1
|
Dutta D, Naiyer S, Mansuri S, Soni N, Singh V, Bhat KH, Singh N, Arora G, Mansuri MS. COVID-19 Diagnosis: A Comprehensive Review of the RT-qPCR Method for Detection of SARS-CoV-2. Diagnostics (Basel) 2022; 12:diagnostics12061503. [PMID: 35741313 PMCID: PMC9221722 DOI: 10.3390/diagnostics12061503] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 12/15/2022] Open
Abstract
The world is grappling with the coronavirus disease 2019 (COVID-19) pandemic, the causative agent of which is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 symptoms are similar to the common cold, including fever, sore throat, cough, muscle and chest pain, brain fog, dyspnoea, anosmia, ageusia, and headache. The manifestation of the disease can vary from being asymptomatic to severe life-threatening conditions warranting hospitalization and ventilation support. Furthermore, the emergence of mutecated variants of concern (VOCs) is paramount to the devastating effect of the pandemic. This highly contagious virus and its emergent variants challenge the available advanced viral diagnostic methods for high-accuracy testing with faster result yields. This review is to shed light on the natural history, pathology, molecular biology, and efficient diagnostic methods of COVID-19, detecting SARS-CoV-2 in collected samples. We reviewed the gold standard RT-qPCR method for COVID-19 diagnosis to confer a better understanding and application to combat the COVID-19 pandemic. This comprehensive review may further develop awareness about the management of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Debashis Dutta
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: (D.D.); (M.S.M.)
| | - Sarah Naiyer
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60616, USA;
| | | | - Neeraj Soni
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Vandana Singh
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Khalid Hussain Bhat
- SKUAST Kashmir, Division of Basic Science and Humanities, Faculty of Agriculture, Wadura Sopore 193201, JK, India;
| | - Nishant Singh
- Cell and Gene Therapy Absorption System, Exton, PA 19335, USA;
| | - Gunjan Arora
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - M. Shahid Mansuri
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Correspondence: (D.D.); (M.S.M.)
| |
Collapse
|
2
|
Gehrke SG, Förderer C, Weiskirchen R, Stremmel W. Cold traps as reliable devices for quantitative determination of SARS-CoV-2 load in aerosols. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:778. [PMID: 34748093 PMCID: PMC8573756 DOI: 10.1007/s10661-021-09580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Spread of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is a demanding challenge. This is of particular importance in schools and public areas of unavoidable access. New viral mutations may increase infectivity and require even better methods to identify areas of potential hazards. High-throughput SARS-CoV-2 testing and legal restrictions are not effective in order to get the current outbreak under control. The occurrence of new SARS-CoV-2 variants with a higher transmissibility requires efficient strategies for early detection and surveillance. Until today, testing focuses on nasal or pharyngeal mucosa swabs, neglecting the origin of aerosolic transmission, thus failing to detect the spread by carriers of the virus. Therefore, in this study, SARS-CoV-2 RNA levels were determined by quantitative real time PCR in aerosols collected by non-powered cold traps. SARS-CoV-2 spreading kinetics were recorded in indoor hotspots within a high-endemic area. These hotspots included a SARS-CoV-2 isolation unit, an outpatient endoscopy facility, a concert hall, and a shopping mall. For determination of viral presence aerosols were collected by cold traps positioned at different locations in the area of interest over a period of 4-6 h. Indoor SARS-CoV-2 hotspots were found in non-ventilated areas and in zones that are predisposed to a buoyancy (chimney) effect. SARS-CoV-2 RNA in those aerosols reached concentrations of 105 copies/mL, while extensive outdoor air ventilation reliably eliminated SARS-CoV-2 aerosol contamination. The method presented herein is effective for the identification of SARS-CoV-2 indoor hotspots and may help to characterize the spreading kinetics of SARS-CoV-2. Moreover, it can be used for the surveillance of emerging SARS-CoV-2 variants. Due to low costs and easy handling, the procedure might enable efficient algorithms for COVID-19 screening and prevention.
Collapse
Affiliation(s)
- Sven G Gehrke
- Medical Center Baden-Baden, Beethovenstr. 2, Baden-Baden, 76530, Germany.
| | - Claudia Förderer
- Medical Center Baden-Baden, Beethovenstr. 2, Baden-Baden, 76530, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, 52074, Germany.
| | - Wolfgang Stremmel
- Medical Center Baden-Baden, Beethovenstr. 2, Baden-Baden, 76530, Germany
| |
Collapse
|