiliation(s)
- Eric J. Kalivoda
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Unites States of America
| | - Kimberly M. Brothers
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Unites States of America
| | - Nicholas A. Stella
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Unites States of America
| | - Matthew J. Schmitt
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Unites States of America
| | - Robert M. Q. Shanks
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Unites States of America
- * E-mail:
| |
Collapse
|
45
|
Multiple Pathways of Genome Plasticity Leading to Development of Antibiotic Resistance. Antibiotics (Basel) 2013; 2:288-315. [PMID: 27029305 PMCID: PMC4790341 DOI: 10.3390/antibiotics2020288] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 02/05/2023] Open
Abstract
The emergence of multi-resistant bacterial strains is a major source of concern and has been correlated with the widespread use of antibiotics. The origins of resistance are intensively studied and many mechanisms involved in resistance have been identified, such as exogenous gene acquisition by horizontal gene transfer (HGT), mutations in the targeted functions, and more recently, antibiotic tolerance through persistence. In this review, we focus on factors leading to integron rearrangements and gene capture facilitating antibiotic resistance acquisition, maintenance and spread. The role of stress responses, such as the SOS response, is discussed.
Collapse
|
46
|
Lin CT, Chen YC, Jinn TR, Wu CC, Hong YM, Wu WH. Role of the cAMP-dependent carbon catabolite repression in capsular polysaccharide biosynthesis in Klebsiella pneumoniae. PLoS One 2013; 8:e54430. [PMID: 23408939 PMCID: PMC3569464 DOI: 10.1371/journal.pone.0054430] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 12/11/2012] [Indexed: 12/11/2022] Open
Abstract
K. pneumoniae is the predominant pathogen isolated from liver abscesses of diabetic patients in Asian countries. Although elevated blood glucose levels cause various immune problems, its effects on K. pneumoniae virulence are unknown. This study investigated the regulation of capsular polysaccharide (CPS) biosynthesis, a major determinant for K. pneumoniae virulence, in response to exogenous glucose. We found that K. pneumoniae produce more CPS in glucose-rich medium via reduction in cyclic AMP (cAMP) levels. Individual deletion of cyaA or crp, which respectively encode adenylate cyclase and cAMP receptor protein in K. pneumoniae, markedly increased CPS production, while deletion of cpdA, which encodes cAMP phosphodiesterase, decreased CPS production. These results indicate that K. pneumoniae CPS biosynthesis is controlled by the cAMP-dependent carbon catabolite repression (CCR). To investigate the underlying mechanism, quantitative real-time PCR and promoter-reporter assays were used to verify that the transcription of CPS biosynthesis genes, which are organized into 3 transcription units (orf1-2, orf3-15, and orf16-17), were activated by the deletion of crp. Sequence analysis revealed putative CRP binding sites located on Porf3-15 and Porf16-17, suggesting direct CRP-cAMP regulation on the promoters. These results were then confirmed by electrophoretic mobility shift assay. In addition, we found putative CRP binding sites located in the promoter region of rcsA, which encodes a cps transcriptional activator, demonstrating a direct repression of CRP-cAMP and PrcsA. The deletion of rcsA in mutation of crp partially reduced CPS biosynthesis and the transcription of orf1-2 but not of orf3-15 or orf16-17. These results suggest that RcsA participates in the CRP-cAMP regulation of orf1-2 transcription and influences CPS biosynthesis. Finally, the effect of glucose and CCR proteins on CPS biosynthesis also reflects bacterial resistance to serum killing. We here provide evidence that K. pneumoniae increases CPS biosynthesis for successful infection in response to exogenous glucose via cAMP-dependent CCR.
Collapse
Affiliation(s)
- Ching-Ting Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan. Republic of China.
| | | | | | | | | | | |
Collapse
|
47
|
Gancedo JM. Biological roles of cAMP: variations on a theme in the different kingdoms of life. Biol Rev Camb Philos Soc 2013; 88:645-68. [PMID: 23356492 DOI: 10.1111/brv.12020] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 12/18/2022]
Abstract
Cyclic AMP (cAMP) plays a key regulatory role in most types of cells; however, the pathways controlled by cAMP may present important differences between organisms and between tissues within a specific organism. Changes in cAMP levels are caused by multiple triggers, most affecting adenylyl cyclases, the enzymes that synthesize cAMP. Adenylyl cyclases form a large and diverse family including soluble forms and others with one or more transmembrane domains. Regulatory mechanisms for the soluble adenylyl cyclases involve either interaction with diverse proteins, as happens in Escherichia coli or yeasts, or with calcium or bicarbonate ions, as occurs in mammalian cells. The transmembrane cyclases can be regulated by a variety of proteins, among which the α subunit and the βγ complex from G proteins coupled to membrane receptors are prominent. cAMP levels also are controlled by the activity of phosphodiesterases, enzymes that hydrolyze cAMP. Phosphodiesterases can be regulated by cAMP, cGMP or calcium-calmodulin or by phosphorylation by different protein kinases. Regulation through cAMP depends on its binding to diverse proteins, its proximal targets, this in turn causing changes in a variety of distal targets. Specifically, binding of cAMP to regulatory subunits of cAMP-dependent protein kinases (PKAs) affects the activity of substrates of PKA, binding to exchange proteins directly activated by cAMP (Epac) regulates small GTPases, binding to transcription factors such as the cAMP receptor protein (CRP) or the virulence factor regulator (Vfr) modifies the rate of transcription of certain genes, while cAMP binding to ion channels modulates their activity directly. Further studies on cAMP signalling will have important implications, not only for advancing fundamental knowledge but also for identifying targets for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Juana M Gancedo
- Department of Metabolism and Cell Signalling, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid 28029, Spain.
| |
Collapse
|
48
|
High-resolution detection of DNA binding sites of the global transcriptional regulator GlxR in Corynebacterium glutamicum. Microbiology (Reading) 2013; 159:12-22. [DOI: 10.1099/mic.0.062059-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
49
|
Puspita ID, Kamagata Y, Tanaka M, Asano K, Nakatsu CH. Are uncultivated bacteria really uncultivable? Microbes Environ 2012; 27:356-66. [PMID: 23059723 PMCID: PMC4103542 DOI: 10.1264/jsme2.me12092] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 06/20/2012] [Indexed: 11/16/2022] Open
Abstract
Many strategies have been used to increase the number of bacterial cells that can be grown from environmental samples but cultivation efficiency remains a challenge for microbial ecologists. The difficulty of cultivating a fraction of bacteria in environmental samples can be classified into two non-exclusive categories. Bacterial taxa with no cultivated representatives for which appropriate laboratory conditions necessary for growth are yet to be identified. The other class is cells in a non-dividing state (also known as dormant or viable but not culturable cells) that require the removal or addition of certain factors to re-initiate growth. A number of strategies, from simple to high throughput techniques, are reviewed that have been used to increase the cultivation efficiency of environmental samples. Some of the underlying mechanisms that contribute to the success of these cultivation strategies are described. Overall this review emphasizes the need of researchers to first understand the factors that are hindering cultivation to identify the best strategies to improve cultivation efficiency.
Collapse
Affiliation(s)
- Indun Dewi Puspita
- Graduate School of Agriculture, Hokkaido University, N9 W9, Kita-ku, Sapporo, Hokkaido 060–8589,
Japan
| | - Yoichi Kamagata
- Graduate School of Agriculture, Hokkaido University, N9 W9, Kita-ku, Sapporo, Hokkaido 060–8589,
Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2–17 Tsukisamu-Higashi, Toyohira, Sapporo, Hokkaido 062–8517,
Japan
| | - Michiko Tanaka
- Graduate School of Agriculture, Hokkaido University, N9 W9, Kita-ku, Sapporo, Hokkaido 060–8589,
Japan
| | - Kozo Asano
- Graduate School of Agriculture, Hokkaido University, N9 W9, Kita-ku, Sapporo, Hokkaido 060–8589,
Japan
| | - Cindy H. Nakatsu
- Graduate School of Agriculture, Hokkaido University, N9 W9, Kita-ku, Sapporo, Hokkaido 060–8589,
Japan
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907,
USA
| |
Collapse
|
50
|
Determination of cyclic guanosine- and cyclic adenosine monophosphate (cGMP and cAMP) in human plasma and animal tissues by solid phase extraction on silica and liquid chromatography-triple quadrupole mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 909:14-21. [PMID: 23153638 DOI: 10.1016/j.jchromb.2012.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 09/25/2012] [Accepted: 10/02/2012] [Indexed: 01/13/2023]
Abstract
3',5'-Cyclic guanosine monophosphate (cGMP) and 3',5'-cyclic adenosine monophosphate (cAMP) are essential second messenger molecules. They are involved in signal transduction within cells, in physiological functions such as neurotransmission and in the modulation of cell growth and differentiation of organisms, respectively. A quantitative solid phase extraction method (SPE) based on hydrophilic interaction on silica was developed and applied to both plasma and tissue samples. The stable isotope-labeled internal standards ²D₁, ¹⁵N₃-3',5'-cGMP and ¹³C₁₀, ¹⁵N₅-3',5'-cAMP were added prior to the sample preparation to ensure high precision and accuracy. The samples were analyzed by reversed-phase liquid chromatography (RP-LC). Negative electrospray (ESI)-MS/MS was used to selectively monitor several transitions of each metabolite. The method for the analysis of 3',5'-cAMP and 3',5'-cGMP in plasma was validated in the range of 0.15-20 ng/mL (R²=0.9996 and 0.9994 for 3',5'-cAMP and 3',5'-cGMP, respectively). Basal plasma concentrations for fifteen healthy human patients determined with this method varied between 4.66-9.20 ng/mL for 3',5'-cAMP and between 0.30-1.20 ng/mL for 3',5'-cGMP, with precisions better than 9.1%. 3',5'-cGMP and 3',5'-cAMP together with their 2',3'-isomers were also determined in a semi quantitative way in animal tissues. The structures of the isomers were confirmed by analysis with LC-high resolution time-of-flight MS and subsequently by comparison of retention times with standards.
Collapse
|