1
|
Tepa-Yotto GT, Douro-Kpindou OK, Koussihouédé PSB, Adjaoké AM, Winsou JK, Tognigban G, Tamò M. Control Potential of Multiple Nucleopolyhedrovirus (SfMNPV) Isolated from Fall Armyworm in Nigeria (West Africa). INSECTS 2024; 15:225. [PMID: 38667355 PMCID: PMC11049893 DOI: 10.3390/insects15040225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024]
Abstract
The fall armyworm (FAW) Spodoptera frugiperda (Lepidoptera, Noctuidae) has now become an invasive pest of global concern. The pest was first detected in Central and Western Africa in early 2016. Sustainable management options explored by stakeholders during early FAW invasion in Africa included the use of biopesticides and biological control. The current study aimed to compare the susceptibility of FAW larvae to SfMNPV with the assumption that the virus isolated from FAW populations in Africa has higher virulence compared with an isolate from Argentina (SfMNPV-ARG). We also hypothesized that host plant plays a role in SfMNPV efficacy and that cannibalism mediates horizontal and vertical transmission of the virus. This work provides pioneering data on the virulence of the new SfMNPV isolate from Nigeria (SfMNPV-KA1), which proved more effective than its exotic counterpart from Argentina (SfMNPV-ARG). The host plant effect made a significant difference between maize and onion with more FAW death in the larvae fed with contaminated onion 5 days post treatment. The study demonstrates and discusses the effect of cannibalism on virus transmission.
Collapse
Affiliation(s)
- Ghislain T. Tepa-Yotto
- Biorisk Management Facility (BIMAF), International Institute of Tropical Agriculture (IITA-Benin), Cotonou 08-01000, Benin; (O.K.D.-K.); (P.S.B.K.); (J.K.W.); (M.T.)
- Ecole de Gestion et de Production Végétale et Semencière (EGPVS), Université Nationale d’Agriculture (UNA), Kétou 43, Benin
| | - Ouorou Kobi Douro-Kpindou
- Biorisk Management Facility (BIMAF), International Institute of Tropical Agriculture (IITA-Benin), Cotonou 08-01000, Benin; (O.K.D.-K.); (P.S.B.K.); (J.K.W.); (M.T.)
| | - Précieux Sèna Bonaventure Koussihouédé
- Biorisk Management Facility (BIMAF), International Institute of Tropical Agriculture (IITA-Benin), Cotonou 08-01000, Benin; (O.K.D.-K.); (P.S.B.K.); (J.K.W.); (M.T.)
| | - Abissi Marc Adjaoké
- Ecole Doctorale des Sciences Agronomiques et de l’Eau (EDSAE), Université Nationale d’Agriculture (UNA), Kétou 43, Benin; (A.M.A.); (G.T.)
| | - Jeannette K. Winsou
- Biorisk Management Facility (BIMAF), International Institute of Tropical Agriculture (IITA-Benin), Cotonou 08-01000, Benin; (O.K.D.-K.); (P.S.B.K.); (J.K.W.); (M.T.)
| | - Ghislain Tognigban
- Ecole Doctorale des Sciences Agronomiques et de l’Eau (EDSAE), Université Nationale d’Agriculture (UNA), Kétou 43, Benin; (A.M.A.); (G.T.)
| | - Manuele Tamò
- Biorisk Management Facility (BIMAF), International Institute of Tropical Agriculture (IITA-Benin), Cotonou 08-01000, Benin; (O.K.D.-K.); (P.S.B.K.); (J.K.W.); (M.T.)
| |
Collapse
|
2
|
Ashok K, Bhargava CN, Asokan R, Pradeep C, Kennedy JS, Manamohan M, Rai A. CRISPR/Cas9 mediated mutagenesis of the major sex pheromone gene, acyl-CoA delta-9 desaturase (DES9) in Fall armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae). Int J Biol Macromol 2023; 253:126557. [PMID: 37657567 DOI: 10.1016/j.ijbiomac.2023.126557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 09/03/2023]
Abstract
The Fall armyworm, Spodoptera frugiperda is a significant global pest causing serious yield loss on several staple crops. In this regard, this pest defies several management approaches based on chemicals, Bt transgenics etc., requiring effective alternatives. Recently CRISPR/Cas9 mediated genome editing has opened up newer avenues to establish functions of various target genes before employing them for further application. The virgin female moths of S. frugiperda emit sex pheromones to draw conspecific males. Therefore, we have edited the key pheromone synthesis gene, fatty acyl-CoA Delta-9 desaturase (DES9) of the Indian population of S. frugiperda. In order to achieve a larger deletion of the DES9, we have designed two single guide RNA (sgRNA) in sense and antisense direction targeting the first exon instead of a single guide RNA. The sgRNA caused site-specific knockout with a larger deletion which impacted the mating. Crossing studies between wild male and mutant female resulted in no fecundity, while fecundity was normal when mutant male crossed with the wild female. This indicates that mating disruption is stronger in females where DES9 is mutated. The current work is the first of its kind to show that DES9 gene editing impacted the likelihood of mating in S. frugiperda.
Collapse
Affiliation(s)
- Karuppannasamy Ashok
- ICAR-Indian Institute of Horticultural Research, Bengaluru 560089, Karnataka, India; Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India.
| | - Chikmagalur Nagaraja Bhargava
- ICAR-Indian Institute of Horticultural Research, Bengaluru 560089, Karnataka, India; University of Agricultural Sciences, Bengaluru 560065, Karnataka, India
| | - Ramasamy Asokan
- ICAR-Indian Institute of Horticultural Research, Bengaluru 560089, Karnataka, India.
| | - Chalapathi Pradeep
- ICAR-Indian Institute of Horticultural Research, Bengaluru 560089, Karnataka, India; University of Agricultural Sciences, Bengaluru 560065, Karnataka, India
| | | | | | - Anil Rai
- ICAR - Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| |
Collapse
|
3
|
Ashok K, Bhargava CN, Asokan R, Pradeep C, Pradhan SK, Kennedy JS, Balasubramani V, Murugan M, Jayakanthan M, Geethalakshmi V, Manamohan M. CRISPR/Cas9 mediated editing of pheromone biosynthesis activating neuropeptide ( PBAN) gene disrupts mating in the Fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae). 3 Biotech 2023; 13:370. [PMID: 37849767 PMCID: PMC10577122 DOI: 10.1007/s13205-023-03798-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
The Fall armyworm, Spodoptera frugiperda, is a globally important invasive pest, primarily on corn, causing severe yield loss. Overuse of synthetic chemicals has caused significant ecological harm, and in many instances control has failed. Therefore, developing efficient, environmentally friendly substitutes for sustainable management of this pest is of high priority. CRISPR/Cas9-mediated gene editing causes site-specific mutations that typically result in loss-of-function of the target gene. In this regard, identifying key genes that govern the reproduction of S. frugiperda and finding ways to introduce mutations in the key genes is very important for successfully managing this pest. In this study, the pheromone biosynthesis activator neuropeptide (PBAN) gene of S. frugiperda was cloned and tested for its function via a loss-of-function approach using CRISPR/Cas9. Ribonucleoprotein (RNP) complex (single guide RNA (sgRNA) targeting the PBAN gene + Cas9 protein) was validated through in vitro restriction assay followed by embryonic microinjection into the G0 stage for in vivo editing of the target gene. Specific suppression of PBAN by CRISPR/Cas9 in females significantly affected mating. Mating studies between wild males and mutant females resulted in no fecundity. This was in contrast to when mutant males were crossed with wild females, which resulted in reduced fecundity. These results suggest that mating disruption is more robust where PBAN is edited in females. The behavioural bioassay using an olfactometer revealed that mutant females were less attractive to wild males compared to wild females. This study is the first of its kind, supporting CRISPR/Cas9 mediating editing of the PBAN gene disrupting mating in S. frugiperda. Understanding the potential use of these molecular techniques may help develop novel management strategies that target other key functional genes. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03798-3.
Collapse
Affiliation(s)
- Karuppannasamy Ashok
- ICAR-Indian Institute of Horticultural Research, Bangalore, Karnataka India
- Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu India
| | - Chikmagalur Nagaraja Bhargava
- ICAR-Indian Institute of Horticultural Research, Bangalore, Karnataka India
- University of Agricultural Sciences, Bangalore, Karnataka India
| | - Ramasamy Asokan
- ICAR-Indian Institute of Horticultural Research, Bangalore, Karnataka India
| | - Chalapathi Pradeep
- ICAR-Indian Institute of Horticultural Research, Bangalore, Karnataka India
- University of Agricultural Sciences, Bangalore, Karnataka India
| | - Sanjay Kumar Pradhan
- ICAR-Indian Institute of Horticultural Research, Bangalore, Karnataka India
- University of Agricultural Sciences, Bangalore, Karnataka India
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
4
|
Mweke A, Rwomushana I, Okello A, Chacha D, Guo J, Luke B. Management of Spodoptera frugiperda J.E. Smith Using Recycled Virus Inoculum from Larvae Treated with Baculovirus under Field Conditions. INSECTS 2023; 14:686. [PMID: 37623396 PMCID: PMC10455994 DOI: 10.3390/insects14080686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
Fall armyworm (FAW) is a major pest of maize and causes huge losses. Chemical pesticides are the commonly used control strategy among farmers. The efficacy of baculoviruses against FAW has been proven; however, farmers may not be able to afford the products. The use of farmer-produced baculovirus mixtures could provide an opportunity for a nature-based solution for FAW at a low cost. This study evaluated the potential of recycled virus inoculum from FAW larvae treated with a commercial baculovirus (Littovir) for the management of FAW under laboratory and field conditions. In the laboratory, the virus from 25, 50, 75 and 100 FAW larvae caused variable mortality among FAW instars. The highest mortality (45%) among 1st-3rd instars was caused by Littovir followed by recycled virus inoculum from 100 FAW larvae (36%). Under field conditions, even though recycled virus inoculum did not offer adequate protection against FAW damage, the maize yield was comparable to that of commercial insecticide-treated plots and similar to that of control plots. This study has shown the potential use of recycled virus inoculum from infected larvae for the management of FAW. This would offer the farmers a sustainable and affordable option for the management of FAW as it would require the farmers to purchase the commercial baculovirus once and collect larvae from treated plots for repeat applications.
Collapse
Affiliation(s)
- Allan Mweke
- Department of Animal Health and Production, School of Pure and Applied Sciences, Mount Kenya University, Thika P.O. Box 342-01000, Kenya
- Centre for Agriculture and Biosciences International (CABI) Africa, Canary Bird, 673 Limuru Road, Muthaiga, Nairobi P.O. Box 633-00621, Kenya
| | - Ivan Rwomushana
- Centre for Agriculture and Biosciences International (CABI) Africa, Canary Bird, 673 Limuru Road, Muthaiga, Nairobi P.O. Box 633-00621, Kenya
| | - Arthur Okello
- Centre for Agriculture and Biosciences International (CABI) Africa, Canary Bird, 673 Limuru Road, Muthaiga, Nairobi P.O. Box 633-00621, Kenya
| | - Duncan Chacha
- Centre for Agriculture and Biosciences International (CABI) Africa, Canary Bird, 673 Limuru Road, Muthaiga, Nairobi P.O. Box 633-00621, Kenya
| | - Jingfei Guo
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences (IPP-CAAS), Beijing 100193, China;
| | - Belinda Luke
- Centre for Agriculture and Biosciences International (CABI), Bakeham Lane, Egham, Surrey TW20 9TY, UK;
| |
Collapse
|
5
|
Moore S, Jukes M. The History of Baculovirology in Africa. Viruses 2023; 15:1519. [PMID: 37515205 PMCID: PMC10383191 DOI: 10.3390/v15071519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Baculovirology has been studied on the African continent for the development of insect virus-based biopesticides and, to a much lesser extent, vaccine production and delivery, since the 1960s. In this review, we focus only on baculoviruses as biopesticides for agricultural pests in Africa. At least 11 species of baculovirus have been discovered or studied on the African continent, some with several distinct isolates, with the objective in most cases being the development of a biopesticide. These include the nucleopolyhedroviruses of Helicoverpa armigera, Cryptophlebia peltastica, Spodoptera exempta, Spodoptera frugiperda, Spodoptera littoralis, and Maruca vitrata, as well as the granuloviruses of Cydia pomonella, Plutella xylostella, Thaumatotibia (Cryptophlebia) leucotreta, Choristoneura occidentalis, and Phthorimaea operculella. Eleven different baculovirus-based biopesticides are recorded as being registered and commercially available on the African continent. Baculoviruses are recorded to have been isolated, researched, utilised in field trials, and/or commercially deployed as biopesticides in at least 13 different African countries. Baculovirus research is ongoing in Africa, and researchers are confident that further novel species and isolates will be discovered, to the benefit of environmentally responsible agricultural pest management, not only in Africa but also elsewhere.
Collapse
Affiliation(s)
- Sean Moore
- Citrus Research International, P.O. Box 5095, Walmer, Gqeberha 6065, South Africa
- Centre for Biological Control, Department of Zoology and Entomology, Rhodes University, P.O. Box 94, Makhanda 6140, South Africa
| | - Michael Jukes
- Centre for Biological Control, Department of Zoology and Entomology, Rhodes University, P.O. Box 94, Makhanda 6140, South Africa
- Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Makhanda 6140, South Africa
| |
Collapse
|
6
|
Hussain AG, Wennmann JT, Goergen G, Bryon A, Ros VI. Viruses of the Fall Armyworm Spodoptera frugiperda: A Review with Prospects for Biological Control. Viruses 2021; 13:v13112220. [PMID: 34835026 PMCID: PMC8625175 DOI: 10.3390/v13112220] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022] Open
Abstract
The fall armyworm (FAW), Spodoptera frugiperda, is a native pest species in the Western hemisphere. Since it was first reported in Africa in 2016, FAW has spread throughout the African continent and is now also present in several countries in Asia as well as Australia. The invasion of FAW in these areas has led to a high yield reduction in crops, leading to huge economic losses. FAW management options in the newly invaded areas are limited and mainly rely on the use of synthetic pesticides. Since there is a risk of resistance development against pesticides in addition to the negative environmental and human health impacts, other effective, sustainable, and cost-efficient control alternatives are desired. Insect pathogenic viruses fulfil these criteria as they are usually effective and highly host-specific with no significant harmful effect on beneficial insects and non-target organisms. In this review, we discuss all viruses known from FAW and their potential to be used for biological control. We specifically focus on baculoviruses and describe the recent advancements in the use of baculoviruses for biological control in the native geographic origin of FAW, and their potential use in the newly invaded areas. Finally, we identify current knowledge gaps and suggest new avenues for productive research on the use of viruses as a biopesticide against FAW.
Collapse
Affiliation(s)
- Ahmed G. Hussain
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (A.G.H.); (A.B.)
| | - Jörg T. Wennmann
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Biological Control, Heinrichstr. 243, 64287 Darmstadt, Germany;
| | - Georg Goergen
- International Institute of Tropical Agriculture (IITA), Biological Control Centre for Africa, Cotonou 08 BP 0932, Benin;
| | - Astrid Bryon
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (A.G.H.); (A.B.)
| | - Vera I.D. Ros
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (A.G.H.); (A.B.)
- Correspondence:
| |
Collapse
|