1
|
Lü Z, Su L, Han M, Wang X, Li M, Wang S, Cui S, Chen J, Yang B. Genomic characteristics and virulence of common but overlooked Yersinia intermedia, Y. frederiksenii, and Y. kristensenii in food. Int J Food Microbiol 2025; 430:111052. [PMID: 39798383 DOI: 10.1016/j.ijfoodmicro.2024.111052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/20/2024] [Accepted: 12/28/2024] [Indexed: 01/15/2025]
Abstract
Yersinia intermedia, Y. frederiksenii, and Y. kristensenii are a group of pathogens that are commonly found in food and are often overlooked in terms of their pathogenic potential. This study conducted a systematic and comprehensive genomic analysis of 114 Y. intermedia genomes, 20 Y. frederiksenii genomes, and 65 Y. kristensenii genomes from public database and our previous study. The results showed that these species were most frequently detected in Europe (56.28 %, 112/199), followed by in Asia (20.6 %, 41/199). Additionally, 33.17 % (66/199) genomes were isolated from food. Y. intermedia were grouped into Bayesian analysis of population structure (Baps) groups 3 and 4, demonstrating significant genomic diversity. This species has a high proportion of accessory genes (79.43 %), approximately 50 % of which have unknown functions, indicating a high degree of genomic plasticity. The three species carried a large number of mobile genetic elements (MGEs), including plasmids such as ColRNAI_1, ColE10_1, Col440II_1, Col440I_1, and Col (Ye4449) _1; insertion sequences (ISs) like MITEYpe1, MITEEc1, and IS1635; genomic islands (GIs); and prophages. In Y. intermedia, the following antibiotics resistance genes (ARGs) were detected: qnrD1 in 3.51 % (4/114), aph(3')-Ia in 2.63 % (3/114), blaA in 1.75 % (2/114), and catA1, vat(F), and tet(C) each in 0.88 % (1/114). In Y. kristensenii, vat(F) was present in 98.46 % (64/65), blaTEM-116 in 7.69 % (5/65), and aph(3')-Ia in 1.54 % (1/65). However, only one Y. frederiksenii genome carried vat(F). There were differences in the virulence gene composition of the three species, with Y. kristensenii having the highest number of virulence genes, particularly its complete cytotoxic genes (yaxA and yaxB) and flagellar motor proteins genes (motA and motB). The pathogenic mechanisms of Y. intermedia and Y. frederiksenii were more similar, especially in the carriage of O-antigen related genes. Y. frederiksenii's unique mechanisms also include the yapC gene, which encodes the autotransporter protein YapC from Y. pestis. After co-cultured with human colonic epithelial cell lines Caco-2 and HT-29, Y. intermedia and Y. kristensenii demonstrated different adhesive and invasive capabilities, particularly the Y. intermedia strain y7, which exhibited stronger adhesion and invasion in both cell lines. In strains y118 and y119 of Y. intermedia, an Arg378del mutation in the UreC protein was identified, resulting in the loss of urease activity. Therefore, this study revealed the pathogenic potential of Y. intermedia, Y. frederiksenii, and Y. kristensenii. Future research should focus on identifying their unknown virulence genes and strengthening public food safety measures to mitigate potential risks.
Collapse
Affiliation(s)
- Zexun Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengting Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoqi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Siyue Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing 100050, China.
| | - Jia Chen
- Shijiazhuang University, Shijiazhuang 050035, China.
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Wang A, Cordova M, Navarre WW. Evolutionary and functional divergence of Sfx, a plasmid-encoded H-NS homolog, underlies the regulation of IncX plasmid conjugation. mBio 2025; 16:e0208924. [PMID: 39714162 PMCID: PMC11796372 DOI: 10.1128/mbio.02089-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
Conjugative plasmids are widespread among prokaryotes, highlighting their evolutionary success. Conjugation systems on most natural plasmids are repressed by default. The negative regulation of F-plasmid conjugation is partially mediated by the chromosomal nucleoid-structuring protein (H-NS). Recent bioinformatic analyses have revealed that plasmid-encoded H-NS homologs are widespread and exhibit high sequence diversity. However, the functional roles of most of these homologs and the selective forces driving their phylogenetic diversification remain unclear. In this study, we characterized the functionality and evolution of Sfx, a H-NS homolog encoded by the model IncX2 plasmid R6K. We demonstrate that Sfx, but not chromosomal H-NS, can repress R6K conjugation. Notably, we find evidence of positive selection acting on the ancestral Sfx lineage. Positively selected sites are located in the dimerization, oligomerization, and DNA-binding interfaces, many of which contribute to R6K repression activity-indicating that adaptive evolution drove the functional divergence of Sfx. We additionally show that Sfx can physically interact with various chromosomally encoded proteins, including H-NS, StpA, and Hha. Hha enhances the ability of Sfx to regulate R6K conjugation, suggesting that Sfx retained functionally important interactions with chromosomal silencing proteins. Surprisingly, the loss of Sfx does not negatively affect the stability or dissemination of R6K in laboratory conditions, reflecting the complexity of selective pressures favoring conjugation repression. Overall, our study sheds light on the functional and evolutionary divergence of a plasmid-borne H-NS-like protein, highlighting how these loosely specific DNA-binding proteins evolved to specifically regulate different plasmid functions.IMPORTANCEConjugative plasmids play a crucial role in spreading antimicrobial resistance and virulence genes. Most natural conjugative plasmids conjugate only under specific conditions. Therefore, studying the molecular mechanisms underlying conjugation regulation is essential for understanding antimicrobial resistance and pathogen evolution. In this study, we characterized the conjugation regulation of the model IncX plasmid R6K. We discovered that Sfx, a H-NS homolog carried by the plasmid, represses conjugation. Molecular evolutionary analyses combined with gain-of-function experiments indicate that positive selection underlies the conjugation repression activity of Sfx. Additionally, we demonstrate that the loss of Sfx does not adversely affect R6K maintenance under laboratory conditions, suggesting additional selective forces favoring Sfx carriage. Overall, this work underscores the impact of protein diversification on plasmid biology, enhancing our understanding of how molecular evolution affects broader plasmid ecology.
Collapse
Affiliation(s)
- Avril Wang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Martha Cordova
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
3
|
Intorcia V, Sava RL, Schroeder GP, Gebhardt MJ. A series of vectors for inducible gene expression in multidrug-resistant Acinetobacter baumannii. Appl Environ Microbiol 2024; 90:e0047424. [PMID: 39162403 PMCID: PMC11409637 DOI: 10.1128/aem.00474-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
The continued emergence of antibiotic resistance among bacterial pathogens remains a significant challenge. Indeed, the enhanced antibiotic resistance profiles of contemporary pathogens often restrict the number of suitable molecular tools that are available. We have constructed a series of plasmids that confer resistance to two infrequently used antibiotics with variants of each plasmid backbone incorporating several regulatory control systems. The regulatory systems include both commonly used systems based on the lac- and arabinose-controlled promoters found in Escherichia coli, as well as less frequently used systems that respond to tetracycline/anhydrotetracycline and toluic acid. As a test case, we demonstrate the utility of these plasmids for regulated and tunable gene expression in a multidrug-resistant (MDR) isolate of Acinetobacter baumannii, strain AB5075-UW. The plasmids include derivatives of a freely replicating, broad-host-range plasmid allowing for inducible gene expression as well as a set of vectors for introducing genetic material at the highly conserved Tn7-attachment site. We also modified a set of CRISPR-interference plasmids for use in MDR organisms, thus allowing researchers to more readily interrogate essential genes in currently circulating clinical isolates. These tools will enhance molecular genetic analyses of bacterial pathogens in situations where existing plasmids cannot be used due to their antibiotic resistance determinants or lack of suitable regulatory control systems. IMPORTANCE Clinical isolates of bacterial pathogens often harbor resistance to multiple antibiotics, with Acinetobacter baumannii being a prime example. The drug-resistance phenotypes associated with these pathogens represent a significant hurdle to researchers who wish to study modern isolates due to the limited availability of plasmid tools. Here, we present a series of freely replicating and Tn7-insertion vectors that rely on selectable markers to less frequently encountered antibiotics, apramycin, and hygromycin. We demonstrate the utility of these plasmid tools through a variety of experiments looking at a multidrug-resistant strain of A. baumannii, strain AB5075. Strain AB5075 is an established model strain for present-day A. baumannii, due in part to its genetic tractability and because it is a representative isolate of the globally disseminated multidrug-resistant clade of A. baumannii, global clone 1. In addition to the drug-selection markers facilitating use in strains resistant to more commonly used antibiotics, the vectors allow for controllable expression driven by several regulatory systems, including isopropyl β-D-1-thiogalactopyranoside (IPTG), arabinose, anhydrotetracycline, and toluic acid.
Collapse
Affiliation(s)
- Valerie Intorcia
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Rosa L. Sava
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Grace P. Schroeder
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Michael J. Gebhardt
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Long TF, Zhou SY, Huang ZL, Li G, Zhong Q, Zhang XJ, Li YY, Chen CP, Xia LJ, Wei R, Wan L, Gao A, Ren H, Liao XP, Liu YH, Chen L, Sun J. Innovative Delivery System Combining CRISPR-Cas12f for Combatting Antimicrobial Resistance in Gram-Negative Bacteria. ACS Synth Biol 2024; 13:1831-1841. [PMID: 38863339 DOI: 10.1021/acssynbio.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Antimicrobial resistance poses a significant global challenge, demanding innovative approaches, such as the CRISPR-Cas-mediated resistance plasmid or gene-curing system, to effectively combat this urgent crisis. To enable successful curing of antimicrobial genes or plasmids through CRISPR-Cas technology, the development of an efficient broad-host-range delivery system is paramount. In this study, we have successfully designed and constructed a novel functional gene delivery plasmid, pQ-mini, utilizing the backbone of a broad-host-range Inc.Q plasmid. Moreover, we have integrated the CRISPR-Cas12f system into the pQ-mini plasmid to enable gene-curing in broad-host of bacteria. Our findings demonstrate that pQ-mini facilitates the highly efficient transfer of genetic elements to diverse bacteria, particularly in various species in the order of Enterobacterales, exhibiting a broader host range and superior conjugation efficiency compared to the commonly used pMB1-like plasmid. Notably, pQ-mini effectively delivers the CRISPR-Cas12f system to antimicrobial-resistant strains, resulting in remarkable curing efficiencies for plasmid-borne mcr-1 or blaKPC genes that are comparable to those achieved by the previously reported pCasCure system. In conclusion, our study successfully establishes and optimizes pQ-mini as a broad-host-range functional gene delivery vector. Furthermore, in combination with the CRISPR-Cas system, pQ-mini demonstrates its potential for broad-host delivery, highlighting its promising role as a novel antimicrobial tool against the growing threat of antimicrobial resistance.
Collapse
Affiliation(s)
- Teng-Fei Long
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Shi-Ying Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Zi-Lei Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Gong Li
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Qin Zhong
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xiao-Jing Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Yuan-Yuan Li
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Cai-Ping Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Li-Juan Xia
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Ran Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Lei Wan
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Ang Gao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Hao Ren
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xiao-Ping Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Ya-Hong Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Liang Chen
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York 14214, United States
| | - Jian Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| |
Collapse
|
5
|
Flores-Vargas G, Bergsveinson J, Korber DR. Environmentally Relevant Antibiotic Concentrations Exert Stronger Selection Pressure on River Biofilm Resistomes than AMR-Reservoir Effluents. Antibiotics (Basel) 2024; 13:539. [PMID: 38927205 PMCID: PMC11200958 DOI: 10.3390/antibiotics13060539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Freshwater environments are primary receiving systems of wastewater and effluents, which carry low concentrations of antibiotics and antimicrobial-resistant (AMR) bacteria and genes. Aquatic microbial communities are thus exposed to environmentally relevant concentrations of antibiotics (ERCA) that presumably influence the acquisition and spread of environmental AMR. Here, we analyzed ERCA exposure with and without the additional presence of municipal wastewater treatment plant effluent (W) and swine manure run-off (M) on aquatic biofilm resistomes. Microscopic analyses revealed decreased taxonomic diversity and biofilm structural integrity, while metagenomic analysis revealed an increased abundance of resistance, virulence, and mobile element-related genes at the highest ERCA exposure levels, with less notable impacts observed when solely exposed to W or M effluents. Microbial function predictions indicated increased gene abundance associated with energy and cell membrane metabolism and heavy metal resistance under ERCA conditions. In silico predictions of increased resistance mechanisms did not correlate with observed phenotypic resistance patterns when whole communities were exposed to antimicrobial susceptibility testing. This reveals important insight into the complexity of whole-community coordination of physical and genetic responses to selective pressures. Lastly, the environmental AMR risk assessment of metagenomic data revealed a higher risk score for biofilms grown at sub-MIC antibiotic conditions.
Collapse
Affiliation(s)
- Gabriela Flores-Vargas
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada;
| | - Jordyn Bergsveinson
- Environment and Climate Change Canada, 11 Innovation Blvd., Saskatoon, SK S7N 3H5, Canada;
| | - Darren R. Korber
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada;
| |
Collapse
|
6
|
Abad-Fau A, Sevilla E, Oro A, Martín-Burriel I, Moreno B, Morales M, Bolea R. Multidrug resistance in pathogenic Escherichia coli isolates from urinary tract infections in dogs, Spain. Front Vet Sci 2024; 11:1325072. [PMID: 38585298 PMCID: PMC10996866 DOI: 10.3389/fvets.2024.1325072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/12/2024] [Indexed: 04/09/2024] Open
Abstract
Escherichia coli (E. coli) is a pathogen frequently isolated in cases of urinary tract infections (UTIs) in both humans and dogs and evidence exists that dogs are reservoirs for human infections. In addition, E. coli is associated to increasing antimicrobial resistance rates. This study focuses on the analysis of antimicrobial resistance and the presence of selected virulence genes in E. coli isolates from a Spanish dog population suffering from UTI. This collection of isolates showed an extremely high level of phenotypic resistance to 1st-3rd generation cephalosporins, followed by penicillins, fluoroquinolones and amphenicols. Apart from that, 13.46% of them were considered extended-spectrum beta-lactamase producers. An alarmingly high percentage (71.15%) of multidrug resistant isolates were also detected. There was a good correlation between the antimicrobial resistance genes found and the phenotypic resistance expressed. Most of the isolates were classified as extraintestinal pathogenic E. coli, and two others harbored virulence factors related to diarrheagenic pathotypes. A significant relationship between low antibiotic resistance and high virulence factor carriage was found, but the mechanisms behind it are still poorly understood. The detection of high antimicrobial resistance rates to first-choice treatments highlights the need of constant antimicrobial resistance surveillance, as well as continuous revision of therapeutic guidelines for canine UTI to adapt them to changes in antimicrobial resistance patterns.
Collapse
Affiliation(s)
- Ana Abad-Fau
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
| | - Eloisa Sevilla
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Ainara Oro
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
| | - Inmaculada Martín-Burriel
- Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Instituto Agroalimentario de Aragon, Universidad de Zaragoza, Zaragoza, Spain
| | - Bernardino Moreno
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Mariano Morales
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
- Albéitar Laboratories, Zaragoza, Spain
| | - Rosa Bolea
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
7
|
Long J, Zhang J, Xi Y, Zhao J, Jin Y, Yang H, Chen S, Duan G. Genomic Insights into CRISPR-Harboring Plasmids in the Klebsiella Genus: Distribution, Backbone Structures, Antibiotic Resistance, and Virulence Determinant Profiles. Antimicrob Agents Chemother 2023; 67:e0118922. [PMID: 36790185 PMCID: PMC10019312 DOI: 10.1128/aac.01189-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/20/2023] [Indexed: 02/16/2023] Open
Abstract
CRISPR systems are often encoded by many prokaryotes as adaptive defense against mobile genetic elements (MGEs), but several MGEs also recruit CRISPR components to perform additional biological functions. Type IV-A systems are identified in Klebsiella plasmids, yet the distribution, characterization, and role of these plasmids carrying CRISPR systems in the whole Klebsiella genus remain unclear. Here, we performed large-scale comparative analysis of these plasmids using publicly available plasmid genomes. CRISPR-harboring plasmids were mainly distributed in Klebsiella pneumoniae (9.09%), covering 19.23% of sequence types, but sparse in Klebsiella species outside Klebsiella pneumoniae (3.92%). Plasmid genome comparison reiterated that these plasmids often carried the cointegrates of IncFIB and IncHI1B replicons, occasionally linked to other replicons, such as IncFIA, IncFII, IncR, IncQ, and IncU. Comparative genome analysis showed that CRISPR-carrying Klebsiella plasmids shared a conserved pNDM-MAR-like conjugation module as their backbones and served as an important vector for the accretion of antibiotic resistance genes (ARGs) and even virulence genes (VGs). Moreover, compared with CRISPR-negative IncFIB/IncHIB plasmids, CRISPR-positive IncFIB/IncHIB plasmids displayed high divergences in terms of ARGs, VGs, GC content, plasmid length, and backbone structures, suggesting their divergent evolutionary paths. The network analysis revealed that CRISPR-positive plasmids yielded fierce competitions with other plasmid types, especially conjugative plasmids, thereby affecting the dynamics of plasmid transmission. Overall, our study provides valuable insights into the role of CRISPR-positive plasmids in the spread of ARGs and VGs in Klebsiella genus.
Collapse
Affiliation(s)
- Jinzhao Long
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Jiangfeng Zhang
- Department of Clinical Microbiology, People's Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Yanyan Xi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Jiaxue Zhao
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Yuefei Jin
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Haiyan Yang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Shuaiyin Chen
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Guangcai Duan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| |
Collapse
|
8
|
The Mobilizable Plasmid P3 of Salmonella enterica Serovar Typhimurium SL1344 Depends on the P2 Plasmid for Conjugative Transfer into a Broad Range of Bacteria In Vitro and In Vivo. J Bacteriol 2022; 204:e0034722. [PMID: 36383016 PMCID: PMC9765291 DOI: 10.1128/jb.00347-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The global rise of drug-resistant bacteria is of great concern. Conjugative transfer of antibiotic resistance plasmids contributes to the emerging resistance crisis. Despite substantial progress in understanding the molecular basis of conjugation in vitro, the in vivo dynamics of intra- and interspecies conjugative plasmid transfer are much less understood. In this study, we focused on the streptomycin resistance-encoding mobilizable plasmid pRSF1010SL1344 (P3) of Salmonella enterica serovar Typhimurium strain SL1344. We show that P3 is mobilized by interacting with the conjugation machinery of the conjugative plasmid pCol1B9SL1344 (P2) of SL1344. Thereby, P3 can be transferred into a broad range of relevant environmental and clinical bacterial isolates in vitro and in vivo. Our data suggest that S. Typhimurium persisters in host tissues can serve as P3 reservoirs and foster transfer of both P2 and P3 once they reseed the gut lumen. This adds to our understanding of resistance plasmid transfer in ecologically relevant niches, including the mammalian gut. IMPORTANCE S. Typhimurium is a globally abundant bacterial species that rapidly occupies new niches and survives unstable environmental conditions. As an enteric pathogen, S. Typhimurium interacts with a broad range of bacterial species residing in the mammalian gut. High abundance of bacteria in the gut lumen facilitates conjugation and spread of plasmid-carried antibiotic resistance genes. By studying the transfer dynamics of the P3 plasmid in vitro and in vivo, we illustrate the impact of S. Typhimurium-mediated antibiotic resistance spread via conjugation to relevant environmental and clinical bacterial isolates. Plasmids are among the most critical vehicles driving antibiotic resistance spread. Further understanding of the dynamics and drivers of antibiotic resistance transfer is needed to develop effective solutions for slowing down the emerging threat of multidrug-resistant bacterial pathogens.
Collapse
|
9
|
Abstract
In the late 1950s, a number of laboratories took up the study of plasmids once the discovery was made that extrachromosomal antibiotic resistance (R) factors are the responsible agents for the transmissibility of multiple antibiotic resistance among the enterobacteria. The use of incompatibility for the classification of plasmids is now widespread. It seems clear now on the basis of the limited studies to date that the number of incompatibility groups of plasmids will likely be extremely large when one includes plasmids obtained from bacteria that are normal inhabitants of poorly studied natural environments. The presence of both linear chromosomes and linear plasmids is now established for several Streptomyces species. One of the more fascinating developments in plasmid biology was the discovery of linear plasmids in the 1980s. A remarkable feature of the Ti plasmids of Agrobacterium tumefaciens is the presence of two DNA transfer systems. A definitive demonstration that plasmids consisted of duplex DNA came from interspecies conjugal transfer of plasmids followed by separation of plasmid DNA from chromosomal DNA by equilibrium buoyant density centrifugation. The formation of channels for DNA movement and the actual steps involved in DNA transport offer many opportunities for the discovery of proteins with novel activities and for establishing fundamentally new concepts of macromolecular interactions between DNA and specific proteins, membranes, and the peptidoglycan matrix.
Collapse
Affiliation(s)
- Donald R. Helinski
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
10
|
Barra Caracciolo A, Visca A, Rauseo J, Spataro F, Garbini GL, Grenni P, Mariani L, Mazzurco Miritana V, Massini G, Patrolecco L. Bioaccumulation of antibiotics and resistance genes in lettuce following cattle manure and digestate fertilization and their effects on soil and phyllosphere microbial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120413. [PMID: 36243186 DOI: 10.1016/j.envpol.2022.120413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The degradation and bioaccumulation of selected antibiotics such as the sulfonamide sulfamethoxazole (SMX) and the fluoroquinolones enrofloxacin (ENR) and ciprofloxacin (CIP) were investigated in soil microcosm experiments where Lactuca sativa was grown with manure or digestate (1%) and spiked with a mixture of the three antibiotics (7.5 mg/kg each). The soil, rhizosphere and leaf phyllosphere were sampled (at 0 and 46 days) from each microcosm to analyze the antibiotic concentrations, main resistance genes (sul1, sul2, qnrS, aac-(6')-Ib-crand qepA), the intI1and tnpA mobile genetic elements and the microbial community structure.Overall results showed that SMX and CIP decreased (70-85% and 55-79%, respectively), and ENR was quite persistent during the 46-day experiment. In plant presence, CIP and ENR were partially up-taken from soil to plant. In fact the bioaccumulation factors were > 1, with higher values in manure than digestate amended soils. The most abundant gene in soil was sul2 in digestate- and aac-(6')-Ib-cr in the manure-amended microcosms. In soil, neither sulfamethoxazole-resistance (sul1 and sul2), nor fluoroquinolone-resistance (aac-(6')-Ib-cr, qepA and qnrS) gene abundances were correlated with any antibiotic concentration. On the contrary, in lettuce leaves, the aac-(6')-Ib-cr gene was the most abundant, in accordance with the fluoroquinolone bioaccumulation. Finally, digestate stimulated a higher soil microbial biodiversity, introducing and promoting more bacterial genera associated with antibiotic degradation and involved in soil fertility and decreased fluoroquinolone bioaccumulation.
Collapse
Affiliation(s)
| | - Andrea Visca
- Water Research Institute - National Research Council (IRSA-CNR), Rome, Italy.
| | - Jasmin Rauseo
- Institute of Polar Sciences, National Research Council (ISP-CNR), Rome, Italy
| | - Francesca Spataro
- Institute of Polar Sciences, National Research Council (ISP-CNR), Rome, Italy
| | - Gian Luigi Garbini
- Water Research Institute - National Research Council (IRSA-CNR), Rome, Italy
| | - Paola Grenni
- Water Research Institute - National Research Council (IRSA-CNR), Rome, Italy
| | - Livia Mariani
- Water Research Institute - National Research Council (IRSA-CNR), Rome, Italy
| | - Valentina Mazzurco Miritana
- Water Research Institute - National Research Council (IRSA-CNR), Rome, Italy; Department of Energy Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Giulia Massini
- Water Research Institute - National Research Council (IRSA-CNR), Rome, Italy; Department of Energy Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Luisa Patrolecco
- Institute of Polar Sciences, National Research Council (ISP-CNR), Rome, Italy
| |
Collapse
|
11
|
Al Mamun AAM, Kissoon K, Kishida K, Shropshire WC, Hanson B, Christie PJ. IncFV plasmid pED208: Sequence analysis and evidence for translocation of maintenance/leading region proteins through diverse type IV secretion systems. Plasmid 2022; 123-124:102652. [PMID: 36228885 PMCID: PMC10018792 DOI: 10.1016/j.plasmid.2022.102652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 12/04/2022]
Abstract
Two phylogenetically distantly-related IncF plasmids, F and pED208, serve as important models for mechanistic and structural studies of F-like type IV secretion systems (T4SSFs) and F pili. Here, we present the pED208 sequence and compare it to F and pUMNF18, the closest match to pED208 in the NCBI database. As expected, gene content of the three cargo regions varies extensively, although the maintenance/leading regions (MLRs) and transfer (Tra) regions also carry novel genes or motifs with predicted modulatory effects on plasmid stability, dissemination and host range. By use of a Cre recombinase assay for translocation (CRAfT), we recently reported that pED208-carrying donors translocate several products of the MLR (ParA, ParB1, ParB2, SSB, PsiB, PsiA) intercellularly through the T4SSF. Here, we extend these findings by reporting that pED208-carrying donors translocate 10 additional MLR proteins during conjugation. In contrast, two F plasmid-encoded toxin components of toxin-antitoxin (TA) modules, CcdB and SrnB, were not translocated at detectable levels through the T4SSF. Remarkably, most or all of the pED208-encoded MLR proteins and CcdB and SrnB were translocated through heterologous T4SSs encoded by IncN and IncP plasmids pKM101 and RP4, respectively. Together, our sequence analyses underscore the genomic diversity of the F plasmid superfamily, and our experimental data demonstrate the promiscuous nature of conjugation machines for protein translocation. Our findings raise intriguing questions about the nature of T4SS translocation signals and of the biological and evolutionary consequences of conjugative protein transfer.
Collapse
Affiliation(s)
- Abu Amar M Al Mamun
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, TX 77030, United States of America.
| | - Kimberly Kissoon
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, TX 77030, United States of America
| | - Kouhei Kishida
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, TX 77030, United States of America
| | - William C Shropshire
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center, McGovern School of Medicine, Houston, TX, USA; Center for Infectious Diseases, University of Texas Health Science Center, School of Public Health, Houston, TX, USA
| | - Blake Hanson
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center, McGovern School of Medicine, Houston, TX, USA; Center for Infectious Diseases, University of Texas Health Science Center, School of Public Health, Houston, TX, USA
| | - Peter J Christie
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, TX 77030, United States of America.
| |
Collapse
|
12
|
Molecular Characterization of pBOq-IncQ and pBOq-95LK Plasmids of Escherichia coli BOq 01, a New Isolated Strain from Poultry Farming, Involved in Antibiotic Resistance. Microorganisms 2022; 10:microorganisms10081509. [PMID: 35893567 PMCID: PMC9331969 DOI: 10.3390/microorganisms10081509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
The increase in antimicrobial resistance has raised questions about how to use these drugs safely, especially in veterinary medicine, animal nutrition, and agriculture. Escherichia coli is an important human and animal pathogen that frequently contains plasmids carrying antibiotic resistance genes. Extra chromosomal elements are required for various functions or conditions in microorganisms. Several phage-like plasmids have been identified, which are important in antibiotic resistance. In this work, the molecular characterization of the pBOq-IncQ (4.5 kb) and pBOq-95LK (95 kb) plasmids found in the E. coli strain BOq 01, a multidrug resistant bacteria isolated from a poultry farm, are considered. Plasmid pBOq-IncQ belongs to the incQ incompatibility plasmid family and is involved in sulfonamide resistance. Plasmid pBOq-95LK is a lytic phage-like plasmid that is involved in the lysis of the E. coli BOq 01 strain and carries a bleomycin resistance gene and a strain cured of this plasmid shows bleomycin sensitivity. Induction of the lytic cycle indicates that this phage-like plasmid is an active phage. This type of plasmid has been reported to acquire genes such as mcr-1, which codes for colistin resistance and bacterial persistence and is a significant public health threat. A genome comparison, a pangenomic and phylogenomic analysis with other phage-like plasmids reported in the literature were performed to understand better the evolution of this kind of plasmid in bacteria and its potential importance in antibiotic resistance.
Collapse
|
13
|
Sengeruan LP, van Zwetselaar M, Kumburu H, Aarestrup FM, Kreppel K, Sauli E, Sonda T. Plasmid characterization in bacterial isolates of public health relevance in a tertiary healthcare facility in Kilimanjaro, Tanzania. J Glob Antimicrob Resist 2022; 30:384-389. [DOI: 10.1016/j.jgar.2022.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022] Open
|
14
|
Diversity of Antibiotic Resistance genes and Transfer Elements-Quantitative Monitoring (DARTE-QM): a method for detection of antimicrobial resistance in environmental samples. Commun Biol 2022; 5:216. [PMID: 35301418 PMCID: PMC8931014 DOI: 10.1038/s42003-022-03155-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 02/02/2022] [Indexed: 12/01/2022] Open
Abstract
Effective monitoring of antibiotic resistance genes and their dissemination in environmental ecosystems has been hindered by the cost and efficiency of methods available for the task. We developed the Diversity of Antibiotic Resistance genes and Transfer Elements-Quantitative Monitoring (DARTE-QM), a method implementing TruSeq high-throughput sequencing to simultaneously sequence thousands of antibiotic resistant gene targets representing a full-spectrum of antibiotic resistance classes common to environmental systems. In this study, we demonstrated DARTE-QM by screening 662 antibiotic resistance genes within complex environmental samples originated from manure, soil, and livestock feces, in addition to a mock-community reference to assess sensitivity and specificity. DARTE-QM offers a new approach to studying antibiotic resistance in environmental microbiomes, showing advantages in efficiency and the ability to scale for many samples. This method provides a means of data acquisition that will alleviate some of the obstacles that many researchers in this area currently face. Smith et al. present DARTE-QM, a highthroughput sequencing method for screening environmental DNA samples for antibiotic resistance genes on a broad scale. This method is demonstrated as effective on soil, manure and livestock fecal samples, as well as a synthetic mock-community reference.
Collapse
|
15
|
Frequency and diversity of small plasmids in mesophilic Aeromonas isolates from fish, water and sediment. Plasmid 2021; 118:102607. [PMID: 34800545 DOI: 10.1016/j.plasmid.2021.102607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 11/21/2022]
Abstract
Plasmids are autonomous genetic elements ubiquitously present in bacteria. In addition to containing genetic determinants responsible for their replication and stability, some plasmids may carry genes that help bacteria adapt to different environments, while others without a known function are classified as cryptic. In this work we identified and characterized plasmids from a collection of mesophilic Aeromonas spp. (N = 90) isolated from water, sediments and fish. A total of 15 small plasmids ranging from 2287 to 10,558 bp, with an incidence of 16.7% (15/90) was found. Plasmids were detected in A. hydrophila (6), A. veronii (4), A. taiwanensis (2), A. jandaei (1), A. media (1) and Aeromonas sp. (1). There were no large or megaplasmids in the strains studied in this work. Analysis of coding sequences identified proteins associated to replication, mobilization, antibiotic resistance, virulence and stability. A considerable number of hypothetical proteins with unknown functions were also found. Some strains shared identical plasmid profiles, however, only two of them were clones. Small plasmids could be acting as a gene repositories as suggested by the presence of a gene encoding for a putative zonula occludens toxin (Zot) that causes diarrhea and the qnrB gene involved in quinolone resistance harbored in plasmids pAerXII and pAerXIII respectively.
Collapse
|
16
|
Jung H, Inaba Y, Banta S. Genetic engineering of the acidophilic chemolithoautotroph Acidithiobacillus ferrooxidans. Trends Biotechnol 2021; 40:677-692. [PMID: 34794837 DOI: 10.1016/j.tibtech.2021.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/21/2022]
Abstract
There are several natural and anthropomorphic environments where iron- and/or sulfur-oxidizing bacteria thrive in extremely acidic conditions. These acidophilic chemolithautotrophs play important roles in biogeochemical iron and sulfur cycles, are critical catalysts for industrial metal bioleaching operations, and have underexplored potential in future biotechnological applications. However, their unique growth conditions complicate the development of genetic techniques. Over the past few decades genetic tools have been successfully developed for Acidithiobacillus ferrooxidans, which serves as a model organism that exhibits both iron- and sulfur-oxidizing capabilities. Conjugal transfer of plasmids has enabled gene overexpression, gene knockouts, and some preliminary metabolic engineering. We highlight the development of genetic systems and recent genetic engineering of A. ferrooxidans, and discuss future perspectives.
Collapse
Affiliation(s)
- Heejung Jung
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| | - Yuta Inaba
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA.
| |
Collapse
|
17
|
Liu CW, Wang P, Cao GN, Zou QH. Complete genome sequence and virulence characterization of a neonatal meningitis Escherichia coli isolate. Microb Pathog 2021; 160:105199. [PMID: 34560248 DOI: 10.1016/j.micpath.2021.105199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Neonatal bacterial meningitis is a life-threatening disease in newborns, and neonatal meningitis Escherichia coli (NMEC) is the second most frequent bacteria causing this disease worldwide. In order to further understand the characteristics of this pathogen, an E. coli isolate W224 N from newborns with meningitis was sequenced for detailed genetic characterization and the virulence was tested by a series of phenotypic experiments. W224 N has a circular chromosome and three plasmids. It belongs to ST95 and the serotype is O18:H7. Comparative genomic analysis showed that W224 N was closely related to E. coli neonatal meningitis isolates RS218 and NMEC O18. There are 11 genomic islands in W224 N and most of the GIs are specific to W224 N. W224 N has most of the virulence factors other neonatal meningitis isolates have. The virulence genes located both on the genome and plasmid. At the same time, we found a virulence factor cdiA only present in W224 N but absent in the other five genomes analyzed. In vitro experiment showed that W224 N has strong serum resistance ability, low biofilm formation ability and high flagellar motility. It also has a very strong toxicity to mice and amoeba. The whole genome as well as in vitro and in vivo experiments showed that W224 N is a high virulent strain. The results can help us better learn about the pathogenicity of neonatal meningitis E. coli.
Collapse
Affiliation(s)
- Cun-Wei Liu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ping Wang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Guang-Na Cao
- Peking University Third Hospital, Beijing, 100191, China.
| | - Qing-Hua Zou
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
18
|
Analysis of 56,348 Genomes Identifies the Relationship between Antibiotic and Metal Resistance and the Spread of Multidrug-Resistant Non-Typhoidal Salmonella. Microorganisms 2021; 9:microorganisms9071468. [PMID: 34361911 PMCID: PMC8306355 DOI: 10.3390/microorganisms9071468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/14/2023] Open
Abstract
Salmonella enterica is common foodborne pathogen that generates both enteric and systemic infections in hosts. Antibiotic resistance is common is certain serovars of the pathogen and of great concern to public health. Recent reports have documented the co-occurrence of metal resistance with antibiotic resistance in one serovar of S. enterica. Therefore, we sought to identify possible co-occurrence in a large genomic dataset. Genome assemblies of 56,348 strains of S. enterica comprising 20 major serovars were downloaded from NCBI. The downloaded assemblies were quality controlled and in silico serotyped to ensure consistency and avoid improper annotation from public databases. Metal and antibiotic resistance genes were identified in the genomes as well as plasmid replicons. Co-occurrent genes were identified by constructing a co-occurrence matrix and grouping said matrix using k-means clustering. Three groups of co-occurrent genes were identified using k-means clustering. Group 1 was comprised of the pco and sil operons that confer resistance to copper and silver, respectively. Group 1 was distributed across four serovars. Group 2 contained the majority of the genes and little to no co-occurrence was observed. Metal and antibiotic co-occurrence was identified in group 3 that contained genes conferring resistance to: arsenic, mercury, beta-lactams, sulfonamides, and tetracyclines. Group 3 genes were also associated with an IncQ1 class plasmid replicon. Metal and antibiotic co-occurrence from group 3 genes is mostly isolated to one clade of S. enterica I 4,[5],12:i:-.
Collapse
|
19
|
Wegrzyn K, Zabrocka E, Bury K, Tomiczek B, Wieczor M, Czub J, Uciechowska U, Moreno-Del Alamo M, Walkow U, Grochowina I, Dutkiewicz R, Bujnicki JM, Giraldo R, Konieczny I. Defining a novel domain that provides an essential contribution to site-specific interaction of Rep protein with DNA. Nucleic Acids Res 2021; 49:3394-3408. [PMID: 33660784 PMCID: PMC8034659 DOI: 10.1093/nar/gkab113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022] Open
Abstract
An essential feature of replication initiation proteins is their ability to bind to DNA. In this work, we describe a new domain that contributes to a replication initiator sequence-specific interaction with DNA. Applying biochemical assays and structure prediction methods coupled with DNA–protein crosslinking, mass spectrometry, and construction and analysis of mutant proteins, we identified that the replication initiator of the broad host range plasmid RK2, in addition to two winged helix domains, contains a third DNA-binding domain. The phylogenetic analysis revealed that the composition of this unique domain is typical within the described TrfA-like protein family. Both in vitro and in vivo experiments involving the constructed TrfA mutant proteins showed that the newly identified domain is essential for the formation of the protein complex with DNA, contributes to the avidity for interaction with DNA, and the replication activity of the initiator. The analysis of mutant proteins, each containing a single substitution, showed that each of the three domains composing TrfA is essential for the formation of the protein complex with DNA. Furthermore, the new domain, along with the winged helix domains, contributes to the sequence specificity of replication initiator interaction within the plasmid replication origin.
Collapse
Affiliation(s)
- Katarzyna Wegrzyn
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Elzbieta Zabrocka
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Katarzyna Bury
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Bartlomiej Tomiczek
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Milosz Wieczor
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Jacek Czub
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Urszula Uciechowska
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - María Moreno-Del Alamo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas - CSIC, E28040 Madrid, Spain
| | - Urszula Walkow
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Igor Grochowina
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Rafal Dutkiewicz
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109 Warsaw, Poland.,Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Rafael Giraldo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas - CSIC, E28040 Madrid, Spain
| | - Igor Konieczny
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| |
Collapse
|
20
|
The Coxiella burnetii QpH1 plasmid is a virulence factor for colonizing bone marrow-derived murine macrophages. J Bacteriol 2021; 203:JB.00588-20. [PMID: 33558394 PMCID: PMC8092169 DOI: 10.1128/jb.00588-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coxiella burnetii strains carry one of four large, conserved, autonomously replicating plasmids (QpH1, QpRS, QpDV, and QpDG) or a QpRS-like chromosomally integrated sequence of unknown function. Here we report the characterization of the QpH1 plasmid of C. burnetii Nine Mile phase II by making QpH1-deficient strains. A shuttle vector pQGK containing the CBUA0036-0039a region (predicted as being required for the QpH1 maintenance) was constructed. The pQGK vector can be stably transformed into the Nine Mile II and maintained at a similar low copy like QpH1. Importantly, transformation with pQGK cured the endogenous QpH1 due to plasmid incompatibility. Compared to a Nine Mile II transformant of a RSF1010-ori based vector, the pQGK transformant shows a similar growth curve in both axenic media and Buffalo green monkey kidney cells, a variable growth defect in macrophage-like THP-1 cells depending on the origin of inoculum, and dramatically reduced ability of colonizing wild-type bone marrow-derived murine macrophages. Furthermore, we found CBUA0037-0039 ORFs are essential for plasmid maintenance, and CBUA0037-0038 ORFs account for plasmid compatibility. And plasmid-deficient C. burnetii can be isolated by using CBUA0037 or -0038 deletion vectors. Furthermore, QpH1-deficient C. burnetii strains caused a lesser extent of splenomegaly in SCID mice but, intriguingly, they had significant growth in SCID mouse-sourced macrophages. Taken together, our data suggest that QpH1 encodes factor(s) essential for colonizing murine, not human, macrophages. This study suggests a critical role of QpH1 for C. burnetii persistence in rodents and expands the toolkit for the genetic studies in C. burnetii Author summary All C. burnetii isolates carry one of four large, conserved, autonomously replicating plasmids or a plasmid-like chromosomally integrated sequence. The plasmid is a candidate virulence factor of unknown function. Here we describe the construction of novel shuttle vectors that allow making plasmid-deficient C. burnetii mutants. With this plasmid-curing approach, we characterized the role of the QpH1 plasmid in in vitro and in vivo C. burnetii infection models. We found that the plasmid plays a critical role for C. burnetii growth in murine macrophages. Our work suggests an essential role of the QpH1 plasmid for the acquisition of colonizing capability in rodents by C. burnetii This study represents a major step toward unravelling the mystery of the C. burnetii cryptic plasmids.
Collapse
|
21
|
Fuga B, Cerdeira L, Moura Q, Fontana H, Fuentes-Castillo D, Carvalho AC, Lincopan N. Genomic data reveals the emergence of an IncQ1 small plasmid carrying bla KPC-2 in Escherichia coli of the pandemic sequence type 648. J Glob Antimicrob Resist 2021; 25:8-13. [PMID: 33662640 PMCID: PMC8213540 DOI: 10.1016/j.jgar.2021.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 02/16/2021] [Indexed: 11/17/2022] Open
Abstract
Epidemiological success of KPC has been linked to plasmids carrying blaKPC genes. An IncQ1 small plasmid carrying blaKPC-2 was found in pandemic Escherichia coli ST648. Plasmid analysis revealed blaKPC-2 on an NTEKPC-IId element with the aph(3')-VIa gene. Plasmid phylogeny confirmed >99% identity with IncQ/blaKPC-2 from Klebsiella pneumoniae. The emergence and rapid expansion of IncQ1/blaKPC-2 to novel hosts is discussed.
Objectives The global success of carbapenem-resistant pathogens has been attributed to large plasmids carrying blaKPC genes circulating among high-risk clones. In this study, we sequenced the genome of a carbapenem-resistant Escherichia coli strain (Ec351) isolated from a human infection. Phylogenomic analysis based on single nucleotide polymorphisms (SNPs) as well as the comparative resistome and plasmidome of globally disseminated blaKPC-2-positive E. coli strains with identical sequence type (ST) were further investigated. Methods Total DNA was sequenced using an Illumina NextSeq 500 platform and was assembled using Unicycler. Genomic data were evaluated through bioinformatics tools available from the Center of Genomic Epidemiology and by in silico analysis. Results Genomic analysis revealed the convergence of a wide resistome and virulome in E. coli ST648, showing a high-level phylogenetic relationship with a KPC-2-positive ST648 cluster identified in the USA and association with international clade 2. Additionally, the emergence of an IncQ1 small plasmid (pEc351) carrying blaKPC-2 (on an NTEKPC-IId element), aph(3')-VIa, and plasmid regulatory and replication genes in the pandemic clone ST648 is reported. Conclusion Identification of a blaKPC-2-positive IncQ1 plasmid in a high-risk E. coli clone represents rapid adaptation and expansion of these small plasmids encoding carbapenemases to novel bacterial hosts with global distribution, which deserves continued monitoring.
Collapse
Affiliation(s)
- Bruna Fuga
- Departmentof Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil; Department of Clinical Analysis, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil.
| | - Louise Cerdeira
- Departmentof Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil; Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Quézia Moura
- Departmentof Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil; Faculty of Health Sciences, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Herrison Fontana
- Department of Clinical Analysis, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil
| | - Danny Fuentes-Castillo
- One Health Brazilian Resistance Project (OneBR), Brazil; Department of Pathology, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Albalúcia C Carvalho
- Clinical Laboratory, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Nilton Lincopan
- Departmentof Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil; Department of Clinical Analysis, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil.
| |
Collapse
|
22
|
Jie J, Chu X, Li D, Luo Z. A set of shuttle plasmids for gene expression in Acinetobacter baumannii. PLoS One 2021; 16:e0246918. [PMID: 33566854 PMCID: PMC7875395 DOI: 10.1371/journal.pone.0246918] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 01/29/2021] [Indexed: 11/19/2022] Open
Abstract
Infections caused by the emerging opportunistic bacterial pathogen Acinetobacter baumannii are occurring at increasingly alarming rates, and such increase in incidence is further compounded by the development of wide spread multidrug-resistant strains. Yet, our understanding of its pathogenesis and biology remains limited which can be attributed in part to the scarce of tools for molecular genetic analysis of this bacterium. Plasmids based on pWH1277 originally isolated from Acinetobacter calcoaceticus are the only vehicles currently available for ectopic gene expression in Acinetobacter species, which restricts experiments that require simultaneous analysis of multiple genes. Here, we found that plasmids of the IncQ group are able to replicate in A. baumannii and can stably co-reside with derivatives of pWH1277. Furthermore, we have constructed a series of four plasmids that allow inducible expression of Flag-tagged proteins in A. baumannii by arabinose or isopropyl β-d-1-thiogalactopyranoside. Together with constructs previously developed, these plasmids will accommodate the need in genetic analysis of this increasingly important pathogen.
Collapse
Affiliation(s)
- Jing Jie
- Department of Respiratory Medicine and Center of Infection and Immunity, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xiao Chu
- Department of Respiratory Medicine and Center of Infection and Immunity, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Dan Li
- Department of Respiratory Medicine and Center of Infection and Immunity, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- * E-mail: (DL); (ZL)
| | - Zhaoqing Luo
- Department of Respiratory Medicine and Center of Infection and Immunity, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- * E-mail: (DL); (ZL)
| |
Collapse
|
23
|
Clinical and Molecular Description of a High-Copy IncQ1 KPC-2 Plasmid Harbored by the International ST15 Klebsiella pneumoniae Clone. mSphere 2020; 5:5/5/e00756-20. [PMID: 33028683 PMCID: PMC7568653 DOI: 10.1128/msphere.00756-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In many parts of the world, carbapenem resistance is a serious public health concern. In Brazil, carbapenem resistance in Enterobacterales is mostly driven by the dissemination of KPC-2-producing K. pneumoniae clones. Despite being endemic in this country, only a few reports providing both clinical and genomic data are available in Brazil, which limit the understanding of the real clinical impact caused by the dissemination of different clones carrying blaKPC-2 in Brazilian hospitals. Although several of these KPC-2-producer K. pneumoniae isolates belong to the clonal complex 258 and carry Tn4401 transposons located on large plasmids, a concomitant emergence and silent dissemination of small high-copy-number blaKPC-2 plasmids are of importance, as described in this study. Our data identify a small high-copy-number IncQ1 KPC plasmid, its clinical relevance, and the potential for conjugative transfer into several K. pneumoniae isolates, belonging to different international lineages, such as ST258, ST101, and ST15. This study provides the genomic characterization and clinical description of bloodstream infections (BSI) cases due to ST15 KPC-2 producer Klebsiella pneumoniae. Six KPC-K. pneumoniae isolates were recovered in 2015 in a tertiary Brazilian hospital and were analyzed by whole-genome sequencing (WGS) (Illumina MiSeq short reads). Of these, two isolates were further analyzed by Nanopore MinION sequencing, allowing complete chromosome and plasmid circularization (hybrid assembly), using Unicycler software. The clinical analysis showed that the 30-day overall mortality for these BSI cases was high (83%). The isolates exhibited meropenem resistance (MICs, 32 to 128 mg/liter), with 3/6 isolates resistant to polymyxin B. The conjugative properties of the blaKPC-2 plasmid and its copy number were assessed by standard conjugation experiments and sequence copy number analysis. We identified in all six isolates a small (8.3-kb), high-copy-number (20 copies/cell) non-self-conjugative IncQ plasmid harboring blaKPC-2 in a non-Tn4401 transposon. This plasmid backbone was previously reported to harbor blaKPC-2 only in Brazil, and it could be comobilized at a high frequency (10−4) into Escherichia coli J53 and into several high-risk K. pneumoniae clones (ST258, ST15, and ST101) by a common IncL/M helper plasmid, suggesting the potential of international spread. This study thus identified the international K. pneumoniae ST15 clone as a carrier of blaKPC-2 in a high-copy-number IncQ1 plasmid that is easily transmissible among other common Klebsiella strains. This finding is of concern since IncQ1 plasmids are efficient antimicrobial resistance determinant carriers across Gram-negative species. The spread of such carbapenemase-encoding IncQ1 plasmids should therefore be closely monitored. IMPORTANCE In many parts of the world, carbapenem resistance is a serious public health concern. In Brazil, carbapenem resistance in Enterobacterales is mostly driven by the dissemination of KPC-2-producing K. pneumoniae clones. Despite being endemic in this country, only a few reports providing both clinical and genomic data are available in Brazil, which limit the understanding of the real clinical impact caused by the dissemination of different clones carrying blaKPC-2 in Brazilian hospitals. Although several of these KPC-2-producer K. pneumoniae isolates belong to the clonal complex 258 and carry Tn4401 transposons located on large plasmids, a concomitant emergence and silent dissemination of small high-copy-number blaKPC-2 plasmids are of importance, as described in this study. Our data identify a small high-copy-number IncQ1 KPC plasmid, its clinical relevance, and the potential for conjugative transfer into several K. pneumoniae isolates, belonging to different international lineages, such as ST258, ST101, and ST15.
Collapse
|
24
|
Checcucci A, Trevisi P, Luise D, Modesto M, Blasioli S, Braschi I, Mattarelli P. Exploring the Animal Waste Resistome: The Spread of Antimicrobial Resistance Genes Through the Use of Livestock Manure. Front Microbiol 2020; 11:1416. [PMID: 32793126 PMCID: PMC7387501 DOI: 10.3389/fmicb.2020.01416] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Antibiotic resistance is a public health problem of growing concern. Animal manure application to soil is considered to be a main cause of the propagation and dissemination of antibiotic residues, antibiotic-resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the soil-water system. In recent decades, studies on the impact of antibiotic-contaminated manure on soil microbiomes have increased exponentially, in particular for taxonomical diversity and ARGs’ diffusion. Antibiotic resistance genes are often located on mobile genetic elements (MGEs). Horizontal transfer of MGEs toward a broad range of bacteria (pathogens and human commensals included) has been identified as the main cause for their persistence and dissemination. Chemical and bio-sanitizing treatments reduce the antibiotic load and ARB. Nevertheless, effects of these treatments on the persistence of resistance genes must be carefully considered. This review analyzed the most recent research on antibiotic and ARG environmental dissemination conveyed by livestock waste. Strategies to control ARG dissemination and antibiotic persistence were reviewed with the aim to identify methods for monitoring DNA transferability and environmental conditions promoting such diffusion.
Collapse
Affiliation(s)
- Alice Checcucci
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Diana Luise
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Monica Modesto
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Sonia Blasioli
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Ilaria Braschi
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Paola Mattarelli
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| |
Collapse
|
25
|
Martins WMBS, Seco BMS, Sampaio JLM, Sands K, Toleman MA, Gales AC. Detection of BKC-1 in Citrobacter freundii: A clue to mobilisation in an IncQ1 plasmid carrying bla BKC-1. Int J Antimicrob Agents 2020; 56:106042. [PMID: 32479892 DOI: 10.1016/j.ijantimicag.2020.106042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Willames M B S Martins
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, UK.
| | - Bruna M S Seco
- School of Pharmacy, Antimicrobial Resistance and Clinical Microbiology Laboratory, University of São Paulo, Av. Professor Lineu Prestes 580, São Paulo, Brazil
| | - Jorge L M Sampaio
- School of Pharmacy, Antimicrobial Resistance and Clinical Microbiology Laboratory, University of São Paulo, Av. Professor Lineu Prestes 580, São Paulo, Brazil; Microbiology Section, Fleury Medicine and Health, Av. General Valdomiro de Lima 508, São Paulo, Brazil
| | - Kirsty Sands
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Mark A Toleman
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Ana C Gales
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
26
|
Li YG, Christie PJ. The TraK accessory factor activates substrate transfer through the pKM101 type IV secretion system independently of its role in relaxosome assembly. Mol Microbiol 2020; 114:214-229. [PMID: 32239779 DOI: 10.1111/mmi.14507] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/24/2020] [Indexed: 12/12/2022]
Abstract
A large subfamily of the type IV secretion systems (T4SSs), termed the conjugation systems, transmit mobile genetic elements (MGEs) among many bacterial species. In the initiating steps of conjugative transfer, DNA transfer and replication (Dtr) proteins assemble at the origin-of-transfer (oriT) sequence as the relaxosome, which nicks the DNA strand destined for transfer and couples the nicked substrate with the VirD4-like substrate receptor. Here, we defined contributions of the Dtr protein TraK, a predicted member of the Ribbon-Helix-Helix (RHH) family of DNA-binding proteins, to transfer of DNA and protein substrates through the pKM101-encoded T4SS. Using a combination of cross-linking/affinity pull-downs and two-hybrid assays, we determined that TraK self-associates as a probable tetramer and also forms heteromeric contacts with pKM101-encoded TraI relaxase, VirD4-like TraJ receptor, and VirB11-like and VirB4-like ATPases, TraG and TraB, respectively. TraK also promotes stable TraJ-TraB complex formation and stimulates binding of TraI with TraB. Finally, TraK is required for or strongly stimulates the transfer of cognate (pKM101, TraI relaxase) and noncognate (RSF1010, MobA relaxase) substrates. We propose that TraK functions not only to nucleate pKM101 relaxosome assembly, but also to activate the TrapKM101 T4SS via interactions with the ATPase energy center positioned at the channel entrance.
Collapse
Affiliation(s)
- Yang Grace Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA
| | - Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA
| |
Collapse
|
27
|
Behle A, Saake P, Germann AT, Dienst D, Axmann IM. Comparative Dose-Response Analysis of Inducible Promoters in Cyanobacteria. ACS Synth Biol 2020; 9:843-855. [PMID: 32134640 DOI: 10.1021/acssynbio.9b00505] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Design and implementation of synthetic biological circuits highly depends on well-characterized, robust promoters with predictable input-output responses. While great progress has been made with heterotrophic model organisms such as Escherichia coli, the available variety of tunable promoter parts for phototrophic cyanobacteria is still limited. Commonly used synthetic and semisynthetic promoters show weak dynamic ranges or no regulation at all in cyanobacterial models. Well-controlled alternatives such as native metal-responsive promoters, however, pose the problems of inducer toxicity and lacking orthogonality. Here, we present the comparative assessment of dose-response functions of four different inducible promoter systems in the model cyanobacterium Synechocystis sp. PCC 6803. Using the novel bimodular reporter plasmid pSHDY, dose-response dynamics of the re-established vanillate-inducible promoter PvanCC was compared to the previously described rhamnose-inducible Prha, the anhydrotetracycline-inducible PL03, and the Co2+-inducible PcoaT. We estimate individual advantages and disadvantages regarding dynamic range and strength of each promoter, also in comparison with well-established constitutive systems. We observed a delicate balance between transcription factor toxicity and sufficient expression to obtain a dose-dependent response to the inducer. In summary, we expand the current understanding and employability of inducible promoters in cyanobacteria, facilitating the scalability and robustness of synthetic regulatory network designs and of complex metabolic pathway engineering strategies.
Collapse
Affiliation(s)
- Anna Behle
- Institute for Synthetic Microbiology, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Pia Saake
- Institute for Synthetic Microbiology, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Anna T. Germann
- Institute for Synthetic Microbiology, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Dennis Dienst
- Department of Chemistry − Ångström, Uppsala University, 75120 Uppsala, Sweden
| | - Ilka M. Axmann
- Institute for Synthetic Microbiology, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| |
Collapse
|
28
|
Willms IM, Yuan J, Penone C, Goldmann K, Vogt J, Wubet T, Schöning I, Schrumpf M, Buscot F, Nacke H. Distribution of Medically Relevant Antibiotic Resistance Genes and Mobile Genetic Elements in Soils of Temperate Forests and Grasslands Varying in Land Use. Genes (Basel) 2020; 11:E150. [PMID: 32019196 PMCID: PMC7073645 DOI: 10.3390/genes11020150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/28/2022] Open
Abstract
Antibiotic-resistant pathogens claim the lives of thousands of people each year and are currently considered as one of the most serious threats to public health. Apart from clinical environments, soil ecosystems also represent a major source of antibiotic resistance determinants, which can potentially disseminate across distinct microbial habitats and be acquired by human pathogens via horizontal gene transfer. Therefore, it is of global importance to retrieve comprehensive information on environmental factors, contributing to an accumulation of antibiotic resistance genes and mobile genetic elements in these ecosystems. Here, medically relevant antibiotic resistance genes, class 1 integrons and IncP-1 plasmids were quantified via real time quantitative PCR in soils derived from temperate grasslands and forests, varying in land use over a large spatial scale. The generated dataset allowed an analysis, decoupled from regional influences, and enabled the identification of land use practices and soil characteristics elevating the abundance of antibiotic resistance genes and mobile genetic elements. In grassland soils, the abundance of the macrolide resistance gene mefA as well as the sulfonamide resistance gene sul2 was positively correlated with organic fertilization and the abundance of aac(6')-lb, conferring resistance to different aminoglycosides, increased with mowing frequency. With respect to forest soils, the beta-lactam resistance gene blaIMP-12 was significantly correlated with fungal diversity which might be due to the fact that different fungal species can produce beta-lactams. Furthermore, except blaIMP-5 and blaIMP-12, the analyzed antibiotic resistance genes as well as IncP-1 plasmids and class-1 integrons were detected less frequently in forest soils than in soils derived from grassland that are commonly in closer proximity to human activities.
Collapse
Affiliation(s)
- Inka M. Willms
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, D-37077 Göttingen, Germany; (I.M.W.); (J.Y.)
| | - Jingyue Yuan
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, D-37077 Göttingen, Germany; (I.M.W.); (J.Y.)
| | - Caterina Penone
- Institute of Plant Sciences, University of Bern, CH-3013 Bern, Switzerland;
| | - Kezia Goldmann
- Department of Soil Ecology, UFZ—Helmholtz Centre for Environmental Research, D-06120 Halle-Saale, Germany; (K.G.); (F.B.)
| | - Juliane Vogt
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, Technical University of Munich, D-85354 Freising, Germany;
| | - Tesfaye Wubet
- Department of Community Ecology, UFZ—Helmholtz Centre for Environmental Research, D-06120 Halle-Saale, Germany;
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, D-04103 Leipzig, Germany
| | - Ingo Schöning
- Max Planck Institute for Biogeochemistry, D-07745 Jena, Germany; (I.S.); (M.S.)
| | - Marion Schrumpf
- Max Planck Institute for Biogeochemistry, D-07745 Jena, Germany; (I.S.); (M.S.)
| | - François Buscot
- Department of Soil Ecology, UFZ—Helmholtz Centre for Environmental Research, D-06120 Halle-Saale, Germany; (K.G.); (F.B.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, D-04103 Leipzig, Germany
| | - Heiko Nacke
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, D-37077 Göttingen, Germany; (I.M.W.); (J.Y.)
| |
Collapse
|
29
|
Tellier M, Chalmers R. Compensating for over-production inhibition of the Hsmar1 transposon in Escherichia coli using a series of constitutive promoters. Mob DNA 2020; 11:5. [PMID: 31938044 PMCID: PMC6954556 DOI: 10.1186/s13100-020-0200-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/01/2020] [Indexed: 01/03/2023] Open
Abstract
Background Transposable elements (TEs) are a diverse group of self-mobilizing DNA elements. Transposition has been exploited as a powerful tool for molecular biology and genomics. However, transposition is sometimes limited because of auto-regulatory mechanisms that presumably allow them to cohabit within their hosts without causing excessive genomic damage. The papillation assay provides a powerful visual screen for hyperactive transposases. Transposition is revealed by the activation of a promoter-less lacZ gene when the transposon integrates into a non-essential gene on the host chromosome. Transposition events are detected as small blue speckles, or papillae, on the white background of the main Escherichia coli colony. Results We analysed the parameters of the papillation assay including the strength of the transposase transcriptional and translational signals. To overcome certain limitations of inducible promoters, we constructed a set of vectors based on constitutive promoters of different strengths to widen the range of transposase expression. We characterized and validated our expression vectors with Hsmar1, a member of the mariner transposon family. The highest rate of transposition was observed with the weakest promoters. We then took advantage of our approach to investigate how the level of transposition responds to selected point mutations and the effect of joining the transposase monomers into a single-chain dimer. Conclusions We generated a set of vectors to provide a wide range of transposase expression which will be useful for screening libraries of transposase mutants. The use of weak promoters should allow screening for truly hyperactive transposases rather than those that are simply resistant to auto-regulatory mechanisms, such as overproduction inhibition (OPI). We also found that mutations in the Hsmar1 dimer interface provide resistance to OPI in bacteria, which could be valuable for improving bacterial transposon mutagenesis techniques.
Collapse
Affiliation(s)
- Michael Tellier
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH UK.,2Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE UK
| | - Ronald Chalmers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH UK
| |
Collapse
|
30
|
Evolution of satellite plasmids can prolong the maintenance of newly acquired accessory genes in bacteria. Nat Commun 2019; 10:5809. [PMID: 31863068 PMCID: PMC6925257 DOI: 10.1038/s41467-019-13709-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/21/2019] [Indexed: 01/07/2023] Open
Abstract
Transmissible plasmids spread genes encoding antibiotic resistance and other traits to new bacterial species. Here we report that laboratory populations of Escherichia coli with a newly acquired IncQ plasmid often evolve 'satellite plasmids' with deletions of accessory genes and genes required for plasmid replication. Satellite plasmids are molecular parasites: their presence reduces the copy number of the full-length plasmid on which they rely for their continued replication. Cells with satellite plasmids gain an immediate fitness advantage from reducing burdensome expression of accessory genes. Yet, they maintain copies of these genes and the complete plasmid, which potentially enables them to benefit from and transmit the traits they encode in the future. Evolution of satellite plasmids is transient. Cells that entirely lose accessory gene function or plasmid mobility dominate in the long run. Satellite plasmids also evolve in Snodgrassella alvi colonizing the honey bee gut, suggesting that this mechanism may broadly contribute to the importance of IncQ plasmids as agents of bacterial gene transfer in nature.
Collapse
|
31
|
Rozwandowicz M, Brouwer MSM, Fischer J, Wagenaar JA, Gonzalez-Zorn B, Guerra B, Mevius DJ, Hordijk J. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J Antimicrob Chemother 2019; 73:1121-1137. [PMID: 29370371 DOI: 10.1093/jac/dkx488] [Citation(s) in RCA: 561] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacterial antimicrobial resistance (AMR) is constantly evolving and horizontal gene transfer through plasmids plays a major role. The identification of plasmid characteristics and their association with different bacterial hosts provides crucial knowledge that is essential to understand the contribution of plasmids to the transmission of AMR determinants. Molecular identification of plasmid and strain genotypes elicits a distinction between spread of AMR genes by plasmids and dissemination of these genes by spread of bacterial clones. For this reason several methods are used to type the plasmids, e.g. PCR-based replicon typing (PBRT) or relaxase typing. Currently, there are 28 known plasmid types in Enterobacteriaceae distinguished by PBRT. Frequently reported plasmids [IncF, IncI, IncA/C, IncL (previously designated IncL/M), IncN and IncH] are the ones that bear the greatest variety of resistance genes. The purpose of this review is to provide an overview of all known AMR-related plasmid families in Enterobacteriaceae, the resistance genes they carry and their geographical distribution.
Collapse
Affiliation(s)
- M Rozwandowicz
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - M S M Brouwer
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - J Fischer
- Department of Biological Safety, Federal Institute for Risk Assessment, BfR, Berlin, Germany
| | - J A Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - B Gonzalez-Zorn
- Department of Animal Health and VISAVET, Complutense University of Madrid, Madrid, Spain
| | - B Guerra
- Department of Biological Safety, Federal Institute for Risk Assessment, BfR, Berlin, Germany
| | - D J Mevius
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - J Hordijk
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
32
|
Crucello A, Furtado MM, Chaves MDR, Sant'Ana AS. Transcriptome sequencing reveals genes and adaptation pathways in Salmonella Typhimurium inoculated in four low water activity foods. Food Microbiol 2019; 82:426-435. [PMID: 31027802 DOI: 10.1016/j.fm.2019.03.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/09/2019] [Accepted: 03/14/2019] [Indexed: 11/25/2022]
Abstract
Salmonella enterica serotypes have been reported as the agent of various outbreaks occurred after the consumption of low water activity (aw) foods. When the pathogen encounters harsh conditions, several regulatory networks are activated through dynamic differential gene expression that lead to cell survival for prolonged periods. In this work, the transcriptome of S. enterica serovar Typhimurium using RNA-Seq, after cells' inoculation in four distinct types of low aw foods (milk chocolate, powdered milk, black pepper, and dried pet food), following storage at 25 °C per 24 and 72 h was studied. The findings of this study suggest that gene regulation is influenced by the food composition mainly in the first 24 h post-inoculum, proceeded by the induction of similar genes shared among all samples. It was possible to evaluate the differences on each type of food matrix regarding the bacteria adaptation, as well as the similarities provoked by low aw. The results reveal genes that may play key roles in response to desiccation in Salmonella, as well as the pathways in which they are involved.
Collapse
Affiliation(s)
- Aline Crucello
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Marianna M Furtado
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Monyca D R Chaves
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
33
|
Characterization of the First OXA-10 Natural Variant with Increased Carbapenemase Activity. Antimicrob Agents Chemother 2018; 63:AAC.01817-18. [PMID: 30397053 DOI: 10.1128/aac.01817-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 10/26/2018] [Indexed: 12/25/2022] Open
Abstract
While carbapenem resistance in Gram-negative bacteria is mainly due to the production of efficient carbapenemases, β-lactamases with a narrower spectrum may also contribute to resistance when combined with additional mechanisms. OXA-10-type class D β-lactamases, previously shown to be weak carbapenemases, could represent such a case. In this study, two novel OXA-10 variants were identified as the sole carbapenem-hydrolyzing enzymes in meropenem-resistant enterobacteria isolated from hospital wastewater and found by next-generation sequencing to express additional β-lactam resistance mechanisms. The new variants, OXA-655 and OXA-656, were carried by two related IncQ1 broad-host-range plasmids. Compared to the sequence of OXA-10, they both harbored a Thr26Met substitution, with OXA-655 also bearing a leucine instead of a valine in position 117 of the SAV catalytic motif. Susceptibility profiling of laboratory strains replicating the natural bla OXA plasmids and of recombinant clones expressing OXA-10 and the novel variants in an isogenic background indicated that OXA-655 is a more efficient carbapenemase. The carbapenemase activity of OXA-655 is due to the Val117Leu substitution, as shown by steady-state kinetic experiments, where the k cat of meropenem hydrolysis was increased 4-fold. In contrast, OXA-655 had no activity toward oxyimino-β-lactams, while its catalytic efficiency against oxacillin was significantly reduced. Moreover, the Val117Leu variant was more efficient against temocillin and cefoxitin. Molecular dynamics indicated that Val117Leu affects the position 117-Leu155 interaction, leading to structural shifts in the active site that may alter carbapenem alignment. The evolutionary potential of OXA-10 enzymes toward carbapenem hydrolysis combined with their spread by promiscuous plasmids indicates that they may pose a future clinical threat.
Collapse
|
34
|
Yano H, Shintani M, Tomita M, Suzuki H, Oshima T. Reconsidering plasmid maintenance factors for computational plasmid design. Comput Struct Biotechnol J 2018; 17:70-81. [PMID: 30619542 PMCID: PMC6312765 DOI: 10.1016/j.csbj.2018.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/08/2018] [Accepted: 12/09/2018] [Indexed: 12/18/2022] Open
Abstract
Plasmids are genetic parasites of microorganisms. The genomes of naturally occurring plasmids are expected to be polished via natural selection to achieve long-term persistence in the microbial cell population. However, plasmid genomes are extremely diverse, and the rules governing plasmid genomes are not fully understood. Therefore, computationally designing plasmid genomes optimized for model and nonmodel organisms remains challenging. Here, we summarize current knowledge of the plasmid genome organization and the factors that can affect plasmid persistence, with the aim of constructing synthetic plasmids for use in gram-negative bacteria. Then, we introduce publicly available resources, plasmid data, and bioinformatics tools that are useful for computational plasmid design.
Collapse
Affiliation(s)
- Hirokazu Yano
- Graduate School of Life Sciences, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Masaki Shintani
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1, Hamamatsu 432-8561, Japan
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 3-5-1, Hamamatsu 432-8561, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, 14-1, Baba-cho, Tsuruoka, Yamagata 997-0035, Japan
- Faculty of Environment and Information Studies, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Haruo Suzuki
- Institute for Advanced Biosciences, Keio University, 14-1, Baba-cho, Tsuruoka, Yamagata 997-0035, Japan
- Faculty of Environment and Information Studies, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Taku Oshima
- Department of Biotechnology, Toyama Prefectural University, 5180, Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
35
|
Moran RA, Hall RM. pBuzz: A cryptic rolling-circle plasmid from a commensal Escherichia coli has two inversely oriented oriTs and is mobilised by a B/O plasmid. Plasmid 2018; 101:10-19. [PMID: 30468749 DOI: 10.1016/j.plasmid.2018.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/01/2018] [Accepted: 11/12/2018] [Indexed: 11/25/2022]
Abstract
Ampicillin, streptomycin and sulphamethoxazole resistant commensal E. coli 838-3B contains five plasmids that range in size from >90 kb to <2 kb. The resistance genes blaTEM (ampicillin), strA (streptomycin) and sul2 (sulphamethoxazole) transferred along with a B/O plasmid named p838B-R. However, three plasmids smaller than 7 kb were also found in transconjugants, suggesting that they could be mobilised by the B/O plasmid. The complete sequences of p838B-R and pBuzz, a small plasmid mobilised by p838B-R with 70% efficiency, were determined. p838B-R is 94,803 bp and contains an 8400 bp resistance island that includes the three antibiotic resistance genes. The p838B-R backbone contains a complete conjugative transfer region, including an oriT site upstream of nikAB that resembles the experimentally-defined oriT of R64. The 1982 bp pBuzz contains a rep gene and sites associated with replication that resemble those of pC194/pUB110 family rolling-circle plasmids. It also contains two, inversely oriented copies of an 84 bp sequence that differs from the oriT region in p838B-R at just 6 positions. These oriT-like sites likely explain the ability of pBuzz to co-transfer with the B/O plasmid using the NikB relaxase and NikA accessory protein encoded by p838B-R, i.e. pBuzz utilises relaxase-in trans mobilisation. Several rolling-circle plasmids related to pBuzz were found in the GenBank non-redundant nucleotide database. They contain diverse potential oriTs, including sequences similar to known oriTs found in conjugative plasmids of I-complex (I1, B/O, K, Z and I2), L or M types.
Collapse
Affiliation(s)
- Robert A Moran
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia.
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
| |
Collapse
|
36
|
Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev 2018; 31:e00088-17. [PMID: 30068738 PMCID: PMC6148190 DOI: 10.1128/cmr.00088-17] [Citation(s) in RCA: 1310] [Impact Index Per Article: 187.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Strains of bacteria resistant to antibiotics, particularly those that are multiresistant, are an increasing major health care problem around the world. It is now abundantly clear that both Gram-negative and Gram-positive bacteria are able to meet the evolutionary challenge of combating antimicrobial chemotherapy, often by acquiring preexisting resistance determinants from the bacterial gene pool. This is achieved through the concerted activities of mobile genetic elements able to move within or between DNA molecules, which include insertion sequences, transposons, and gene cassettes/integrons, and those that are able to transfer between bacterial cells, such as plasmids and integrative conjugative elements. Together these elements play a central role in facilitating horizontal genetic exchange and therefore promote the acquisition and spread of resistance genes. This review aims to outline the characteristics of the major types of mobile genetic elements involved in acquisition and spread of antibiotic resistance in both Gram-negative and Gram-positive bacteria, focusing on the so-called ESKAPEE group of organisms (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli), which have become the most problematic hospital pathogens.
Collapse
Affiliation(s)
- Sally R Partridge
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales, Australia
| | - Stephen M Kwong
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Neville Firth
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Slade O Jensen
- Microbiology and Infectious Diseases, School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- Antibiotic Resistance & Mobile Elements Group, Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
37
|
de Oliveira Santos IC, Albano RM, Asensi MD, D'Alincourt Carvalho-Assef AP. Draft genome sequence of KPC-2-producing Pseudomonas aeruginosa recovered from a bloodstream infection sample in Brazil. J Glob Antimicrob Resist 2018; 15:99-100. [PMID: 30172833 DOI: 10.1016/j.jgar.2018.08.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/11/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVES Klebsiella pneumoniae carbapenemase (KPC) is the most widespread carbapenemase in Enterobacteriaceae in Brazil. Although its presence is not common in Pseudomonas aeruginosa, it has been increasingly reported. Here we report a draft genome sequence of a KPC-producing P. aeruginosa strain recovered from a bloodstream infection sample in Brazil. METHODS The antimicrobial susceptibility of KPC-producing P. aeruginosa CCBH17348 was evaluated by the disk diffusion method, Etest and broth microdilution. Carbapenemase production was confirmed by colorimetric assay (Carba NP) and PCR. Genomic DNA was sequenced by Illumina MiSeq sequencing and was assembled using the A5-Miseq pipeline, and gene annotation was performed using RAST 2.0. The database ResFinder 2.1, CRISPRFinder and MLST website were used to identify resistance genes, clustered regularly interspaced short palindromic repeats (CRISPRs) and sequence types (STs), respectively. RESULTS Isolate CCBH17348 was considered multidrug-resistant, was susceptible to fluoroquinolones, gentamicin and polymyxin, and belonged to a newly described ST (ST2584), carrying an IncQ1 plasmid with blaKPC-2 and aph(3')-VI genes. Other genes associated with resistance and virulence found in the genome were blaOXA-50, blaPAO, fosA, catB, mutation in oprD and mexT (MexEF-OprN efflux regulator), and exotoxin-encoding genes (exoS, exoY and exoT). CONCLUSIONS This study highlights the potential risk of new STs of P. aeruginosa carrying blaKPC-2 and the potential spread of blaKPC-2 in an IncQ1 plasmid.
Collapse
Affiliation(s)
| | - Rodolpho Mattos Albano
- Departamento de Bioquímica, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marise Dutra Asensi
- Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
38
|
Deblais L, Lorentz B, Scaria J, Nagaraja KV, Nisar M, Lauer D, Voss S, Rajashekara G. Comparative Genomic Studies of Salmonella Heidelberg Isolated From Chicken- and Turkey-Associated Farm Environmental Samples. Front Microbiol 2018; 9:1841. [PMID: 30147682 PMCID: PMC6097345 DOI: 10.3389/fmicb.2018.01841] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/23/2018] [Indexed: 11/13/2022] Open
Abstract
Salmonella is one of the leading causes of human foodborne gastroenteritis in the United States. In addition, Salmonella contributes to morbidity and mortality in livestock. The control of Salmonella is an increasing problematic issue in livestock production due to lack of effective control methods and the constant adaptation of Salmonella to new management practices, which is often related to horizontal acquisition of virulence or antibiotic resistance genes. Salmonella enterica serotype Heidelberg is one of the most commonly isolated serotypes in all poultry production systems in North America. Emergence and persistence of multi-drug resistant Salmonella Heidelberg isolates further impact the poultry production and public health. We hypothesized that distinct poultry production environments affect Salmonella genomic content, and by consequence its survival and virulence abilities. This study compared the genomic composition of S. Heidelberg isolated from environmental samples (19 chicken and 12 turkey isolates) of different breeder farms (16 chicken and 8 turkey farms) in the Midwest, United States. Whole genome comparison of 31 genomes using RAST and SEED identified differences in specific sub-systems in isolates between the chicken- and turkey-associated farm environmental samples. Genes associated with the type IV secretion system (n = 12) and conjugative transfer (n = 3) were absent in turkey farm isolates compared to the chicken ones (p-value < 0.01); Further, turkey farm isolates were enriched in prophage proteins (n = 53; p-value < 0.01). Complementary studies using PHASTER showed that prophages were all Caudovirales phages and were more represented in turkey environmental isolates than the chicken isolates. This study corroborates that isolates from distinct farm environment show differences in S. Heidelberg genome content related to horizontal transfer between bacteria or through viral infections. Complementary microbiome studies of these samples would provide critical insights on sources of these variations. Overall, our findings enhance the understanding of Salmonella genome plasticity and may aid in the development of future effective management practices to control Salmonella.
Collapse
Affiliation(s)
- Loïc Deblais
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, OARDC, Wooster, OH, United States.,Department of Plant Pathology, The Ohio State University, OARDC, Wooster, OH, United States
| | - Benjamin Lorentz
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, OARDC, Wooster, OH, United States
| | - Joy Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States
| | - Kakambi V Nagaraja
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Muhammad Nisar
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Dale Lauer
- Minnesota Poultry Testing Laboratory, University of Minnesota Veterinary Diagnostic Laboratory, Minnesota Board of Animal Health, Willmar, MN, United States
| | - Shauna Voss
- Minnesota Poultry Testing Laboratory, University of Minnesota Veterinary Diagnostic Laboratory, Minnesota Board of Animal Health, Willmar, MN, United States
| | - Gireesh Rajashekara
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, OARDC, Wooster, OH, United States
| |
Collapse
|
39
|
Gama JA, Zilhão R, Dionisio F. Conjugation efficiency depends on intra and intercellular interactions between distinct plasmids: Plasmids promote the immigration of other plasmids but repress co-colonizing plasmids. Plasmid 2017; 93:6-16. [PMID: 28842132 DOI: 10.1016/j.plasmid.2017.08.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/13/2022]
Abstract
Conjugative plasmids encode the genes responsible for the synthesis of conjugative pili and plasmid transfer. Expression of the conjugative machinery (including conjugative pili) may be costly to bacteria, not only due to the energetic/metabolic cost associated with their expression but also because they serve as receptors for certain viruses. Consequently, the presence of two plasmids in the same cell may be disadvantageous to each plasmid, because they may impose a higher fitness cost on the host. Therefore, plasmids may encode mechanisms to cope with co-resident plasmids. Moreover, it is possible that the transfer rate of a plasmid is affected by the presence of a distinct plasmid in the recipient cell. In this work, we measured transfer rates of twelve natural plasmids belonging to seven incompatibility groups in three situations, namely when: (i) donor cells contain a plasmid and recipient cells are plasmid-free; (ii) donor cells contain two unrelated plasmids and recipient cells are plasmid-free; and (iii) half of the cells contain a given plasmid and the other half contain another, unrelated, plasmid. In the third situation, recipient cells of a plasmid are the donor cells of the other plasmid. We show that there are more negative interactions (reduction of a plasmid's conjugative efficiency) between plasmids if they reside in the same cell than if they reside in different cells. However, if plasmids interacted intercellularly, the transfer rate of one of the plasmids was often higher (when the unrelated conjugative plasmid was present in the recipient cell) than if the recipient cell was plasmid-free - a positive effect. Experimental data retrieved from the study of mutant plasmids not expressing conjugative pili on the cell surface suggest that positive effects result from a higher efficiency of mating pair formation. Overall, our results suggest that negative interactions are significantly more frequent when plasmids occupy the same cell. Such interactions may determine how antibiotic resistance disseminates in bacterial populations.
Collapse
Affiliation(s)
- João Alves Gama
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Rita Zilhão
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Francisco Dionisio
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Instituto Gulbenkian de Ciência, Oeiras, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
40
|
Wang R, Lin C, Lin J, Pang X, Liu X, Zhang C, Lin J, Chen L. Construction of novel pJRD215-derived plasmids using chloramphenicol acetyltransferase (cat) gene as a selection marker for Acidithiobacillus caldus. PLoS One 2017; 12:e0183307. [PMID: 28813510 PMCID: PMC5559103 DOI: 10.1371/journal.pone.0183307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 08/02/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Acidithiobacillus caldus, a Gram-negative, chemolithotrophic sulfur-oxidizing bacterium, is widely applied in bioleaching. The absence of an ideal selection marker has become a major obstacle to achieve high efficiency of the gene transfer system for A. caldus. Plasmid pJRD215, widely used in Acidithiobacillus spp., has severe drawbacks in molecular manipulations and potential biosafety issues due to its mobility. Therefore, finding a new selection marker and constructing new plasmids have become an urgent and fundamental work for A. caldus. RESULTS Effective inhibitory effect of chloramphenicol on the growth of A. caldus was elucidated for the first time. The P2-cat gene cassette, including a chloramphenicol acetyltransferase gene (cat) from plasmid pACBSR and a promoter (P2) upstream of the tetracycline resistance gene on pBR322, was designed, chloramphenicol acetyltransferase was expressed in A. caldus, and the enzyme activity was assessed. A new vector pSDU1 carrying the replication and mobilization regions derived from pJRD215, the P2-cat gene cassette and a multiple cloning site from pUC19 was successfully constructed. Compared with pJRD215, pSDU1 had a 27-fold increase in electrotransformation efficiency (30.43±0.88×104 CFU/μg DNA for pSDU1 and 1.09±0.11×104 CFU/μg DNA for pJRD215), better carrying capacity and could offer more convenience for the restriction enzyme digestion. In addition, the generated plasmid pSDU1Δmob, a novel non-mobilizable derivative of pSDU1 lacking some DNA sequences involved in the mobilization process, had increased copy number in A. caldus and lost its mobility for biosafety considerations. Both pSDU1 and pSDU1Δmob exhibited stable maintenance in A. caldus within 50 passages. However, further deletion of orfEF region involved in regulating repAC operon resulted in a negative effect on transformation efficiency, copy number and stability of plasmid pSDU1ΔmobΔorfEF in A. caldus. CONCLUSION Chloramphenicol was proved to be an ideal selection marker for A. caldus. Novel plasmids carrying cat gene were constructed. The utilization of these vectors will undoubtedly facilitate efficient genetic manipulations and accelerate the research progress in A. caldus.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Chunmao Lin
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Jianqiang Lin
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Xin Pang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Xiangmei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Chengjia Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Jianqun Lin
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Linxu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| |
Collapse
|
41
|
Orlek A, Phan H, Sheppard AE, Doumith M, Ellington M, Peto T, Crook D, Walker AS, Woodford N, Anjum MF, Stoesser N. Ordering the mob: Insights into replicon and MOB typing schemes from analysis of a curated dataset of publicly available plasmids. Plasmid 2017; 91:42-52. [PMID: 28286183 PMCID: PMC5466382 DOI: 10.1016/j.plasmid.2017.03.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/08/2017] [Indexed: 01/17/2023]
Abstract
Plasmid typing can provide insights into the epidemiology and transmission of plasmid-mediated antibiotic resistance. The principal plasmid typing schemes are replicon typing and MOB typing, which utilize variation in replication loci and relaxase proteins respectively. Previous studies investigating the proportion of plasmids assigned a type by these schemes (‘typeability’) have yielded conflicting results; moreover, thousands of plasmid sequences have been added to NCBI in recent years, without consistent annotation to indicate which sequences represent complete plasmids. Here, a curated dataset of complete Enterobacteriaceae plasmids from NCBI was compiled, and used to assess the typeability and concordance of in silico replicon and MOB typing schemes. Concordance was assessed at hierarchical replicon type resolutions, from replicon family-level to plasmid multilocus sequence type (pMLST)-level, where available. We found that 85% and 65% of the curated plasmids could be replicon and MOB typed, respectively. Overall, plasmid size and the number of resistance genes were significant independent predictors of replicon and MOB typing success. We found some degree of non-concordance between replicon families and MOB types, which was only partly resolved when partitioning plasmids into finer-resolution groups (replicon and pMLST types). In some cases, non-concordance was attributed to ambiguous boundaries between MOBP and MOBQ types; in other cases, backbone mosaicism was considered a more plausible explanation. β-lactamase resistance genes tended not to show fidelity to a particular plasmid type, though some previously reported associations were supported. Overall, replicon and MOB typing schemes are likely to continue playing an important role in plasmid analysis, but their performance is constrained by the diverse and dynamic nature of plasmid genomes. 92% of clinically-relevant plasmids could be replicon typed, compared with reports of 100% typeability in 2014. Replicon and MOB typing were partly concordant; partitioning plasmids into finer-resolution groups increased concordance. Overlap between MOBP and MOBQ relaxase families complicates assignment of MOBP and MOBQ types. Generally, resistance genes showed low fidelity towards particular plasmid backbones. PacBio sequencing has driven increased availability of complete plasmid sequences, but retrieved datasets require curation.
Collapse
Affiliation(s)
- Alex Orlek
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK; NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK.
| | - Hang Phan
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK; NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Anna E Sheppard
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK; NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Michel Doumith
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - Matthew Ellington
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK; Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - Tim Peto
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK; NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Derrick Crook
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK; NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - A Sarah Walker
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK; NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Neil Woodford
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK; Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - Muna F Anjum
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK; Department of Bacteriology, Animal and Plant Health Agency, Addlestone, UK
| | - Nicole Stoesser
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
42
|
Carbapenemase-Producing Enterobacteriaceae Recovered from the Environment of a Swine Farrow-to-Finish Operation in the United States. Antimicrob Agents Chemother 2017; 61:AAC.01298-16. [PMID: 27919894 DOI: 10.1128/aac.01298-16] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/31/2016] [Indexed: 11/20/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) present an urgent threat to public health. While use of carbapenem antimicrobials is restricted for food-producing animals, other β-lactams, such as ceftiofur, are used in livestock. This use may provide selection pressure favoring the amplification of carbapenem resistance, but this relationship has not been established. Previously unreported among U.S. livestock, plasmid-mediated CRE have been reported from livestock in Europe and Asia. In this study, environmental and fecal samples were collected from a 1,500-sow, U.S. farrow-to-finish operation during 4 visits over a 5-month period in 2015. Samples were screened using selective media for the presence of CRE, and the resulting carbapenemase-producing isolates were further characterized. Of 30 environmental samples collected from a nursery room on our initial visit, 2 (7%) samples yielded 3 isolates, 2 sequence type 218 (ST 218) Escherichia coli and 1 Proteus mirabilis, carrying the metallo-β-lactamase gene blaIMP-27 on IncQ1 plasmids. We recovered on our third visit 15 IMP-27-bearing isolates of multiple Enterobacteriaceae species from 11 of 24 (46%) environmental samples from 2 farrowing rooms. These isolates each also carried blaIMP-27 on IncQ1 plasmids. No CRE isolates were recovered from fecal swabs or samples in this study. As is common in U.S. swine production, piglets on this farm receive ceftiofur at birth, with males receiving a second dose at castration (≈day 6). This selection pressure may favor the dissemination of blaIMP-27-bearing Enterobacteriaceae in this farrowing barn. The absence of this selection pressure in the nursery and finisher barns likely resulted in the loss of the ecological niche needed for maintenance of this carbapenem resistance gene.
Collapse
|
43
|
Lee J, Kim KM, Yang EC, Miller KA, Boo SM, Bhattacharya D, Yoon HS. Reconstructing the complex evolutionary history of mobile plasmids in red algal genomes. Sci Rep 2016; 6:23744. [PMID: 27030297 PMCID: PMC4814812 DOI: 10.1038/srep23744] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 03/14/2016] [Indexed: 11/22/2022] Open
Abstract
The integration of foreign DNA into algal and plant plastid genomes is a rare event, with only a few known examples of horizontal gene transfer (HGT). Plasmids, which are well-studied drivers of HGT in prokaryotes, have been reported previously in red algae (Rhodophyta). However, the distribution of these mobile DNA elements and their sites of integration into the plastid (ptDNA), mitochondrial (mtDNA), and nuclear genomes of Rhodophyta remain unknown. Here we reconstructed the complex evolutionary history of plasmid-derived DNAs in red algae. Comparative analysis of 21 rhodophyte ptDNAs, including new genome data for 5 species, turned up 22 plasmid-derived open reading frames (ORFs) that showed syntenic and copy number variation among species, but were conserved within different individuals in three lineages. Several plasmid-derived homologs were found not only in ptDNA but also in mtDNA and in the nuclear genome of green plants, stramenopiles, and rhizarians. Phylogenetic and plasmid-derived ORF analyses showed that the majority of plasmid DNAs originated within red algae, whereas others were derived from cyanobacteria, other bacteria, and viruses. Our results elucidate the evolution of plasmid DNAs in red algae and suggest that they spread as parasitic genetic elements. This hypothesis is consistent with their sporadic distribution within Rhodophyta.
Collapse
Affiliation(s)
- JunMo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Kyeong Mi Kim
- Marine Biodiversity Institute of Korea, Seocheon, 325-902, Korea
| | - Eun Chan Yang
- Marine Ecosystem Research Division, Korea Institute of Ocean Science & Technology, Ansan, 15627, Korea
| | - Kathy Ann Miller
- Herbarium, University of California at Berkeley, 1001 Valley Life Sciences Building 2465, Berkeley, California, 94720-2465, USA
| | - Sung Min Boo
- Department of Biology, Chungnam National University, Daejeon, 34134, Korea
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources and Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| |
Collapse
|
44
|
Abstract
Plasmids are autonomously replicating pieces of DNA. This article discusses theta plasmid replication, which is a class of circular plasmid replication that includes ColE1-like origins of replication popular with expression vectors. All modalities of theta plasmid replication initiate synthesis with the leading strand at a predetermined site and complete replication through recruitment of the host's replisome, which extends the leading strand continuously while synthesizing the lagging strand discontinuously. There are clear differences between different modalities of theta plasmid replication in mechanisms of DNA duplex melting and in priming of leading- and lagging-strand synthesis. In some replicons duplex melting depends on transcription, while other replicons rely on plasmid-encoded trans-acting proteins (Reps); primers for leading-strand synthesis can be generated through processing of a transcript or in other replicons by the action of host- or plasmid-encoded primases. None of these processes require DNA breaks. The frequency of replication initiation is tightly regulated to facilitate establishment in permissive hosts and to achieve a steady state. The last section of the article reviews how plasmid copy number is sensed and how this feedback modulates the frequency of replication.
Collapse
|
45
|
Conjugative transfer of broad host range plasmids to an acidobacterial strain, Edaphobacter aggregans. J Biotechnol 2016; 221:107-13. [DOI: 10.1016/j.jbiotec.2016.01.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 01/19/2023]
|
46
|
Visualizing Bdellovibrio bacteriovorus by Using the tdTomato Fluorescent Protein. Appl Environ Microbiol 2015; 82:1653-1661. [PMID: 26712556 DOI: 10.1128/aem.03611-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/22/2015] [Indexed: 11/20/2022] Open
Abstract
Bdellovibrio bacteriovorus is a Gram-negative bacterium that belongs to the delta subgroup of proteobacteria and is characterized by a predatory life cycle. In recent years, work has highlighted the potential use of this predator to control bacteria and biofilms. Traditionally, the reduction in prey cells was used to monitor predation dynamics. In this study, we introduced pMQ414, a plasmid that expresses the tdTomato fluorescent reporter protein, into a host-independent strain and a host-dependent strain of B. bacteriovorus 109J. The new construct was used to conveniently monitor predator proliferation in real time, in different growth conditions, in the presence of lytic enzymes, and on several prey bacteria, replicating previous studies that used plaque analysis to quantify B. bacteriovorus. The new fluorescent plasmid also enabled us to visualize the predator in liquid cultures, in the context of a biofilm, and in association with human epithelial cells.
Collapse
|
47
|
Characterization of BKC-1 class A carbapenemase from Klebsiella pneumoniae clinical isolates in Brazil. Antimicrob Agents Chemother 2015; 59:5159-64. [PMID: 26055384 DOI: 10.1128/aac.00158-15] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/05/2015] [Indexed: 01/14/2023] Open
Abstract
Three Klebsiella pneumoniae clinical isolates demonstrating carbapenem resistance were recovered from different patients hospitalized at two medical centers in São Paulo, Brazil. Resistance to all β-lactams, quinolones, and some aminoglycosides was observed for these isolates that were susceptible to polymyxin B. Carbapenem hydrolysis, which was inhibited by clavulanic acid, was observed for all K. pneumoniae isolates that belonged to the same pulsed-field gel electrophoresis (PFGE) type and a novel sequence type (ST), ST1781 (clonal complex 442 [CC442]). A 10-kb nonconjugative incompatibility group Q (IncQ) plasmid, denominated p60136, was transferred to Escherichia coli strain TOP10 cells by electroporation. The full sequencing of p60136 showed that it was composed of a mobilization system, ISKpn23, the phosphotransferase aph3A-VI, and a 941-bp open reading frame (ORF) that codified a 313-amino acid protein. This ORF was named bla BKC-1. Brazilian Klebsiella carbapenemase-1 (BKC-1) showed a pI of 6.0 and possessed the highest identity (63%) with a β-lactamase of Sinorhizobium meliloti, an environmental bacterium. Hydrolysis studies demonstrated that purified BKC-1 not only hydrolyzed carbapenems but also penicillins, cephalosporins, and monobactams. However, the carbapenems were less efficiently hydrolyzed due to their very low kcat values (0.0016 to 0.031 s(-1)). In fact, oxacillin was the best substrate for BKC-1 (kcat /Km , 53,522.6 mM(-1) s(-1)). Here, we report a new class A carbapenemase, confirming the diversity and rapid evolution of β-lactamases in K. pneumoniae clinical isolates.
Collapse
|
48
|
Bossé JT, Li Y, Atherton TG, Walker S, Williamson SM, Rogers J, Chaudhuri RR, Weinert LA, Holden MTG, Maskell DJ, Tucker AW, Wren BW, Rycroft AN, Langford PR. Characterisation of a mobilisable plasmid conferring florfenicol and chloramphenicol resistance in Actinobacillus pleuropneumoniae. Vet Microbiol 2015; 178:279-82. [PMID: 26049592 PMCID: PMC4503812 DOI: 10.1016/j.vetmic.2015.05.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 12/02/2022]
Abstract
First complete sequence of a floR plasmid from Actinobacillus pleuropneumoniae Extended similarity to floR plasmids in other Pasteurellaceae species Conjugal transfer between between species confirmed
The complete nucleotide sequence of a 7.7 kb mobilisable plasmid (pM3446F), isolated from a florfenicol resistant isolate of Actinobacillus pleuropneumoniae, showed extended similarity to plasmids found in other members of the Pasteurellaceae containing the floR gene as well as replication and mobilisation genes. Mobilisation into other Pasteurellaceae species confirmed that this plasmid can be transferred horizontally.
Collapse
Affiliation(s)
- Janine T Bossé
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, W2 1PG, UK.
| | - Yanwen Li
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, W2 1PG, UK
| | - Tom G Atherton
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, W2 1PG, UK
| | - Stephanie Walker
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, W2 1PG, UK
| | - Susanna M Williamson
- Animal and Plant Health Agency (APHA) Bury St Edmunds, Rougham Hill, Bury St Edmunds, Suffolk, IP33 2RX, UK
| | - Jon Rogers
- Animal and Plant Health Agency (APHA) Bury St Edmunds, Rougham Hill, Bury St Edmunds, Suffolk, IP33 2RX, UK
| | - Roy R Chaudhuri
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Lucy A Weinert
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Matthew T G Holden
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Brendan W Wren
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Andrew N Rycroft
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hawkshead Campus, Hatfield, Hertfordshire, AL9 7TA, UK
| | - Paul R Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, W2 1PG, UK.
| | | |
Collapse
|
49
|
Characterization of a collection of plasmid-containing bacteria isolated from an on-farm biopurification system used for pesticide removal. Plasmid 2015; 80:16-23. [PMID: 25957823 DOI: 10.1016/j.plasmid.2015.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/24/2015] [Accepted: 05/01/2015] [Indexed: 11/21/2022]
Abstract
Biopurification systems (BPS) are complex soil-related and artificially-generated environments usually designed for the removal of toxic compounds from contaminated wastewaters. The present study has been conducted to isolate and characterize a collection of cultivable plasmid-carrying bacterial isolates recovered from a BPS established for the decontamination of wastewater generated in a farmyard. Out of 1400 isolates, a collection of 75 plasmid-containing bacteria was obtained, of which 35 representative isolates comprising in total at least 50 plasmids were chosen for further characterization. Bacterial hosts were taxonomically assigned by 16S ribosomal RNA gene sequencing and phenotypically characterized according to their ability to grow in presence of different antibiotics and heavy metals. The study demonstrated that a high proportion of the isolates was tolerant to antibiotics and/or heavy metals, highlighting the on-farm BPS enrichment in such genetic traits. Several plasmids conferring such resistances in the bacterial collection were detected to be either mobilizable or selftransmissible. Occurrence of broad host range plasmids of the incompatibility groups IncP, IncQ, IncN and IncW was examined with positive results only for the first group. Presence of the IS1071 insertion sequence, frequently associated with xenobiotics degradation genes, was detected in DNA obtained from 24 of these isolates, strongly suggesting the presence of yet-hidden catabolic activities in the collection of isolates. The results showed a remarkable diversity in the plasmid mobilome of cultivable bacteria in the BPS with the presence of abundant resistance markers of different types, thus providing a suitable environment to investigate the genetic structure of the mobile genetic pool in a model on-farm biofilter for wastewater decontamination in intensive agricultural production.
Collapse
|
50
|
Characterization of a mobilizable IncQ plasmid encoding cephalosporinase CMY-4 in Escherichia coli. Antimicrob Agents Chemother 2015; 59:2964-6. [PMID: 25691650 DOI: 10.1128/aac.05017-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|