1
|
Baloch G, Gzara F, Elhedhli S. Risk-based allocation of COVID-19 personal protective equipment under supply shortages. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH 2023; 310:1085-1100. [PMID: 37284205 PMCID: PMC10091728 DOI: 10.1016/j.ejor.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 04/01/2023] [Indexed: 06/08/2023]
Abstract
The COVID-19 outbreak put healthcare systems across the globe under immense pressure to meet the unprecedented demand for critical supplies and personal protective equipment (PPE). The traditional cost-effective supply chain paradigm failed to respond to the increased demand, putting healthcare workers (HCW) at a much higher infection risk relative to the general population. Recognizing PPE shortages and high infection risk for HCWs, the World Health Organization (WHO) recommends allocations based on ethical principles. In this paper, we model the infection risk for HCWs as a function of usage and use it as the basis for distribution planning that balances government procurement decisions, hospitals' PPE usage policies, and WHO ethical allocation guidelines. We propose an infection risk model that integrates PPE allocation decisions with disease progression estimates to quantify infection risk among HCWs. The proposed risk function is used to derive closed-form allocation decisions under WHO ethical guidelines in both deterministic and stochastic settings. The modelling is then extended to dynamic distribution planning. Although nonlinear, we reformulate the resulting model to make it solvable using off-the-shelf software. The risk function successfully accounts for virus prevalence in space and in time and leads to allocations that are sensitive to the differences between regions. Comparative analysis shows that the allocation policies lead to significantly different levels of infection risk, especially under high virus prevalence. The best-outcome allocation policy that aims to minimize the total infected cases outperforms other policies under this objective and that of minimizing the maximum number of infections per period.
Collapse
Affiliation(s)
- Gohram Baloch
- Beedie School of Business, Simon Fraser University, Burnaby, BC, Canada
| | - Fatma Gzara
- Department of Management Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Samir Elhedhli
- Department of Management Sciences, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
2
|
Arredondo-Alonso S, Blundell-Hunter G, Fu Z, Gladstone RA, Fillol-Salom A, Loraine J, Cloutman-Green E, Johnsen PJ, Samuelsen Ø, Pöntinen AK, Cléon F, Chavez-Bueno S, De la Cruz MA, Ares MA, Vongsouvath M, Chmielarczyk A, Horner C, Klein N, McNally A, Reis JN, Penadés JR, Thomson NR, Corander J, Taylor PW, McCarthy AJ. Evolutionary and functional history of the Escherichia coli K1 capsule. Nat Commun 2023; 14:3294. [PMID: 37322051 PMCID: PMC10272209 DOI: 10.1038/s41467-023-39052-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023] Open
Abstract
Escherichia coli is a leading cause of invasive bacterial infections in humans. Capsule polysaccharide has an important role in bacterial pathogenesis, and the K1 capsule has been firmly established as one of the most potent capsule types in E. coli through its association with severe infections. However, little is known about its distribution, evolution and functions across the E. coli phylogeny, which is fundamental to elucidating its role in the expansion of successful lineages. Using systematic surveys of invasive E. coli isolates, we show that the K1-cps locus is present in a quarter of bloodstream infection isolates and has emerged in at least four different extraintestinal pathogenic E. coli (ExPEC) phylogroups independently in the last 500 years. Phenotypic assessment demonstrates that K1 capsule synthesis enhances E. coli survival in human serum independent of genetic background, and that therapeutic targeting of the K1 capsule re-sensitizes E. coli from distinct genetic backgrounds to human serum. Our study highlights that assessing the evolutionary and functional properties of bacterial virulence factors at population levels is important to better monitor and predict the emergence of virulent clones, and to also inform therapies and preventive medicine to effectively control bacterial infections whilst significantly lowering antibiotic usage.
Collapse
Affiliation(s)
- Sergio Arredondo-Alonso
- Department of Biostatistics, University of Oslo, 0317, Oslo, Norway
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | | | - Zuyi Fu
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Rebecca A Gladstone
- Department of Biostatistics, University of Oslo, 0317, Oslo, Norway
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | - Alfred Fillol-Salom
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | | | - Elaine Cloutman-Green
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Pål J Johnsen
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ørjan Samuelsen
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Anna K Pöntinen
- Department of Biostatistics, University of Oslo, 0317, Oslo, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - François Cléon
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Susana Chavez-Bueno
- University of Missouri Kansas City, Kansas City, USA
- Division of Infectious Diseases, Children's Mercy Hospital Kansas City, UMKC School of Medicine, Kansas City, USA
| | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Manivanh Vongsouvath
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Agnieszka Chmielarczyk
- Faculty of Medicine, Chair of Microbiology, Jagiellonian University Medical College, Czysta str. 18, 31-121, Kraków, Poland
| | - Carolyne Horner
- British Society for Antimicrobial Chemotherapy, Birmingham, UK
| | - Nigel Klein
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Joice N Reis
- Laboratory of Pathology and Molecular Biology (LPBM), Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation, Salvador, Brazil
- Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, Brazil
| | - José R Penadés
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Nicholas R Thomson
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, 0317, Oslo, Norway.
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK.
- Helsinki Institute of Information Technology, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland.
| | - Peter W Taylor
- School of Pharmacy, University College London, London, UK.
| | - Alex J McCarthy
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, UK.
| |
Collapse
|
3
|
Aljohani AM, El-Chami C, Alhubail M, Ledder RG, O’Neill CA, McBain AJ. Escherichia coli Nissle 1917 inhibits biofilm formation and mitigates virulence in Pseudomonas aeruginosa. Front Microbiol 2023; 14:1108273. [PMID: 36970701 PMCID: PMC10031955 DOI: 10.3389/fmicb.2023.1108273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/31/2023] [Indexed: 03/10/2023] Open
Abstract
In the quest for mitigators of bacterial virulence, cell-free supernatants (CFS) from 25 human commensal and associated bacteria were tested for activity against Pseudomonas aeruginosa. Among these, Escherichia coli Nissle 1917 CFS significantly inhibited biofilm formation and dispersed extant pseudomonas biofilms without inhibiting planktonic bacterial growth. eDNA was reduced in biofilms following exposure to E. coli Nissle CFS, as visualized by confocal microscopy. E. coli Nissle CFS also showed a significant protective effect in a Galleria mellonella-based larval virulence assay when administrated 24 h before challenge with the P. aeruginosa. No inhibitory effects against P. aeruginosa were observed for other tested E. coli strains. According to proteomic analysis, E. coli Nissle CFS downregulated the expression of several P. aeruginosa proteins involved in motility (Flagellar secretion chaperone FliSB, B-type flagellin fliC, Type IV pilus assembly ATPase PilB), and quorum sensing (acyl-homoserine lactone synthase lasI and HTH-type quorum-sensing regulator rhlR), which are associated with biofilm formation. Physicochemical characterization of the putative antibiofilm compound(s) indicates the involvement of heat-labile proteinaceous factors of greater than 30 kDa molecular size.
Collapse
Affiliation(s)
- Ahmad M. Aljohani
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Ministry of Education, Riyadh, Saudi Arabia
| | - Cecile El-Chami
- Division of Musculoskeletal and Dermatological Science, Faculty of Biology, Medicine and Health, School of Biological Science, The University of Manchester, Manchester, United Kingdom
| | - Muna Alhubail
- Division of Musculoskeletal and Dermatological Science, Faculty of Biology, Medicine and Health, School of Biological Science, The University of Manchester, Manchester, United Kingdom
| | - Ruth G. Ledder
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Catherine A. O’Neill
- Division of Musculoskeletal and Dermatological Science, Faculty of Biology, Medicine and Health, School of Biological Science, The University of Manchester, Manchester, United Kingdom
| | - Andrew J. McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- *Correspondence: Andrew J. McBain,
| |
Collapse
|
4
|
Péter B, Farkas E, Kurunczi S, Szittner Z, Bősze S, Ramsden JJ, Szekacs I, Horvath R. Review of Label-Free Monitoring of Bacteria: From Challenging Practical Applications to Basic Research Perspectives. BIOSENSORS 2022; 12:bios12040188. [PMID: 35448248 PMCID: PMC9026780 DOI: 10.3390/bios12040188] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 05/10/2023]
Abstract
Novel biosensors already provide a fast way to detect the adhesion of whole bacteria (or parts of them), biofilm formation, and the effect of antibiotics. Moreover, the detection sensitivities of recent sensor technologies are large enough to investigate molecular-scale biological processes. Usually, these measurements can be performed in real time without using labeling. Despite these excellent capabilities summarized in the present work, the application of novel, label-free sensor technologies in basic biological research is still rare; the literature is dominated by heuristic work, mostly monitoring the presence and amount of a given analyte. The aims of this review are (i) to give an overview of the present status of label-free biosensors in bacteria monitoring, and (ii) to summarize potential novel directions with biological relevancies to initiate future development. Optical, mechanical, and electrical sensing technologies are all discussed with their detailed capabilities in bacteria monitoring. In order to review potential future applications of the outlined techniques in bacteria research, we summarize the most important kinetic processes relevant to the adhesion and survival of bacterial cells. These processes are potential targets of kinetic investigations employing modern label-free technologies in order to reveal new fundamental aspects. Resistance to antibacterials and to other antimicrobial agents, the most important biological mechanisms in bacterial adhesion and strategies to control adhesion, as well as bacteria-mammalian host cell interactions are all discussed with key relevancies to the future development and applications of biosensors.
Collapse
Affiliation(s)
- Beatrix Péter
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
- Correspondence: (B.P.); (R.H.)
| | - Eniko Farkas
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Sandor Kurunczi
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Zoltán Szittner
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Institute of Chemistry, Eötvös Loránd University, 1120 Budapest, Hungary;
- National Public Health Center, 1097 Budapest, Hungary
| | - Jeremy J. Ramsden
- Clore Laboratory, Department of Biomedical Research, University of Buckingham, Buckingham MK18 1AD, UK;
| | - Inna Szekacs
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Robert Horvath
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
- Correspondence: (B.P.); (R.H.)
| |
Collapse
|
5
|
Ueda M, Kobayashi H, Seike S, Takahashi E, Okamoto K, Yamanaka H. Aeromonas sobria Serine Protease Degrades Several Protein Components of Tight Junctions and Assists Bacterial Translocation Across the T84 Monolayer. Front Cell Infect Microbiol 2022; 12:824547. [PMID: 35273923 PMCID: PMC8902146 DOI: 10.3389/fcimb.2022.824547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/02/2022] [Indexed: 01/26/2023] Open
Abstract
Aeromonas sobria is a Gram-negative pathogen that causes food-borne illness. In immunocompromised patients and the elderly, A. sobria opportunistically leads to severe extraintestinal diseases including sepsis, peritonitis, and meningitis. If A. sobria that infects the intestinal tract causes such an extraintestinal infection, the pathogen must pass through the intestinal epithelial barrier. In our earlier study using intestinal cultured cells (T84 cells), we observed that an A. sobria strain with higher A. sobria serine protease (ASP) production caused a marked level of bacterial translocation across the T84 intestinal epithelial monolayer. Herein, we investigated the effect of ASP on tight junctions (TJs) in T84 cells. We observed that ASP acts on TJs and causes the destruction of ZO-1, ZO-2, ZO-3, and claudin-7 (i.e., some of the protein components constituting TJs), especially in the strains with high ASP productivity. Based on the present results together with those of our earlier study, we propose that ASP may cause a disruption of the barrier function of the intestinal epithelium as a whole due to the destruction of TJs (in addition to the destruction of adherens junctions) and that ASP may assist invasion of the pathogens from the intestinal epithelium into deep sites in the human body.
Collapse
Affiliation(s)
- Mitsunobu Ueda
- Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Japan
| | - Hidetomo Kobayashi
- Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Japan
| | - Soshi Seike
- Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Japan
| | - Eizo Takahashi
- Laboratory of Medical Microbiology, Department of Health Pharmacy, Yokohama University of Pharmacy, Yokohama, Japan
| | - Keinosuke Okamoto
- Collaborative Research Center of Okayama University for Infectious Diseases in India, National Institute of Cholera Enteric Diseases, Kolkata, India
| | - Hiroyasu Yamanaka
- Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Japan
- *Correspondence: Hiroyasu Yamanaka,
| |
Collapse
|
6
|
Vaid RK, Thakur Z, Anand T, Kumar S, Tripathi BN. Comparative genome analysis of Salmonella enterica serovar Gallinarum biovars Pullorum and Gallinarum decodes strain specific genes. PLoS One 2021; 16:e0255612. [PMID: 34411120 PMCID: PMC8375982 DOI: 10.1371/journal.pone.0255612] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022] Open
Abstract
Salmonella enterica serovar Gallinarum biovar Pullorum (bvP) and biovar Gallinarum (bvG) are the etiological agents of pullorum disease (PD) and fowl typhoid (FT) respectively, which cause huge economic losses to poultry industry especially in developing countries including India. Vaccination and biosecurity measures are currently being employed to control and reduce the S. Gallinarum infections. High endemicity, poor implementation of hygiene and lack of effective vaccines pose challenges in prevention and control of disease in intensively maintained poultry flocks. Comparative genome analysis unravels similarities and dissimilarities thus facilitating identification of genomic features that aids in pathogenesis, niche adaptation and in tracing of evolutionary history. The present investigation was carried out to assess the genotypic differences amongst S.enterica serovar Gallinarum strains including Indian strain S. Gallinarum Sal40 VTCCBAA614. The comparative genome analysis revealed an open pan-genome consisting of 5091 coding sequence (CDS) with 3270 CDS belonging to core-genome, 1254 CDS to dispensable genome and strain specific genes i.e. singletons ranging from 3 to 102 amongst the analyzed strains. Moreover, the investigated strains exhibited diversity in genomic features such as virulence factors, genomic islands, prophage regions, toxin-antitoxin cassettes, and acquired antimicrobial resistance genes. Core genome identified in the study can give important leads in the direction of design of rapid and reliable diagnostics, and vaccine design for effective infection control as well as eradication. Additionally, the identified genetic differences among the S. enterica serovar Gallinarum strains could be used for bacterial typing, structure based inhibitor development by future experimental investigations on the data generated.
Collapse
Affiliation(s)
- Rajesh Kumar Vaid
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Zoozeal Thakur
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Taruna Anand
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Sanjay Kumar
- Bacteriology Laboratory, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | | |
Collapse
|
7
|
Ageorges V, Monteiro R, Leroy S, Burgess CM, Pizza M, Chaucheyras-Durand F, Desvaux M. Molecular determinants of surface colonisation in diarrhoeagenic Escherichia coli (DEC): from bacterial adhesion to biofilm formation. FEMS Microbiol Rev 2021; 44:314-350. [PMID: 32239203 DOI: 10.1093/femsre/fuaa008] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/31/2020] [Indexed: 12/11/2022] Open
Abstract
Escherichia coli is primarily known as a commensal colonising the gastrointestinal tract of infants very early in life but some strains being responsible for diarrhoea, which can be especially severe in young children. Intestinal pathogenic E. coli include six pathotypes of diarrhoeagenic E. coli (DEC), namely, the (i) enterotoxigenic E. coli, (ii) enteroaggregative E. coli, (iii) enteropathogenic E. coli, (iv) enterohemorragic E. coli, (v) enteroinvasive E. coli and (vi) diffusely adherent E. coli. Prior to human infection, DEC can be found in natural environments, animal reservoirs, food processing environments and contaminated food matrices. From an ecophysiological point of view, DEC thus deal with very different biotopes and biocoenoses all along the food chain. In this context, this review focuses on the wide range of surface molecular determinants acting as surface colonisation factors (SCFs) in DEC. In the first instance, SCFs can be broadly discriminated into (i) extracellular polysaccharides, (ii) extracellular DNA and (iii) surface proteins. Surface proteins constitute the most diverse group of SCFs broadly discriminated into (i) monomeric SCFs, such as autotransporter (AT) adhesins, inverted ATs, heat-resistant agglutinins or some moonlighting proteins, (ii) oligomeric SCFs, namely, the trimeric ATs and (iii) supramolecular SCFs, including flagella and numerous pili, e.g. the injectisome, type 4 pili, curli chaperone-usher pili or conjugative pili. This review also details the gene regulatory network of these numerous SCFs at the various stages as it occurs from pre-transcriptional to post-translocational levels, which remains to be fully elucidated in many cases.
Collapse
Affiliation(s)
- Valentin Ageorges
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Ricardo Monteiro
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Sabine Leroy
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Catherine M Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | | | - Frédérique Chaucheyras-Durand
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,Lallemand Animal Nutrition SAS, F-31702 Blagnac Cedex, France
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| |
Collapse
|
8
|
Jang H, Chase HR, Gangiredla J, Grim CJ, Patel IR, Kothary MH, Jackson SA, Mammel MK, Carter L, Negrete F, Finkelstein S, Weinstein L, Yan Q, Iversen C, Pagotto F, Stephan R, Lehner A, Eshwar AK, Fanning S, Farber J, Gopinath GR, Tall BD, Pava-Ripoll M. Analysis of the Molecular Diversity Among Cronobacter Species Isolated From Filth Flies Using Targeted PCR, Pan Genomic DNA Microarray, and Whole Genome Sequencing Analyses. Front Microbiol 2020; 11:561204. [PMID: 33101235 PMCID: PMC7545074 DOI: 10.3389/fmicb.2020.561204] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/03/2020] [Indexed: 11/17/2022] Open
Abstract
Cronobacter species are opportunistic pathogens capable of causing life-threatening infections in humans, with serious complications arising in neonates, infants, immuno-compromised individuals, and elderly adults. The genus is comprised of seven species: Cronobacter sakazakii, Cronobacter malonaticus, Cronobacter turicensis, Cronobacter muytjensii, Cronobacter dublinensis, Cronobacter universalis, and Cronobacter condimenti. Despite a multiplicity of genomic data for the genus, little is known about likely transmission vectors. Using DNA microarray analysis, in parallel with whole genome sequencing, and targeted PCR analyses, the total gene content of two C. malonaticus, three C. turicensis, and 14 C. sakazaki isolated from various filth flies was assessed. Phylogenetic relatedness among these and other strains obtained during surveillance and outbreak investigations were comparatively assessed. Specifically, microarray analysis (MA) demonstrated its utility to cluster strains according to species-specific and sequence type (ST) phylogenetic relatedness, and that the fly strains clustered among strains obtained from clinical, food and environmental sources from United States, Europe, and Southeast Asia. This combinatorial approach was useful in data mining for virulence factor genes, and phage genes and gene clusters. In addition, results of plasmidotyping were in agreement with the species identity for each strain as determined by species-specific PCR assays, MA, and whole genome sequencing. Microarray and BLAST analyses of Cronobacter fly sequence datasets were corroborative and showed that the presence and absence of virulence factors followed species and ST evolutionary lines even though such genes were orthologous. Additionally, zebrafish infectivity studies showed that these pathotypes were as virulent to zebrafish embryos as other clinical strains. In summary, these findings support a striking phylogeny amongst fly, clinical, and surveillance strains isolated during 2010–2015, suggesting that flies are capable vectors for transmission of virulent Cronobacter spp.; they continue to circulate among United States and European populations, environments, and that this “pattern of circulation” has continued over decades.
Collapse
Affiliation(s)
- Hyein Jang
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, United States
| | - Hannah R Chase
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, United States
| | - Jayanthi Gangiredla
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, United States
| | - Christopher J Grim
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, United States
| | - Isha R Patel
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, United States
| | - Mahendra H Kothary
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, United States
| | - Scott A Jackson
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, United States
| | - Mark K Mammel
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, United States
| | - Laurenda Carter
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, United States
| | - Flavia Negrete
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, United States
| | - Samantha Finkelstein
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, United States
| | - Leah Weinstein
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, United States
| | - QiongQiong Yan
- WHO Collaborating Centre for Cronobacter, University College Dublin, Dublin, Ireland.,UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin, Dublin, Ireland
| | - Carol Iversen
- WHO Collaborating Centre for Cronobacter, University College Dublin, Dublin, Ireland.,UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin, Dublin, Ireland
| | - Franco Pagotto
- Food Directorate, Bureau of Microbial Hazards, Health Canada, Ottawa, ON, Canada
| | - Roger Stephan
- Institute for Food Safety and Hygiene, University of Zürich, Zurich, Switzerland
| | - Angelika Lehner
- Institute for Food Safety and Hygiene, University of Zürich, Zurich, Switzerland
| | - Athmanya K Eshwar
- Institute for Food Safety and Hygiene, University of Zürich, Zurich, Switzerland
| | - Seamus Fanning
- WHO Collaborating Centre for Cronobacter, University College Dublin, Dublin, Ireland.,UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin, Dublin, Ireland
| | - Jeffery Farber
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Gopal R Gopinath
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, United States
| | - Ben D Tall
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, United States
| | - Monica Pava-Ripoll
- Center of Food Safety and Applied Nutrition, U. S. Food & Drug Administration, College Park, MD, United States
| |
Collapse
|
9
|
Swimming motility of a gut bacterial symbiont promotes resistance to intestinal expulsion and enhances inflammation. PLoS Biol 2020; 18:e3000661. [PMID: 32196484 PMCID: PMC7112236 DOI: 10.1371/journal.pbio.3000661] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/01/2020] [Accepted: 02/24/2020] [Indexed: 01/07/2023] Open
Abstract
Some of the densest microbial ecosystems in nature thrive within the intestines of humans and other animals. To protect mucosal tissues and maintain immune tolerance, animal hosts actively sequester bacteria within the intestinal lumen. In response, numerous bacterial pathogens and pathobionts have evolved strategies to subvert spatial restrictions, thereby undermining immune homeostasis. However, in many cases, it is unclear how escaping host spatial control benefits gut bacteria and how changes in intestinal biogeography are connected to inflammation. A better understanding of these processes could uncover new targets for treating microbiome-mediated inflammatory diseases. To this end, we investigated the spatial organization and dynamics of bacterial populations within the intestine using larval zebrafish and live imaging. We discovered that a proinflammatory Vibrio symbiont native to zebrafish governs its own spatial organization using swimming motility and chemotaxis. Surprisingly, we found that Vibrio’s motile behavior does not enhance its growth rate but rather promotes its persistence by enabling it to counter intestinal flow. In contrast, Vibrio mutants lacking motility traits surrender to host spatial control, becoming aggregated and entrapped within the lumen. Consequently, nonmotile and nonchemotactic mutants are susceptible to intestinal expulsion and experience large fluctuations in absolute abundance. Further, we found that motile Vibrio cells induce expression of the proinflammatory cytokine tumor necrosis factor alpha (TNFα) in gut-associated macrophages and the liver. Using inducible genetic switches, we demonstrate that swimming motility can be manipulated in situ to modulate the spatial organization, persistence, and inflammatory activity of gut bacterial populations. Together, our findings suggest that host spatial control over resident microbiota plays a broader role in regulating the abundance and persistence of gut bacteria than simply protecting mucosal tissues. Moreover, we show that intestinal flow and bacterial motility are potential targets for therapeutically managing bacterial spatial organization and inflammatory activity within the gut. The use of live imaging and bacteria engineered to carry inducible genetic switches reveals how a gut symbiont uses swimming motility to escape the host's spatial control and persist within the physically dynamic confines of the intestine.
Collapse
|
10
|
Jang H, Gopinath GR, Eshwar A, Srikumar S, Nguyen S, Gangiredla J, Patel IR, Finkelstein SB, Negrete F, Woo J, Lee Y, Fanning S, Stephan R, Tall BD, Lehner A. The Secretion of Toxins and Other Exoproteins of Cronobacter: Role in Virulence, Adaption, and Persistence. Microorganisms 2020; 8:E229. [PMID: 32046365 PMCID: PMC7074816 DOI: 10.3390/microorganisms8020229] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/28/2020] [Accepted: 02/06/2020] [Indexed: 12/29/2022] Open
Abstract
: Cronobacter species are considered an opportunistic group of foodborne pathogenic bacteria capable of causing both intestinal and systemic human disease. This review describes common virulence themes shared among the seven Cronobacter species and describes multiple exoproteins secreted by Cronobacter, many of which are bacterial toxins that may play a role in human disease. The review will particularly concentrate on the virulence factors secreted by C. sakazakii, C. malonaticus, and C. turicensis, which are the primary human pathogens of interest. It has been discovered that various species-specific virulence factors adversely affect a wide range of eukaryotic cell processes including protein synthesis, cell division, and ion secretion. Many of these factors are toxins which have been shown to also modulate the host immune response. These factors are encoded on a variety of mobile genetic elements such as plasmids and transposons; this genomic plasticity implies ongoing re-assortment of virulence factor genes which has complicated our efforts to categorize Cronobacter into sharply defined genomic pathotypes.
Collapse
Affiliation(s)
- Hyein Jang
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (F.N.); (J.W.); (Y.L.)
| | - Gopal R. Gopinath
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (F.N.); (J.W.); (Y.L.)
| | - Athmanya Eshwar
- Institute for Food Safety and Hygiene, University of Zurich, Zurich CH-8006 Zürich, Switzerland; (A.E.); (R.S.); (A.L.)
| | - Shabarinath Srikumar
- UCD-Centre for Food Safety, Science Centre South, University College Dublin, Dublin Belfield, Dublin 4, D04 V1W8, Ireland; (S.S.); (S.N.); (S.F.)
| | - Scott Nguyen
- UCD-Centre for Food Safety, Science Centre South, University College Dublin, Dublin Belfield, Dublin 4, D04 V1W8, Ireland; (S.S.); (S.N.); (S.F.)
| | - Jayanthi Gangiredla
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (F.N.); (J.W.); (Y.L.)
| | - Isha R. Patel
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (F.N.); (J.W.); (Y.L.)
| | - Samantha B. Finkelstein
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (F.N.); (J.W.); (Y.L.)
| | - Flavia Negrete
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (F.N.); (J.W.); (Y.L.)
| | - JungHa Woo
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (F.N.); (J.W.); (Y.L.)
| | - YouYoung Lee
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (F.N.); (J.W.); (Y.L.)
| | - Séamus Fanning
- UCD-Centre for Food Safety, Science Centre South, University College Dublin, Dublin Belfield, Dublin 4, D04 V1W8, Ireland; (S.S.); (S.N.); (S.F.)
| | - Roger Stephan
- Institute for Food Safety and Hygiene, University of Zurich, Zurich CH-8006 Zürich, Switzerland; (A.E.); (R.S.); (A.L.)
| | - Ben D. Tall
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (F.N.); (J.W.); (Y.L.)
| | - Angelika Lehner
- Institute for Food Safety and Hygiene, University of Zurich, Zurich CH-8006 Zürich, Switzerland; (A.E.); (R.S.); (A.L.)
| |
Collapse
|
11
|
Tirumale S, Wani N, Khanday W. Phytochemical analysis and evaluation of antibacterial activity of different extracts of soil-isolated fungus chaetomium cupreum. J Nat Sci Biol Med 2020. [DOI: 10.4103/jnsbm.jnsbm_150_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Pekmezovic M, Mogavero S, Naglik JR, Hube B. Host-Pathogen Interactions during Female Genital Tract Infections. Trends Microbiol 2019; 27:982-996. [PMID: 31451347 DOI: 10.1016/j.tim.2019.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/25/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022]
Abstract
Dysbiosis in the female genital tract (FGT) is characterized by the overgrowth of pathogenic bacterial, fungal, or protozoan members of the microbiota, leading to symptomatic or asymptomatic infections. In this review, we discuss recent advances in studies dealing with molecular mechanisms of pathogenicity factors of Gardnerella vaginalis, Mycoplasma genitalium, Mycoplasma hominis, Neisseria gonorrhoeae, Streptococcus agalactiae, Chlamydia trachomatis, Trichomonas vaginalis, and Candida spp., as well as their interactions with the host and microbiota in the various niches of the FGT. Taking a holistic approach to identifying fundamental commonalities and differences during these infections could help us to better understand reproductive tract health and improve current prevention and treatment strategies.
Collapse
Affiliation(s)
- Marina Pekmezovic
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral, and Craniofacial Sciences, King's College London, SE1 1UL, UK
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany; Institute of Microbiology, Friedrich Schiller University, Jena, Germany. @leibniz-hki.de
| |
Collapse
|
13
|
Akanda MR, Uddin MN, Kim IS, Ahn D, Tae HJ, Park BY. The biological and pharmacological roles of polyphenol flavonoid tilianin. Eur J Pharmacol 2019; 842:291-297. [DOI: 10.1016/j.ejphar.2018.10.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/08/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023]
|
14
|
Zhou T, Yuan Z, Tan S, Jin Y, Yang Y, Shi H, Wang W, Niu D, Gao L, Jiang W, Gao D, Liu Z. A Review of Molecular Responses of Catfish to Bacterial Diseases and Abiotic Stresses. Front Physiol 2018; 9:1113. [PMID: 30210354 PMCID: PMC6119772 DOI: 10.3389/fphys.2018.01113] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/25/2018] [Indexed: 12/11/2022] Open
Abstract
Catfish is one of the major aquaculture species in the United States. However, the catfish industry is threatened by several bacterial diseases such as enteric septicemia of catfish (ESC), columnaris disease and Aeromonas disease, as well as by abiotic stresses such as high temperature and low oxygen. Research has been conducted for several decades to understand the host responses to these diseases and abiotic stresses. With the development of sequencing technologies, and the application of genome-wide association studies in aquaculture species, significant progress has been made. This review article summarizes recent progress in understanding the molecular responses of catfish after bacterial infection and stress challenges, and in understanding of genomic and genetic basis for disease resistance and stress tolerance.
Collapse
Affiliation(s)
- Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Yulin Jin
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Huitong Shi
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Wenwen Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Donghong Niu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Lei Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Wansheng Jiang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
15
|
Rodrigues LOCP, Graça RSF, Carneiro LAM. Integrated Stress Responses to Bacterial Pathogenesis Patterns. Front Immunol 2018; 9:1306. [PMID: 29930559 PMCID: PMC5999787 DOI: 10.3389/fimmu.2018.01306] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/25/2018] [Indexed: 12/25/2022] Open
Abstract
Activation of an appropriate innate immune response to bacterial infection is critical to limit microbial spread and generate cytokines and chemokines to instruct appropriate adaptive immune responses. Recognition of bacteria or bacterial products by pattern recognition molecules is crucial to initiate this response. However, it is increasingly clear that the context in which this recognition occurs can dictate the quality of the response and determine the outcome of an infection. The cross talk established between host and pathogen results in profound alterations on cellular homeostasis triggering specific cellular stress responses. In particular, the highly conserved integrated stress response (ISR) has been shown to shape the host response to bacterial pathogens by sensing cellular insults resulting from infection and modulating transcription of key genes, translation of new proteins and cell autonomous antimicrobial mechanisms such as autophagy. Here, we review the growing body of evidence demonstrating a role for the ISR as an integral part of the innate immune response to bacterial pathogens.
Collapse
Affiliation(s)
- Larissa O C P Rodrigues
- Laboratório de Inflamação e Imunidade, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo S F Graça
- Laboratório de Inflamação e Imunidade, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leticia A M Carneiro
- Laboratório de Inflamação e Imunidade, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Cassilly CD, Reynolds TB. PS, It's Complicated: The Roles of Phosphatidylserine and Phosphatidylethanolamine in the Pathogenesis of Candida albicans and Other Microbial Pathogens. J Fungi (Basel) 2018; 4:jof4010028. [PMID: 29461490 PMCID: PMC5872331 DOI: 10.3390/jof4010028] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 12/24/2022] Open
Abstract
The phospholipids phosphatidylserine (PS) and phosphatidylethanolamine (PE) play important roles in the virulence of Candida albicans and loss of PS synthesis or synthesis of PE from PS (PS decarboxylase) severely compromises virulence in C. albicans in a mouse model of systemic candidiasis. This review discusses synthesis of PE and PS in C. albicans and mechanisms by which these lipids impact virulence in this fungus. This is further compared to how PS and PE synthesis impact virulence in other fungi, parasites and bacteria. Furthermore, the impact of PS asymmetry on virulence and extracellular vesicle formation in several microbes is reviewed. Finally, the potential for PS and PE synthases as drug targets in these various kingdoms is also examined.
Collapse
Affiliation(s)
- Chelsi D Cassilly
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA.
| | - Todd B Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
17
|
Lampert Y, Dror B, Sela N, Teper‐Bamnolker P, Daus A, Sela (Saldinger) S, Eshel D. Emergence of Leuconostoc mesenteroides as a causative agent of oozing in carrots stored under non-ventilated conditions. Microb Biotechnol 2017; 10:1677-1689. [PMID: 28834204 PMCID: PMC5658626 DOI: 10.1111/1751-7915.12753] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 02/01/2023] Open
Abstract
Long-term storage and transport of post-harvest carrots (Daucus carota L.) require a low-temperature, high-relative-humidity environment, usually with low ventilation. Following long-term storage, a slimy exudate (oozing) often appears on the carrots, leading to severe spoilage. We characterized the environmental conditions leading to these symptoms and identified the causative agent. Simulation of non-ventilated storage conditions revealed accumulation of CO2 (to 80%) and ethanol (to 1000 ppm); then, a transparent exudate appeared on the carrot surface which, upon ventilation, developed into tissue browning and soft rot. Peels from oozing carrots contained over 10-fold the total bacterial counts of healthy carrots. The total peel microbiome was determined by 16S rDNA sequencing. During oozing stage, the surface of carrots incubated in a CO2 -rich (98%) environment harboured a bacterial population dominated by Lactobacillales and Enterobacteriales, differing markedly from those incubated in air. Three prevalent bacterial isolates from the oozing carrots were identified as Pantoea agglomerans, Rahnella aquatilis and Leuconostoc mesenteroides. Inoculation of carrot discs with L. mesenteroides, but not the others, induced oozing under high CO2 , suggesting that this bacterium is responsible for oozing of stored carrots. These findings should enable development of approaches to preventing carrot spoilage during long-term storage.
Collapse
Affiliation(s)
- Yael Lampert
- Department of Postharvest and Food SciencesAROThe Volcani CenterRishon LeZionIsrael
- Department of Food Quality and SafetyAROThe Volcani CenterRishon LeZionIsrael
| | - Barak Dror
- Department of Postharvest and Food SciencesAROThe Volcani CenterRishon LeZionIsrael
- Department of Food Quality and SafetyAROThe Volcani CenterRishon LeZionIsrael
- Department of Plant Pathology and MicrobiologyThe Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Noa Sela
- Department of Plant Pathology and Weed ScienceAROThe Volcani CenterRishon LeZionIsrael
| | | | - Avinoam Daus
- Department of Postharvest and Food SciencesAROThe Volcani CenterRishon LeZionIsrael
| | | | - Dani Eshel
- Department of Postharvest and Food SciencesAROThe Volcani CenterRishon LeZionIsrael
| |
Collapse
|
18
|
Lalsiamthara J, Lee JH. Development and trial of vaccines against Brucella. J Vet Sci 2017; 18:281-290. [PMID: 28859268 PMCID: PMC5583415 DOI: 10.4142/jvs.2017.18.s1.281] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/07/2017] [Accepted: 07/14/2017] [Indexed: 01/18/2023] Open
Abstract
The search for ideal brucellosis vaccines remains active today. Currently, no licensed human or canine anti-brucellosis vaccines are available. In bovines, the most successful vaccine (S19) is only used in calves, as adult vaccination results in orchitis in male, prolonged infection, and possible abortion complications in pregnant female cattle. Another widely deployed vaccine (RB51) has a low protective efficacy. An ideal vaccine should exhibit a safe profile as well as enhance protective efficacy. However, currently available vaccines exhibit one or more major drawbacks. Smooth live attenuated vaccines suffer shortcomings such as residual virulence and serodiagnostic interference. Inactivated vaccines, in general, confer relatively low levels of protection. Recent developments to improve brucellosis vaccines include generation of knockout mutants by targeting genes involved in metabolism, virulence, and the lipopolysaccharide synthesis pathway, as well as generation of DNA vaccines, mucosal vaccines, and live vectored vaccines, have all produced varying degrees of success. Herein, we briefly review the bacteriology, pathogenesis, immunological implications, candidate vaccines, vaccinations, and models related to Brucella.
Collapse
Affiliation(s)
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea
| |
Collapse
|
19
|
Cooperative Microbial Tolerance Behaviors in Host-Microbiota Mutualism. Cell 2016; 165:1323-1331. [PMID: 27259146 DOI: 10.1016/j.cell.2016.05.049] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 05/16/2016] [Accepted: 05/16/2016] [Indexed: 12/19/2022]
Abstract
Animal defense strategies against microbes are most often thought of as a function of the immune system, the primary function of which is to sense and kill microbes through the execution of resistance mechanisms. However, this antagonistic view creates complications for our understanding of beneficial host-microbe interactions. Pathogenic microbes are described as employing a few common behaviors that promote their fitness at the expense of host health and fitness. Here, a complementary framework is proposed to suggest that, in addition to pathogens, beneficial microbes have evolved behaviors to manipulate host processes in order to promote their own fitness and do so through the promotion of host health and fitness. In this Perspective, I explore the idea that patterns or behaviors traditionally ascribed to pathogenic microbes are also employed by beneficial microbes to promote host tolerance defense strategies. Such strategies would promote host health without having a negative impact on microbial fitness and would thereby yield cooperative evolutionary dynamics that are likely required to drive mutualistic co-evolution of hosts and microbes.
Collapse
|
20
|
Regulation of Type IV Pili Contributes to Surface Behaviors of Historical and Epidemic Strains of Clostridium difficile. J Bacteriol 2015; 198:565-77. [PMID: 26598364 DOI: 10.1128/jb.00816-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/13/2015] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED The intestinal pathogen Clostridium difficile is an urgent public health threat that causes antibiotic-associated diarrhea and is a leading cause of fatal nosocomial infections in the United States. C. difficile rates of recurrence and mortality have increased in recent years due to the emergence of so-called "hypervirulent" epidemic strains. A great deal of the basic biology of C. difficile has not been characterized. Recent findings that flagellar motility, toxin synthesis, and type IV pilus (TFP) formation are regulated by cyclic diguanylate (c-di-GMP) reveal the importance of this second messenger for C. difficile gene regulation. However, the function(s) of TFP in C. difficile remains largely unknown. Here, we examine TFP-dependent phenotypes and the role of c-di-GMP in controlling TFP production in the historical 630 and epidemic R20291 strains of C. difficile. We demonstrate that TFP contribute to C. difficile biofilm formation in both strains, but with a more prominent role in R20291. Moreover, we report that R20291 is capable of TFP-dependent surface motility, which has not previously been described in C. difficile. The expression and regulation of the pilA1 pilin gene differs between R20291 and 630, which may underlie the observed differences in TFP-mediated phenotypes. The differences in pilA1 expression are attributable to greater promoter-driven transcription in R20291. In addition, R20291, but not 630, upregulates c-di-GMP levels during surface-associated growth, suggesting that the bacterium senses its substratum. The differential regulation of surface behaviors in historical and epidemic C. difficile strains may contribute to the different infection outcomes presented by these strains. IMPORTANCE How Clostridium difficile establishes and maintains colonization of the host bowel is poorly understood. Surface behaviors of C. difficile are likely relevant during infection, representing possible interactions between the bacterium and the intestinal environment. Pili mediate bacterial interactions with various surfaces and contribute to the virulence of many pathogens. We report that type IV pili (TFP) contribute to biofilm formation by C. difficile. TFP are also required for surface motility, which has not previously been demonstrated for C. difficile. Furthermore, an epidemic-associated C. difficile strain showed higher pilin gene expression and greater dependence on TFP for biofilm production and surface motility. Differences in TFP regulation and their effects on surface behaviors may contribute to increased virulence in recent epidemic strains.
Collapse
|
21
|
Kittichotirat W, Bumgarner RE, Chen C. Evolutionary Divergence of Aggregatibacter actinomycetemcomitans. J Dent Res 2015; 95:94-101. [PMID: 26420795 DOI: 10.1177/0022034515608163] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Gram-negative facultative Aggregatibacter actinomycetemcomitans is an oral pathogen associated with periodontitis. The genetic heterogeneity among A. actinomycetemcomitans strains has been long recognized. This study provides a comprehensive genomic analysis of A. actinomycetemcomitans and the closely related nonpathogenic Aggregatibacter aphrophilus. Whole genome sequencing by Illumina MiSeq platform was performed for 31 A. actinomycetemcomitans and 2 A. aphrophilus strains. Sequence similarity analysis shows a total of 3,220 unique genes across the 2 species, where 1,550 are core genes present in all genomes and 1,670 are variable genes (accessory genes) missing in at least 1 genome. Phylogenetic analysis based on 397 concatenated core genes distinguished A. aphrophilus and A. actinomycetemcomitans. The latter was in turn divided into 5 clades: clade b (serotype b), clade c (serotype c), clade e/f (serotypes e and f), clade a/d (serotypes a and d), and clade e' (serotype e strains). Accessory genes accounted for 14.1% to 23.2% of the A. actinomycetemcomitans genomes, with a majority belonging to the category of poorly characterized by Cluster of Orthologous Groups classification. These accessory genes were often organized into genomic islands (n = 387) with base composition biases, suggesting their acquisitions via horizontal gene transfer. There was a greater degree of similarity in gene content and genomic islands among strains within clades than between clades. Strains of clade e' isolated from human were found to be missing the genomic island that carries genes encoding cytolethal distending toxins. Taken together, the results suggest a pattern of sequential divergence, starting from the separation of A. aphrophilus and A. actinomycetemcomitans through gain and loss of genes and ending with the divergence of the latter species into distinct clades and serotypes. With differing constellations of genes, the A. actinomycetemcomitans clades may have evolved distinct adaptation strategies to the human oral cavity.
Collapse
Affiliation(s)
- W Kittichotirat
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bang Khun Thian, Bangkok, Thailand
| | - R E Bumgarner
- Department of Microbiology, University of Washington, Seattle, USA
| | - C Chen
- Division of Periodontology, Diagnostic Sciences, and Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
22
|
Engevik MA, Yacyshyn MB, Engevik KA, Wang J, Darien B, Hassett DJ, Yacyshyn BR, Worrell RT. Human Clostridium difficile infection: altered mucus production and composition. Am J Physiol Gastrointest Liver Physiol 2015; 308:G510-24. [PMID: 25552581 PMCID: PMC4422372 DOI: 10.1152/ajpgi.00091.2014] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The majority of antibiotic-induced diarrhea is caused by Clostridium difficile (C. difficile). Hospitalizations for C. difficile infection (CDI) have tripled in the last decade, emphasizing the need to better understand how the organism colonizes the intestine and maintain infection. The mucus provides an interface for bacterial-host interactions and changes in intestinal mucus have been linked host health. To assess mucus production and composition in healthy and CDI patients, the main mucins MUC1 and MUC2 and mucus oligosaccharides were examined. Compared with healthy subjects, CDI patients demonstrated decreased MUC2 with no changes in surface MUC1. Although MUC1 did not change at the level of the epithelia, MUC1 was the primary constituent of secreted mucus in CDI patients. CDI mucus also exhibited decreased N-acetylgalactosamine (GalNAc), increased N-acetylglucosamine (GlcNAc), and increased terminal galactose residues. Increased galactose in CDI specimens is of particular interest since terminal galactose sugars are known as C. difficile toxin A receptor in animals. In vitro, C. difficile is capable of metabolizing fucose, mannose, galactose, GlcNAc, and GalNAc for growth under healthy stool conditions (low Na(+) concentration, pH 6.0). Injection of C. difficile into human intestinal organoids (HIOs) demonstrated that C. difficile alone is sufficient to reduce MUC2 production but is not capable of altering host mucus oligosaccharide composition. We also demonstrate that C. difficile binds preferentially to mucus extracted from CDI patients compared with healthy subjects. Our results provide insight into a mechanism of C. difficile colonization and may provide novel target(s) for the development of alternative therapeutic agents.
Collapse
Affiliation(s)
- Melinda A. Engevik
- 1Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio;
| | - Mary Beth Yacyshyn
- 3Department of Medicine Division of Digestive Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio;
| | - Kristen A. Engevik
- 1Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio;
| | - Jiang Wang
- 4Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio;
| | - Benjamin Darien
- 5Department of Animal Health and Biomedical Sciences, University Wisconsin, Madison, Wisconsin; and
| | - Daniel J. Hassett
- 2Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio;
| | - Bruce R. Yacyshyn
- 3Department of Medicine Division of Digestive Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio; ,6Digestive Health Center of Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Roger T. Worrell
- 1Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio; ,6Digestive Health Center of Cincinnati Children's Hospital, Cincinnati, Ohio
| |
Collapse
|
23
|
Hess S, Rambukkana A. Bacterial-induced cell reprogramming to stem cell-like cells: new premise in host-pathogen interactions. Curr Opin Microbiol 2014; 23:179-88. [PMID: 25541240 DOI: 10.1016/j.mib.2014.11.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 11/26/2014] [Indexed: 12/12/2022]
Abstract
Bacterial pathogens employ a myriad of strategies to alter host tissue cell functions for bacterial advantage during infection. Recent advances revealed a fusion of infection biology with stem cell biology by demonstrating developmental reprogramming of lineage committed host glial cells to progenitor/stem cell-like cells by an intracellular bacterial pathogen Mycobacterium leprae. Acquisition of migratory and immunomodulatory properties of such reprogrammed cells provides an added advantage for promoting bacterial spread. This presents a previously unseen sophistication of cell manipulation by hijacking the genomic plasticity of host cells by a human bacterial pathogen. The rationale for such extreme fate conversion of host cells may be directly linked to the exceedingly passive obligate life style of M. leprae with a degraded genome and host cell dependence for both bacterial survival and dissemination, particularly the use of host-derived stem cell-like cells as a vehicle for spreading infection without being detected by immune cells. Thus, this unexpected link between cell reprogramming and infection opens up a new premise in host-pathogen interactions. Furthermore, such bacterial ingenuity could also be harnessed for developing natural ways of reprogramming host cells for repairing damaged tissues from infection, injury and diseases.
Collapse
Affiliation(s)
- Samuel Hess
- MRC Centre for Regenerative Medicine, University of Edinburgh, Little France Campus, Edinburgh EH16 4UU, United Kingdom
| | - Anura Rambukkana
- MRC Centre for Regenerative Medicine, University of Edinburgh, Little France Campus, Edinburgh EH16 4UU, United Kingdom; Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom; Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
24
|
Abstract
The human pathogenic fungus Candida albicans is the predominant cause of both superficial and invasive forms of candidiasis. C. albicans primarily infects immunocompromised individuals as a result of either immunodeficiency or intervention therapy, which highlights the importance of host immune defences in preventing fungal infections. The host defence system utilises a vast communication network of cells, proteins, and chemical signals distributed in blood and tissues, which constitute innate and adaptive immunity. Over the last decade the identity of many key molecules mediating host defence against C. albicans has been identified. This review will discuss how the host recognises this fungus, the events induced by fungal cells, and the host innate and adaptive immune defences that ultimately resolve C. albicans infections during health.
Collapse
|
25
|
Schoen C, Kischkies L, Elias J, Ampattu BJ. Metabolism and virulence in Neisseria meningitidis. Front Cell Infect Microbiol 2014; 4:114. [PMID: 25191646 PMCID: PMC4138514 DOI: 10.3389/fcimb.2014.00114] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/31/2014] [Indexed: 01/14/2023] Open
Abstract
A longstanding question in infection biology addresses the genetic basis for invasive behavior in commensal pathogens. A prime example for such a pathogen is Neisseria meningitidis. On the one hand it is a harmless commensal bacterium exquisitely adapted to humans, and on the other hand it sometimes behaves like a ferocious pathogen causing potentially lethal disease such as sepsis and acute bacterial meningitis. Despite the lack of a classical repertoire of virulence genes in N. meningitidis separating commensal from invasive strains, molecular epidemiology suggests that carriage and invasive strains belong to genetically distinct populations. In recent years, it has become increasingly clear that metabolic adaptation enables meningococci to exploit host resources, supporting the concept of nutritional virulence as a crucial determinant of invasive capability. Here, we discuss the contribution of core metabolic pathways in the context of colonization and invasion with special emphasis on results from genome-wide surveys. The metabolism of lactate, the oxidative stress response, and, in particular, glutathione metabolism as well as the denitrification pathway provide examples of how meningococcal metabolism is intimately linked to pathogenesis. We further discuss evidence from genome-wide approaches regarding potential metabolic differences between strains from hyperinvasive and carriage lineages and present new data assessing in vitro growth differences of strains from these two populations. We hypothesize that strains from carriage and hyperinvasive lineages differ in the expression of regulatory genes involved particularly in stress responses and amino acid metabolism under infection conditions.
Collapse
Affiliation(s)
- Christoph Schoen
- Institute for Hygiene and Microbiology, University of Würzburg Würzburg, Germany ; Research Center for Infectious Diseases (ZINF), University of Würzburg Würzburg, Germany
| | - Laura Kischkies
- Institute for Hygiene and Microbiology, University of Würzburg Würzburg, Germany
| | - Johannes Elias
- Institute for Hygiene and Microbiology, University of Würzburg Würzburg, Germany ; National Reference Centre for Meningococci and Haemophilus influenzae (NRZMHi), University of Würzburg Würzburg, Germany
| | - Biju Joseph Ampattu
- Institute for Hygiene and Microbiology, University of Würzburg Würzburg, Germany
| |
Collapse
|
26
|
Abstract
Acute apical abscess is the most common form of dental abscess and is caused by infection of the root canal of the tooth. It is usually localized intraorally, but in some cases the apical abscess may spread and result in severe complications or even mortality. The reasons why dental root canal infections can become symptomatic and evolve to severe spreading and sometimes life-threatening abscesses remain elusive. Studies using culture and advanced molecular microbiology methods for microbial identification in apical abscesses have demonstrated a multispecies community conspicuously dominated by anaerobic bacteria. Species/phylotypes commonly found in these infections belong to the genera Fusobacterium, Parvimonas, Prevotella, Porphyromonas, Dialister, Streptococcus, and Treponema. Advances in DNA sequencing technologies and computational biology have substantially enhanced the knowledge of the microbiota associated with acute apical abscesses and shed some light on the etiopathogeny of this disease. Species richness and abundance and the resulting network of interactions among community members may affect the collective pathogenicity and contribute to the development of acute infections. Disease modifiers, including transient or permanent host-related factors, may also influence the development and severity of acute abscesses. This review focuses on the current evidence about the etiology and treatment of acute apical abscesses and how the process is influenced by host-related factors and proposes future directions in research, diagnosis, and therapeutic approaches to deal with this disease.
Collapse
|
27
|
Shaw BM, Daubenspeck JM, Simmons WL, Dybvig K. EPS-I polysaccharide protects Mycoplasma pulmonis from phagocytosis. FEMS Microbiol Lett 2012. [PMID: 23190331 DOI: 10.1111/1574-6968.12048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Few mycoplasmal polysaccharides have been described and little is known about their role in pathogenesis. The infection of mice with Mycoplasma pulmonis has been utilized in many in vivo and in vitro studies to gain a better understanding of host-pathogen interactions during chronic respiratory infection. Although alveolar macrophages have a primary role in host defence, M. pulmonis is killed inefficiently in vitro. One antiphagocytic factor produced by the mycoplasma is the family of phase- and size-variable Vsa lipoproteins. However, bacteria generally employ multiple strategies for combating host defences, with capsular polysaccharide often having a key role. We show here that mutants lacking the EPS-I polysaccharide of M. pulmonis exhibit increased susceptibility to binding and subsequent killing by alveolar macrophages. These results give further insight into how mycoplasmas are able to avoid the host immune system and sustain a chronic infection.
Collapse
Affiliation(s)
- Brandon M Shaw
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | |
Collapse
|
28
|
Silva MT, Correia-Neves M. Neutrophils and macrophages: the main partners of phagocyte cell systems. Front Immunol 2012; 3:174. [PMID: 22783254 PMCID: PMC3389340 DOI: 10.3389/fimmu.2012.00174] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 06/08/2012] [Indexed: 12/12/2022] Open
Abstract
Biological cellular systems are groups of cells sharing a set of characteristics, mainly key function and origin. Phagocytes are crucial in the host defense against microbial infection. The previously proposed phagocyte cell systems including the most recent and presently prevailing one, the mononuclear phagocyte system (MPS), grouped mononuclear cells but excluded neutrophils, creating an unacceptable situation. As neutrophils are archetypical phagocytes that must be members of comprehensive phagocyte systems, Silva recently proposed the creation of a myeloid phagocyte system (MYPS) that adds neutrophils to the MPS. The phagocytes grouped in the MYPS include the leukocytes neutrophils, inflammatory monocytes, macrophages, and immature myeloid DCs. Here the justifications behind the inclusion of neutrophils in a phagocyte system is expanded and the MYPS are further characterized as a group of dedicated phagocytic cells that function in an interacting and cooperative way in the host defense against microbial infection. Neutrophils and macrophages are considered the main arms of this system.
Collapse
Affiliation(s)
- Manuel T Silva
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | | |
Collapse
|
29
|
Identification of Avian pathogenic Escherichia coli genes that are induced in vivo during infection in chickens. Appl Environ Microbiol 2012; 78:3343-51. [PMID: 22344666 DOI: 10.1128/aem.07677-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is associated with extraintestinal infections in poultry causing a variety of diseases collectively known as colibacillosis. The host and bacterial factors influencing and/or responsible for carriage and systemic translocation of APEC inside the host are poorly understood. Identification of such factors could help in the understanding of its pathogenesis and in the subsequent development of control strategies. Recombination-based in vivo expression technology (RIVET) was used to identify APEC genes specifically expressed during infection in chickens. A total of 21 clones with in vivo-induced promoters were isolated from chicken livers and spleens, indicative of systemic infection. DNA sequencing of the cloned fragments revealed that 12 of the genes were conserved E. coli genes (metH, lysA, pntA, purL, serS, ybjE, ycdK [rutC], wcaJ, gspL, sdsR, ylbE, and yjiY), 6 of the genes were phage related/associated, and 3 genes were pathogen specific (tkt1, irp2, and eitD). These genes are involved in various cellular functions, such as metabolism, cell envelope and integrity, transport systems, and virulence. Others were phage related or have yet-unknown functions.
Collapse
|
30
|
Modification of the technical properties of Lactobacillus johnsonii NCC 533 by supplementing the growth medium with unsaturated fatty acids. Appl Environ Microbiol 2011; 77:6889-98. [PMID: 21821758 DOI: 10.1128/aem.05213-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to investigate the influence of supplementing growth medium with unsaturated fatty acids on the technical properties of the probiotic strain Lactobacillus johnsonii NCC 533, such as heat and acid tolerance, and inhibition of Salmonella enterica serovar Typhimurium infection. Our results showed that the membrane composition and morphology of L. johnsonii NCC 533 were significantly changed by supplementing a minimal Lactobacillus medium with oleic, linoleic, and linolenic acids. The ratio of saturated to unsaturated plus cyclic fatty acids in the bacterial membrane decreased by almost 2-fold when minimal medium was supplemented with unsaturated fatty acids (10 μg/ml). The subsequent acid and heat tolerance of L. johnsonii decreased by 6- and 20-fold when the strain was grown in the presence of linoleic and linolenic acids, respectively, compared with growth in oleic acid (all at 10 μg/ml). Following acid exposure, significantly higher (P < 0.05) oleic acid content was detected in the membrane when growth medium was supplemented with linoleic or linolenic acid, indicating that saturation of the membrane fatty acids occurred during acid stress. Cell integrity was determined in real time during stressed conditions using a fluorescent viability kit in combination with flow cytometric analysis. Following heat shock (at 62.5°C for 5 min), L. johnsonii was unable to form colonies; however, 60% of the bacteria showed no cell integrity loss, which could indicate that the elevated heat inactivated vital processes within the cell, rendering it incapable of replication. Furthermore, L. johnsonii grown in fatty acid-enriched minimal medium had different adhesion properties and caused a 2-fold decrease in S. enterica serovar Typhimurium UK1-lux invasion of HT-29 epithelial cells compared with bacteria grown in minimal medium alone. This could be related to changes in the hydrophobicity and fluidity of the membrane. Our study shows that technical properties underlying probiotic survivability can be affected by nutrient composition of the growth medium.
Collapse
|
31
|
Reciprocal analysis of Francisella novicida infections of a Drosophila melanogaster model reveal host-pathogen conflicts mediated by reactive oxygen and imd-regulated innate immune response. PLoS Pathog 2010; 6:e1001065. [PMID: 20865166 PMCID: PMC2928790 DOI: 10.1371/journal.ppat.1001065] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 07/26/2010] [Indexed: 12/22/2022] Open
Abstract
The survival of a bacterial pathogen within a host depends upon its ability to outmaneuver the host immune response. Thus, mutant pathogens provide a useful tool for dissecting host-pathogen relationships, as the strategies the microbe has evolved to counteract immunity reveal a host's immune mechanisms. In this study, we examined the pathogen Francisella novicida and identified new bacterial virulence factors that interact with different parts of the Drosophila melanogaster innate immune system. We performed a genome-wide screen to identify F. novicida genes required for growth and survival within the fly and identified a set of 149 negatively selected mutants. Among these, we identified a class of genes including the transcription factor oxyR, and the DNA repair proteins uvrB, recB, and ruvC that help F. novicida resist oxidative stress. We determined that these bacterial genes are virulence factors that allow F. novicida to counteract the fly melanization immune response. We then performed a second in vivo screen to identify an additional subset of bacterial genes that interact specifically with the imd signaling pathway. Most of these mutants have decreased resistance to the antimicrobial peptide polymyxin B. Characterization of a mutation in the putative transglutaminase FTN_0869 produced a curious result that could not easily be explained using known Drosophila immune responses. By using an unbiased genetic screen, these studies provide a new view of the Drosophila immune response from the perspective of a pathogen. We show that two branches of the fly's immunity are important for fighting F. novicida infections in a model host: melanization and an imd-regulated immune response, and identify bacterial genes that specifically counteract these host responses. Our work suggests that there may be more to learn about the fly immune system, as not all of the phenotypes we observe can be readily explained by its interactions with known immune responses.
Collapse
|
32
|
Yao L, Jermanus C, Barbetta B, Choi C, Verbeke P, Ojcius DM, Yilmaz O. Porphyromonas gingivalis infection sequesters pro-apoptotic Bad through Akt in primary gingival epithelial cells. Mol Oral Microbiol 2010; 25:89-101. [PMID: 20331797 DOI: 10.1111/j.2041-1014.2010.00569.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Porphyromonas gingivalis, a self-limiting oral pathogen, can colonize and replicate in gingival epithelial cells (GECs). P. gingivalis-infected GECs are protected from mitochondrion-dependent apoptosis, partially through activation of phosphatidyl inositol 3-kinase/Akt signaling. Biochemical events associated with P. gingivalis-induced inhibition of apoptosis include the blocking of mitochondrial membrane permeability and cytochrome-c release. We studied functional importance of Akt and the status of associated key mitochondrial molecules, pro-apoptotic Bad and caspase-9, during infection of GECs. We found that P. gingivalis infection caused significant phosphorylation of Bad progressively, while messenger RNA levels for Bad slowly decreased. Fluorescence microscopy showed translocation of the mitochondrial Bad to the cytosol post-infection. Conversely, P. gingivalis lost the ability to promote phosphorylation and translocation of Bad in Akt-deficient GECs. Caspase-9 activation induced by a chemical inducer of apoptosis was significantly inhibited by infection over time. However, Akt depletion by small interfering RNA did not reverse inhibition of caspase-9 activation by infection. Hence, P. gingivalis inactivates pro-apoptotic Bad through Akt. The inhibition of caspase-9 activation appears to be independent of Akt. Overall, our findings suggest that Akt is a key component of anti-apoptotic pathways stimulated by P. gingivalis. The P. gingivalis uses other mitochondrial pathways to protect host cells from cell-death and to ensure its survival in gingival epithelium.
Collapse
Affiliation(s)
- L Yao
- Department of Periodontology and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Xu J, Olson ME, Kahn ML, Hurlbert RE. Characterization of Tn5-Induced Mutants of Xenorhabdus nematophilus ATCC 19061. Appl Environ Microbiol 2010; 57:1173-80. [PMID: 16348462 PMCID: PMC182864 DOI: 10.1128/aem.57.4.1173-1180.1991] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A negative-selection vector, pHX1, was constructed for use in transposon mutagenesis of Xenorhabdus nematophilus ATCC 19061. pHX1 contains the Bacillus subtilis levansucrase gene which confers sucrose sensitivity. In addition, various Tn5-containing plasmids with different replication origins were transferred by conjugation from Escherichia coli into X. nematophilus ATCC 19061, and one of these plasmids, pGS9, yields Tn5 insertion mutants of X. nematophilus ATCC 19061. By using these two delivery vehicles, more than 250 putative Tn5 insertion mutants of X. nematophilus ATCC 19061 were isolated and were then characterized. Mutants that were altered in bromothymol blue adsorption, ability to lyse sheep erythrocytes, production of antibiotics on a variety of media, and virulence for Galleria mellonella were found.
Collapse
Affiliation(s)
- J Xu
- Department of Microbiology, Washington State University, Pullman, Washington 99164
| | | | | | | |
Collapse
|
34
|
|
35
|
Abstract
The urinary tract is among the most common sites of bacterial infection, and Escherichia coli is by far the most common species infecting this site. Individuals at high risk for symptomatic urinary tract infection (UTI) include neonates, preschool girls, sexually active women, and elderly women and men. E. coli that cause the majority of UTIs are thought to represent only a subset of the strains that colonize the colon. E. coli strains that cause UTIs are termed uropathogenic E. coli (UPEC). In general, UPEC strains differ from commensal E. coli strains in that the former possess extragenetic material, often on pathogenicity-associated islands (PAIs), which code for gene products that may contribute to bacterial pathogenesis. Some of these genes allow UPEC to express determinants that are proposed to play roles in disease. These factors include hemolysins, secreted proteins, specific lipopolysaccharide and capsule types, iron acquisition systems, and fimbrial adhesions. The current dogma of bacterial pathogenesis identifies adherence, colonization, avoidance of host defenses, and damage to host tissues as events vital for achieving bacterial virulence. These considerations, along with analysis of the E. coli CFT073, UTI89, and 536 genomes and efforts to identify novel virulence genes should advance the field significantly and allow for the development of a comprehensive model of pathogenesis for uropathogenic E. coli.Further study of the adaptive immune response to UTI will be especially critical to refine our understanding and treatment of recurrent infections and to develop vaccines.
Collapse
|
36
|
Amino acid changes in elongation factor Tu of Mycoplasma pneumoniae and Mycoplasma genitalium influence fibronectin binding. Infect Immun 2009; 77:3533-41. [PMID: 19546194 DOI: 10.1128/iai.00081-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma pneumoniae and Mycoplasma genitalium are closely related organisms that cause distinct clinical manifestations and possess different tissue predilections despite their high degree of genome homology. We reported earlier that surface-localized M. pneumoniae elongation factor Tu (EF-Tu(Mp)) mediates binding to the extracellular matrix component fibronectin (Fn) through the carboxyl region of EF-Tu. In this study, we demonstrate that surface-associated M. genitalium EF-Tu (EF-Tu(Mg)), in spite of sharing 96% identity with EF-Tu(Mp), does not bind Fn. We utilized this finding to identify the essential amino acids of EF-Tu(Mp) that mediate Fn interactions by generating modified recombinant EF-Tu proteins with amino acid changes corresponding to those of EF-Tu(Mg). Amino acid changes in serine 343, proline 345, and threonine 357 were sufficient to significantly reduce the Fn binding of EF-Tu(Mp). Synthetic peptides corresponding to this region of EF-Tu(Mp) (EF-Tu(Mp) 340-358) blocked both recombinant EF-Tu(Mp) and radiolabeled M. pneumoniae cell binding to Fn. In contrast, EF-Tu(Mg) 340-358 peptides exhibited minimal blocking activity, reinforcing the specificity of EF-Tu-Fn interactions as mediators of microbial colonization and tissue tropism.
Collapse
|
37
|
Buckles EL, Wang X, Lane MC, Lockatell CV, Johnson DE, Rasko DA, Mobley HLT, Donnenberg MS. Role of the K2 capsule in Escherichia coli urinary tract infection and serum resistance. J Infect Dis 2009; 199:1689-97. [PMID: 19432551 PMCID: PMC3872369 DOI: 10.1086/598524] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Capsule expression may be important during ascending Escherichia coli urinary tract infections (UTIs). METHODS An isogenic ksl(k2)ABCDE mutant of extraintestinal pathogenic E. coli (ExPEC) strain CFT073 that could not synthesize the K2 capsule was compared with wild-type CFT073, to determine virulence in a murine model of ascending UTI and in vitro killing assays. RESULTS No significant differences were observed regarding the abilities of the mutant and the wild-type CFT073 strains to colonize the murine urinary tract in single-challenge infection experiments. However, in competitive-colonization experiments, the mutant was significantly outcompeted by the wild-type strain in urine and the kidneys. The mutant strain was also more susceptible to human serum. Complementation of the mutant with a plasmid containing the ksl(k2)ABCDE genes restored capsule expression, enhanced survival in the murine urinary tract, and restored serum resistance. CONCLUSION These results indicate that expression of the K2 capsule is important for the pathogenesis of UTI and provides protection against complement-mediated killing. To our knowledge, this is the first study in which the E. coli capsule has been proven to play a role in infection by use of isogenic mutants and genetic complementation.
Collapse
Affiliation(s)
- Eric L. Buckles
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Xiaolin Wang
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - M. Chelsea Lane
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor
| | - C. Virginia Lockatell
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - David E. Johnson
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Veterans Affairs, Baltimore, Maryland
| | - David A. Rasko
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor
| | - Michael S. Donnenberg
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
38
|
Sammons-Jackson WL, McClelland K, Manch-Citron JN, Metzger DW, Bakshi CS, Garcia E, Rasley A, Anderson BE. Generation and characterization of an attenuated mutant in a response regulator gene of Francisella tularensis live vaccine strain (LVS). DNA Cell Biol 2008; 27:387-403. [PMID: 18613792 DOI: 10.1089/dna.2007.0687] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Francisella tularensis is a zoonotic bacterium that must exist in diverse environments ranging from arthropod vectors to mammalian hosts. To better understand how virulence genes are regulated in these different environments, a transcriptional response regulator gene (genome locus FTL0552) was deleted in F. tularensis live vaccine strain (LVS). The FTL0552 deletion mutant exhibited slightly reduced rates of extracellular growth but was unable to replicate or survive in mouse macrophages and was avirulent in the mouse model using either BALB/c or C57BL/6 mice. Mice infected with the FTL0552 mutant produced reduced levels of inflammatory cytokines, exhibited reduced histopathology, and cleared the bacteria quicker than mice infected with LVS. Mice that survived infection with the FTL0552 mutant were afforded partial protection when challenged with a lethal dose of the virulent SchuS4 strain (4 of 10 survivors, day 21 postinfection) when compared to naive mice (0 of 10 survivors by day 7 postinfection). Microarray experiments indicate that 148 genes are regulated by FTL0552. Most of the genes are downregulated, indicating that FTL0552 controls transcription of genes in a positive manner. Genes regulated by FTL0552 include genes located within the Francisella pathogenicity island that are essential for intracellular survival and virulence of F. tularensis. Further, a mutant in FTL0552 or the comparable locus in SchuS4 (FTT1557c) may be an alternative candidate vaccine for tularemia.
Collapse
Affiliation(s)
- Wendy L Sammons-Jackson
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Hull JR, Tamura GS, Castner DG. Interactions of the streptococcal C5a peptidase with human fibronectin. Acta Biomater 2008; 4:504-13. [PMID: 18313373 DOI: 10.1016/j.actbio.2008.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 01/04/2008] [Accepted: 01/15/2008] [Indexed: 11/26/2022]
Abstract
Group B Streptococci (GBS) is a leading cause of sepsis and meningitis in neonates and immunocompromised adults in western countries. GBS do not bind to fibronectin (Fn) in solution, but will bind to Fn adsorbed onto a solid surface. The reason for the specificity of this binding is unknown. Single molecule force spectroscopy was used to test the hypothesis that GBS, through streptococcal C5a peptidase (ScpB) molecules present on the surface of the bacteria, binds to a motif created by the juxtaposition of multiple adjacent Fn molecules. Atomic force microscopy (AFM) topographical images of adsorbed Fn deposited from various Fn coating concentrations were used to determine the Fn surface concentration. ScpB was tethered to an AFM tip with all surface modifications characterized by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. At the lowest Fn coverages the probability of observing a ScpB-Fn binding event increased linearly with Fn surface coverage. As an Fn monolayer was reached the probability of a ScpB-Fn binding event occurring increased markedly ( approximately 50 fold), with a concomitant increase in the rupture force from 17 pN to 33 pN. These results are consistent with the hypothesis that ScpB binds to a motif created by the juxtaposition of multiple Fn molecules.
Collapse
|
40
|
Kim KP, Loessner MJ. Enterobacter sakazakii invasion in human intestinal Caco-2 cells requires the host cell cytoskeleton and is enhanced by disruption of tight junction. Infect Immun 2008; 76:562-70. [PMID: 18070906 PMCID: PMC2223463 DOI: 10.1128/iai.00937-07] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 08/26/2007] [Accepted: 11/17/2007] [Indexed: 11/20/2022] Open
Abstract
Enterobacter sakazakii is an opportunistic pathogen that causes systemic bacteremia and meningitis with high mortality, and powdered infant formula is a frequent source of this bacterium. However, the mechanisms that this organism uses to invade and translocate through the intestinal barrier are unknown. Using Caco-2 epithelial cells, we were able to demonstrate penetration of E. sakazakii and to determine invasion-associated properties. We found that E. sakazakii entry and invasion were dependent on the exposure time and multiplicity of infection and required bacterial de novo protein synthesis but was independent of cell polarity in the presence of tight junctions. Moreover, the presence of actin filaments and microtubule structures was required, and disruption of the tight junction significantly enhanced the initial association with Caco-2 cells and the efficiency of invasion, which provides a possible explanation for the preferential occurrence of this infection in babies and neonates. This is the first description of E. sakazakii invasion of host intestinal cells, and our findings suggest that this emerging pathogen employs a novel invasion mechanism for development of systemic infection.
Collapse
Affiliation(s)
- Kwang-Pyo Kim
- Institute of Food Science and Nutrition, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | | |
Collapse
|
41
|
Moelleken K, Hegemann JH. The Chlamydia outer membrane protein OmcB is required for adhesion and exhibits biovar-specific differences in glycosaminoglycan binding. Mol Microbiol 2007; 67:403-19. [PMID: 18086188 PMCID: PMC2229832 DOI: 10.1111/j.1365-2958.2007.06050.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chlamydia pneumoniae, an obligate intracellular human pathogen, causes a number of respiratory diseases. We explored the role of the conserved OmcB protein in C. pneumoniae infections, using yeast display technology. (i) Yeast cells presenting OmcB were found to adhere to human epithelial cells. (ii) Pre-incubation of OmcB yeast cells with heparin, but not other glycosaminoglycans (GAGs), abrogated adhesion. (iii) Pre-treatment of the target cells with heparinase inhibited adherence, and GAG-deficient CHO cell lines failed to bind OmcB yeast. (iv) A heparin-binding motif present near the N-terminus of OmcB is required for host cell binding. (v) Pre-treatment of chlamydial elementary bodies (EBs) with anti-OmcB antibody or pre-incubation of target cells with recombinant OmcB protein reduced infectivity upon challenge with C. pneumoniae. (vi) Adhesion of fluorescently labelled EBs to epithelial or endothelial cells was abrogated by prior addition of heparin or OmcB protein. Thus, C. pneumoniae OmcB is an adhesin that binds heparan sulphate-like GAGs. OmcB from Chlamydia trachomatis serovar L1 also adheres to human cells in a heparin-dependent way, unlike its counterpart from serovar E. We show that a single position in the OmcB sequence determines heparin dependence/independence, and variations there may reflect differences between the two serovars in cell tropism and disease pattern.
Collapse
Affiliation(s)
- Katja Moelleken
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | | |
Collapse
|
42
|
Dey R, Khan S, Pahari S, Srivastava N, Jadhav M, Saha B. Functional paradox in host–pathogen interaction dictates the fate of parasites. Future Microbiol 2007; 2:425-37. [PMID: 17683278 DOI: 10.2217/17460913.2.4.425] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The interactions between the protozoan parasite Leishmania and host macrophages are complex and involve several paradoxical functions that are meant for protection of the host but exploited by the parasite for its survival. The initial interaction of the parasite surface molecules with the host-cell receptors plays a major role in the final outcome of the disease state. While the interactions between macrophages and a virulent strain of Leishmania trigger a cascade of cell-signaling events leading to immunosuppression, the interaction with an avirulent strain triggers host-protective immune effector functions. Thus, an incisive study on Leishmania–macrophage interactions reveals functional paradoxes that highlight the concept of ‘relativity in parasite virulence’. Using Leishmania infection as a model, we propose that virulence of a pathogen and the resistance (or susceptibility) of a host to the pathogen are relative properties that equate to combinatorial functions of several sets of molecular processes.
Collapse
Affiliation(s)
- Ranadhir Dey
- National Centre for Cell Science, Ganeshkhind, Pune, India.
| | | | | | | | | | | |
Collapse
|
43
|
Camacho DP, Gasparetto A, Svidzinski TIE. The effect of chlorhexidine and gentian violet on the adherence of Candida spp. to urinary catheters. Mycopathologia 2007; 163:261-6. [PMID: 17436118 DOI: 10.1007/s11046-007-9007-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 03/07/2007] [Indexed: 10/23/2022]
Abstract
Urinary tract infection associated with catheters is the most common infection in the hospital environment. The adherence of microorganisms to the surface is a determining factor in colonization and infection. Antiseptics such as chlorhexidine and gentian violet have been shown to be effective against yeasts, as well as having low toxicity and being low-cost. The objective of the present study was to evaluate whether prior treatment of siliconized latex urinary catheters with antiseptics reduces the adherence of yeasts. Two reference strains of C. albicans (ATCC 645448 and ATCC 90028) and six strains isolated from catheter, two each of C. albicans, C. tropicalis, and C. parapsilosis, were used. An in vitro study of adherence was carried out with previously treated catheters, in separate experiments of 1 h and 24 h of incubation under continued shaking. The relative hydrophobicity of the cell surface of the yeasts before and after 1 h of exposure to chlorhexidine was determined. The results demonstrated that both treatments were effective in controlling the adherence of yeast to the catheter (P < 0.0001), and that the hydrophobicity of the eight strains significantly increased after contact with chlorhexidine (P < 0.0001). These results suggest that the antimicrobial activity of chlorhexidine and gentian violet reduces the adherence of the microorganisms to the catheter.
Collapse
Affiliation(s)
- D P Camacho
- Division of Medical Mycology - Teaching and Research in Clinical Analysis Laboratory, State University of Maringá, Maringa, Parana, Brazil
| | | | | |
Collapse
|
44
|
Coutinho-Silva R, Monteiro da Cruz C, Persechini PM, Ojcius DM. The role of P2 receptors in controlling infections by intracellular pathogens. Purinergic Signal 2007; 3:83-90. [PMID: 18404421 PMCID: PMC2096763 DOI: 10.1007/s11302-006-9039-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Accepted: 01/13/2006] [Indexed: 01/10/2023] Open
Abstract
A growing number of studies have demonstrated the importance of ATP(e)-signalling via P2 receptors as an important component of the inflammatory response to infection. More recent studies have shown that ATP(e) can also have a direct effect on infection by intracellular pathogens, by modulating membrane trafficking in cells that contain vacuoles that harbour intracellular pathogens, such as mycobacteria and chlamydiae. A conserved mechanism appears to be involved in controlling infection by both of these pathogens, as a role for phospholipase D in inducing fusion between lysosomes and the vacuoles has been demonstrated. Other P2-dependent mechanisms are most likely operative in the cases of pathogens, such as Leishmania, which survive in an acidic phagolysosomal-like compartment. ATP(e) may function as a "danger signal" that alerts the immune system to the presence of intracellular pathogens that damage the host cell, while different intracellular pathogens have evolved enzymes or other mechanisms to inhibit ATP(e)-mediated signalling, which should, thus, be viewed as virulence factors for these pathogens.
Collapse
Affiliation(s)
- Robson Coutinho-Silva
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Bloco G do CCS, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, 21941-590, Brazil,
| | | | | | | |
Collapse
|
45
|
Goldberg JB. Bacteria respond to host cell lysophospholipids. Future Microbiol 2006. [DOI: 10.2217/17460913.1.3.267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evaluation of: Subramanian N, Qadri A.: Lysophospholipid sensing triggers secretion of flagellin from pathogenic Salmonella. Nat. Immunol. 7(6), 583–589 (2006). The ability of host cells to detect pathogen-specific molecules has now become readily appreciated. Toll-like receptors can detect conserved structures on pathogens and once recognized can trigger an innate immune response. In this report, Subramanian and Qadri present evidence that the host does not simply respond to the presence of bacteria or bacterial factors, but can also trick pathogens into revealing themselves by inducing the secretion of one of these pathogen-associated molecules.
Collapse
Affiliation(s)
- Joanna B Goldberg
- University of Virginia, Department of Microbiology, Charlottesville, VA 22908-0734, USA
| |
Collapse
|
46
|
Li Y, Zhang Q, Winterbotham M, Mowe E, Gorringe A, Tang CM. Immunization with live Neisseria lactamica protects mice against meningococcal challenge and can elicit serum bactericidal antibodies. Infect Immun 2006; 74:6348-55. [PMID: 16966413 PMCID: PMC1695536 DOI: 10.1128/iai.01062-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural immunity against Neisseria meningitidis is thought to develop following nasopharyngeal colonization with this bacterium or other microbes expressing cross-reactive antigens. Neisseria lactamica is a commensal of the upper respiratory tract which is often carried by infants and young children; epidemiological evidence indicates that colonization with this bacterium can elicit serum bactericidal activity (SBA) against Neisseria meningitidis, the most validated correlate of protective immunity. Here we demonstrate experimentally that immunization of mice with live N. lactamica protects animals against lethal meningococcal challenge and that some, but not all, strains of N. lactamica elicit detectable SBA in immunized animals regardless of the serogroup of N. meningitidis. While it is unlikely that immunization with live N. lactamica will be implemented as a vaccine against meningococcal disease, understanding the basis for the induction of cross-protective immunity and SBA should be valuable in the design of subunit vaccines for the prevention of this important human infection.
Collapse
Affiliation(s)
- Yanwen Li
- Centre for Molecular Microbiology and Infection, Department of Infectious Diseases, Flowers Building, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | | | |
Collapse
|
47
|
Bucarey SA, Villagra NA, Martinic MP, Trombert AN, Santiviago CA, Maulén NP, Youderian P, Mora GC. The Salmonella enterica serovar Typhi tsx gene, encoding a nucleoside-specific porin, is essential for prototrophic growth in the absence of nucleosides. Infect Immun 2005; 73:6210-9. [PMID: 16177292 PMCID: PMC1230887 DOI: 10.1128/iai.73.10.6210-6219.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Salmonella enterica serovar Typhi tsx gene encodes a porin that facilitates the import of nucleosides. When serovar Typhi is grown under anaerobic conditions, Tsx is among the outer membrane proteins whose expression increases dramatically. This increase in expression is due, at least in part, to increased transcription and is dependent on Fnr but not on ArcA. A mutant derivative of serovar Typhi strain STH2370 with a deletion of the tsx gene is an auxotroph that requires either adenosine or thymidine for growth on minimal medium. In contrast, an otherwise isogenic nupG nupC double mutant, defective in the inner membrane nucleoside permeases, is a prototroph. Because anaerobic growth enhances the virulence of serovar Typhi in vitro, we assessed the role that the tsx gene plays in pathogenicity and found that the serovar Typhi STH2370 Deltatsx mutant is defective in survival within human macrophage-like U937 cells. To understand why the Deltatsx mutant is an auxotroph, we selected for insertions of minitransposon T-POP in the Deltatsx genetic background that restored prototrophy. One T-POP insertion that suppressed the Deltatsx mutation in the presence of the inducer tetracycline was located upstream of the pyrD gene. The results of reverse transcription-PCR analysis showed that addition of the inducer decreased the rate of pyrD transcription. These results suggest that the Tsx porin and the balance of products of the tsx and pyrD genes play critical roles in membrane assembly and integrity and thus in the virulence of serovar Typhi.
Collapse
Affiliation(s)
- Sergio A Bucarey
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hammerschmidt S, Wolff S, Hocke A, Rosseau S, Müller E, Rohde M. Illustration of pneumococcal polysaccharide capsule during adherence and invasion of epithelial cells. Infect Immun 2005; 73:4653-67. [PMID: 16040978 PMCID: PMC1201225 DOI: 10.1128/iai.73.8.4653-4667.2005] [Citation(s) in RCA: 290] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The capsular polysaccharide of Streptococcus pneumoniae represents an important virulence factor and protects against phagocytosis. In this study the amount of capsular polysaccharide present on the bacterial surface during the infection process was illustrated by electron microscopic studies. After infection of A549 cells (type II pneumocytes) and HEp-2 epithelial cells a modified fixation method was used that allowed visualization of the state of capsule expression. This modified fixation procedure did not require the use of capsule-specific antibodies. Visualization of pneumococci in intimate contact and invading cells demonstrated that pneumococci were devoid of capsular polysaccharide. Pneumococci not in contact with the cells did not show alterations in capsular polysaccharide. After infection of the cells, invasive pneumococci of different strains and serotypes were recovered. Single colonies of these recovered pneumococci exhibited an up-to-10(5)-fold-enhanced capacity to adhere and an up-to-10(4)-fold-enhanced capacity to invade epithelial cells. Electron microscopic studies using a lysine-ruthenium red (LRR) fixation procedure or cryo-field emission scanning electron microscopy revealed a reduction in capsular material, as determined in detail for a serotype 3 pneumococcal strain. The amount of polysaccharide in the serotype 3 capsule was also determined after intranasal infection of mice. This study illustrates for the first time the phenotypic variation of the polysaccharide capsule in the initial phase of pneumococcal infections. The modified LRR fixation allowed monitoring of the state of capsule expression of pathogens during the infectious process.
Collapse
Affiliation(s)
- Sven Hammerschmidt
- Research Center for Infectious Diseases, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
van Diepen A, van de Gevel JS, Koudijs MM, Ossendorp F, Beekhuizen H, Janssen R, van Dissel JT. Gamma irradiation or CD4+-T-cell depletion causes reactivation of latent Salmonella enterica serovar Typhimurium infection in C3H/HeN mice. Infect Immun 2005; 73:2857-62. [PMID: 15845491 PMCID: PMC1087344 DOI: 10.1128/iai.73.5.2857-2862.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Upon infection with Salmonella, a host develops an immune response to limit bacterial growth and kill and eliminate the pathogen. Salmonella has evolved mechanisms to remain dormant within the body, only to reappear (reactivate) at a later time when the immune system is abated. We have developed an in vivo model for studying reactivation of Salmonella enterica serovar Typhimurium infection in mice. Upon subcutaneous infection, C3H/HeN (Ity(r)) mice showed an increase in bacterial numbers in livers and spleens, which reached a peak on day 19. After full recovery from the infection, these mice were irradiated or depleted of CD4(+) T cells. The mice displayed a secondary infection peak in livers and spleens with a course similar to that of the primary infection. We concluded that CD4(+) T cells are involved in active suppression of S. enterica serovar Typhimurium during latency. The role of CD4(+) T cells during primary infection with S. enterica serovar Typhimurium is well established. This is the first study to describe a role of CD4(+) T cells during the latent phase of S. enterica serovar Typhimurium infection.
Collapse
Affiliation(s)
- Angela van Diepen
- Department of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Immunological memory - the ability to 'remember' previously encountered pathogens and respond faster on re-exposure - is a central feature of the immune response of vertebrates. We outline how mathematical models have contributed to our understanding of CD8(+) T-cell memory. Together with experimental data, models have helped to quantitatively describe and to further our understanding of both the generation of memory after infection with a pathogen and the maintenance of this memory throughout the life of an individual.
Collapse
Affiliation(s)
- Rustom Antia
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|