1
|
Peterson AJ, Hall RA, Harrison JJ, Hobson-Peters J, Hugo LE. Unleashing Nature's Allies: Comparing the Vertical Transmission Dynamics of Insect-Specific and Vertebrate-Infecting Flaviviruses in Mosquitoes. Viruses 2024; 16:1499. [PMID: 39339975 PMCID: PMC11437461 DOI: 10.3390/v16091499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Insect-specific viruses (ISVs) include viruses that are restricted to the infection of mosquitoes and are spread mostly through transovarial transmission. Despite using a distinct mode of transmission, ISVs are often phylogenetically related to arthropod-borne viruses (arboviruses) that are responsible for human diseases and able to infect both mosquitoes and vertebrates. ISVs can also induce a phenomenon called "superinfection exclusion", whereby a primary ISV infection in an insect inhibits subsequent viral infections of the insect. This has sparked interest in the use of ISVs for the control of pathogenic arboviruses transmitted by mosquitoes. In particular, insect-specific flaviviruses (ISFs) have been shown to inhibit infection of vertebrate-infecting flaviviruses (VIFs) both in vitro and in vivo. This has shown potential as a new and ecologically friendly biological approach to the control of arboviral disease. For this intervention to have lasting impacts for biological control, it is imperative that ISFs are maintained in mosquito populations with high rates of vertical transmission. Therefore, these strategies will need to optimise vertical transmission of ISFs in order to establish persistently infected mosquito lines for sustainable arbovirus control. This review compares recent observations of vertical transmission of arboviral and insect-specific flaviviruses and potential determinants of transovarial transmission rates to understand how the vertical transmission of ISFs may be optimised for effective arboviral control.
Collapse
Affiliation(s)
- Alyssa J Peterson
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Roy A Hall
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, Brisbane, QLD 4072, Australia
| | - Jessica J Harrison
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, Brisbane, QLD 4072, Australia
| | - Leon E Hugo
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- Australian Infectious Diseases Research Centre, Brisbane, QLD 4072, Australia
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
2
|
Harrison JJ, Nguyen W, Morgan MS, Tang B, Habarugira G, de Malmanche H, Freney ME, Modhiran N, Watterson D, Cox AL, Yan K, Yuen NKY, Bowman DH, Kirkland PD, Bielefeldt-Ohmann H, Suhrbier A, Hall RA, Rawle DJ, Hobson-Peters J. A chimeric vaccine derived from Australian genotype IV Japanese encephalitis virus protects mice from lethal challenge. NPJ Vaccines 2024; 9:134. [PMID: 39085247 PMCID: PMC11291493 DOI: 10.1038/s41541-024-00903-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/23/2024] [Indexed: 08/02/2024] Open
Abstract
In 2022, a genotype IV (GIV) strain of Japanese encephalitis virus (JEV) caused an unprecedented and widespread outbreak of disease in pigs and humans in Australia. As no veterinary vaccines against JEV are approved in Australia and all current approved human and veterinary vaccines are derived from genotype (G) III JEV strains, we used the recently described insect-specific Binjari virus (BinJV) chimeric flavivirus vaccine technology to produce a JEV GIV vaccine candidate. Herein we describe the production of a chimeric virus displaying the structural prM and E proteins of a JEV GIV isolate obtained from a stillborn piglet (JEVNSW/22) in the genomic backbone of BinJV (BinJ/JEVNSW/22-prME). BinJ/JEVNSW/22-prME was shown to be antigenically indistinguishable from the JEVNSW/22 parental virus by KD analysis and a panel of JEV-reactive monoclonal antibodies in ELISA. BinJ/JEVNSW/22-prME replicated efficiently in C6/36 cells, reaching titres of >107 infectious units/mL - an important attribute for vaccine manufacture. As expected, BinJ/JEVNSW/22-prME failed to replicate in a variety of vertebrate cells lines. When used to immunise mice, the vaccine induced a potent virus neutralising response against JEVNSW/22 and to GII and GIII JEV strains. The BinJ/JEVNSW/22-prME vaccine provided complete protection against lethal challenge with JEVNSW/22, whilst also providing partial protection against viraemia and disease for the related Murray Valley encephalitis virus. Our results demonstrate that BinJ/JEVNSW/22-prME is a promising vaccine candidate against JEV.
Collapse
Affiliation(s)
- Jessica J Harrison
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Wilson Nguyen
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia
| | - Mahali S Morgan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Bing Tang
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia
| | - Gervais Habarugira
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Henry de Malmanche
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Morgan E Freney
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
- Australian Infectious Disease Research Centre, Brisbane, 4072, 4029, Australia
| | - Abigail L Cox
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia
| | - Kexin Yan
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia
| | - Nicholas K Y Yuen
- School of Veterinary Science, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Dylan H Bowman
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Peter D Kirkland
- Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, 2568, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
- Australian Infectious Disease Research Centre, Brisbane, 4072, 4029, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia
- Australian Infectious Disease Research Centre, Brisbane, 4072, 4029, Australia
| | - Roy A Hall
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
- Australian Infectious Disease Research Centre, Brisbane, 4072, 4029, Australia
| | - Daniel J Rawle
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia.
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia.
- Australian Infectious Disease Research Centre, Brisbane, 4072, 4029, Australia.
| |
Collapse
|
3
|
Wang LL, Cheng Q, Newton ND, Wolfinger MT, Morgan MS, Slonchak A, Khromykh AA, Cheng TY, Parry RH. Xinyang flavivirus, from Haemaphysalis flava ticks in Henan Province, China, defines a basal, likely tick-only Orthoflavivirus clade. J Gen Virol 2024; 105:001991. [PMID: 38809251 PMCID: PMC11165663 DOI: 10.1099/jgv.0.001991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024] Open
Abstract
Tick-borne orthoflaviviruses (TBFs) are classified into three conventional groups based on genetics and ecology: mammalian, seabird and probable-TBF group. Recently, a fourth basal group has been identified in Rhipicephalus ticks from Africa: Mpulungu flavivirus (MPFV) in Zambia and Ngoye virus (NGOV) in Senegal. Despite attempts, isolating these viruses in vertebrate and invertebrate cell lines or intracerebral injection of newborn mice with virus-containing homogenates has remained unsuccessful. In this study, we report the discovery of Xinyang flavivirus (XiFV) in Haemaphysalis flava ticks from Xìnyáng, Henan Province, China. Phylogenetic analysis shows that XiFV was most closely related to MPFV and NGOV, marking the first identification of this tick orthoflavivirus group in Asia. We developed a reverse transcriptase quantitative PCR assay to screen wild-collected ticks and egg clutches, with absolute infection rates of 20.75 % in adult females and 15.19 % in egg clutches, suggesting that XiFV could be potentially spread through transovarial transmission. To examine potential host range, dinucleotide composition analyses revealed that XiFV, MPFV and NGOV share a closer composition to classical insect-specific orthoflaviviruses than to vertebrate-infecting TBFs, suggesting that XiFV could be a tick-only orthoflavivirus. Additionally, both XiFV and MPFV lack a furin cleavage site in the prM protein, unlike other TBFs, suggesting these viruses might exist towards a biased immature particle state. To examine this, chimeric Binjari virus with XIFV-prME (bXiFV) was generated, purified and analysed by SDS-PAGE and negative-stain transmission electron microscopy, suggesting prototypical orthoflavivirus size (~50 nm) and bias towards uncleaved prM. In silico structural analyses of the 3'-untranslated regions show that XiFV forms up to five pseudo-knot-containing stem-loops and a prototypical orthoflavivirus dumbbell element, suggesting the potential for multiple exoribonuclease-resistant RNA structures.
Collapse
Affiliation(s)
- Lan-Lan Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, PR China
| | - Qia Cheng
- Children’s Medical Center, Hunan Provincial People’s Hospital, Changsha, PR China
| | - Natalee D. Newton
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Michael T. Wolfinger
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria
- Research Group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- RNA Forecast e.U., Vienna, Austria
| | - Mahali S. Morgan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Andrii Slonchak
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- GVN Center of Excellence, Australian Infectious Diseases Research Centre, Brisbane, QLD, Australia
| | - Tian-Yin Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, PR China
| | - Rhys H. Parry
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Zhang HQ, Li N, Zhang ZR, Deng CL, Xia H, Ye HQ, Yuan ZM, Zhang B. A Chimeric Classical Insect-Specific Flavivirus Provides Complete Protection Against West Nile Virus Lethal Challenge in Mice. J Infect Dis 2024; 229:43-53. [PMID: 37368353 DOI: 10.1093/infdis/jiad238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023] Open
Abstract
West Nile virus (WNV), an arthropod-borne flavivirus, can cause severe symptoms, including encephalitis, and death, posing a threat to public health and the economy. However, there is still no approved treatment or vaccine available for humans. Here, we developed a novel vaccine platform based on a classical insect-specific flavivirus (cISF) YN15-283-02, which was derived from Culicoides. The cISF-WNV chimera was constructed by replacing prME structural genes of the infectious YN15-283-02 cDNA clone with those of WNV and successfully rescued in Aedes albopictus cells. cISF-WNV was nonreplicable in vertebrate cells and nonpathogenic in type I interferon receptor (IFNAR)-deficient mice. A single-dose immunization of cISF-WNV elicited considerable Th1-biased antibody responses in C57BL/6 mice, which was sufficient to offer complete protection against lethal WNV challenge with no symptoms. Our studies demonstrated the potential of the insect-specific cISF-WNV as a prophylactic vaccine candidate to prevent infection with WNV.
Collapse
Affiliation(s)
- Hong-Qing Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Na Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Zhe-Rui Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Cheng-Lin Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Han Xia
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Hubei Jiangxia Laboratory, Wuhan, China
| | - Han-Qing Ye
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Ming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Hubei Jiangxia Laboratory, Wuhan, China
| |
Collapse
|
5
|
Meyers G, Tews BA. Self-Replicating RNA Derived from the Genomes of Positive-Strand RNA Viruses. Methods Mol Biol 2024; 2786:25-49. [PMID: 38814389 DOI: 10.1007/978-1-0716-3770-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Self-replicating RNA derived from the genomes of positive-strand RNA viruses represents a powerful tool for both molecular studies on virus biology and approaches to novel safe and effective vaccines. The following chapter summarizes the principles how such RNAs can be established and used for design of vaccines. Due to the large variety of strategies needed to circumvent specific pitfalls in the design of such constructs the technical details of the experiments are not described here but can be found in the cited literature.
Collapse
Affiliation(s)
- Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Birke Andrea Tews
- Institut für Infektionsmedizin, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
6
|
Tabata K, Itakura Y, Ariizumi T, Igarashi M, Kobayashi H, Intaruck K, Kishimoto M, Kobayashi S, Hall WW, Sasaki M, Sawa H, Orba Y. Development of flavivirus subviral particles with low cross-reactivity by mutations of a distinct antigenic domain. Appl Microbiol Biotechnol 2023; 107:7515-7529. [PMID: 37831184 PMCID: PMC10656323 DOI: 10.1007/s00253-023-12817-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/04/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
The most conserved fusion loop (FL) domain present in the flavivirus envelope protein has been reported as a dominant epitope for cross-reactive antibodies to mosquito-borne flaviviruses (MBFVs). As a result, establishing accurate serodiagnosis for MBFV infections has been difficult as anti-FL antibodies are induced by both natural infection and following vaccination. In this study, we modified the most conserved FL domain to overcome this cross-reactivity. We showed that the FL domain of lineage I insect-specific flavivirus (ISFV) has differences in antigenicity from those of MBFVs and lineage II ISFV and determined the key amino acid residues (G106, L107, or F108), which contribute to the antigenic difference. These mutations were subsequently introduced into subviral particles (SVPs) of dengue virus type 2 (DENV2), Zika virus (ZIKV), Japanese encephalitis virus (JEV), and West Nile virus (WNV). In indirect enzyme-linked immunosorbent assays (ELISAs), these SVP mutants when used as antigens reduced the binding of cross-reactive IgG and total Ig induced by infection of ZIKV, JEV, and WNV in mice and enabled the sensitive detection of virus-specific antibodies. Furthermore, immunization of ZIKV or JEV SVP mutants provoked the production of antibodies with lower cross-reactivity to heterologous MBFV antigens compared to immunization with the wild-type SVPs in mice. This study highlights the effectiveness of introducing mutations in the FL domain in MBFV SVPs with lineage I ISFV-derived amino acids to produce SVP antigens with low cross-reactivity and demonstrates an improvement in the accuracy of indirect ELISA-based serodiagnosis for MBFV infections. KEY POINTS: • The FL domain of Lineage I ISFV has a different antigenicity from that of MBFVs. • Mutated SVPs reduce the binding of cross-reactive antibodies in indirect ELISAs. • Inoculation of mutated SVPs induces antibodies with low cross-reactivity.
Collapse
Affiliation(s)
- Koshiro Tabata
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, 001-0021, Japan
| | - Yukari Itakura
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, 001-0021, Japan
| | - Takuma Ariizumi
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
| | - Manabu Igarashi
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo, N20, W10001-0020, Japan
| | - Hiroko Kobayashi
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
| | - Kittiya Intaruck
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
| | - Mai Kishimoto
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
- Laboratory of Veterinary Microbiology, Osaka Metropolitan University, Izumisano, 598-8531, Japan
| | - Shintaro Kobayashi
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060‑0818, Japan
| | - William W Hall
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo, N20, W10001-0020, Japan
- Global Virus Network, Baltimore, MD, 21201, USA
- National Virus Reference Laboratory, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, 001-0021, Japan
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, 001-0021, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo, N20, W10001-0020, Japan
- Global Virus Network, Baltimore, MD, 21201, USA
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan.
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, 001-0021, Japan.
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo, N20, W10001-0020, Japan.
| |
Collapse
|
7
|
Dong HL, He MJ, Wang QY, Cui JZ, Chen ZL, Xiong XH, Zhang LC, Cheng H, Xiong GQ, Hu A, Lu YY, Cheng CL, Meng ZX, Zhu C, Zhao G, Liu G, Chen HP. Rapid Generation of Recombinant Flaviviruses Using Circular Polymerase Extension Reaction. Vaccines (Basel) 2023; 11:1250. [PMID: 37515065 PMCID: PMC10383701 DOI: 10.3390/vaccines11071250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The genus Flavivirus is a group of arthropod-borne single-stranded RNA viruses, which includes important human and animal pathogens such as Japanese encephalitis virus (JEV), Zika virus (ZIKV), Dengue virus (DENV), yellow fever virus (YFV), West Nile virus (WNV), and Tick-borne encephalitis virus (TBEV). Reverse genetics has been a useful tool for understanding biological properties and the pathogenesis of flaviviruses. However, the conventional construction of full-length infectious clones for flavivirus is time-consuming and difficult due to the toxicity of the flavivirus genome to E. coli. Herein, we applied a simple, rapid, and bacterium-free circular polymerase extension reaction (CPER) method to synthesize recombinant flaviviruses in vertebrate cells as well as insect cells. We started with the de novo synthesis of the JEV vaccine strain SA-14-14-2 in Vero cells using CPER, and then modified the CPER method to recover insect-specific flaviviruses (ISFs) in mosquito C6/36 cells. Chimeric Zika virus (ChinZIKV) based on the Chaoyang virus (CYV) backbone and the Culex flavivirus reporter virus expressing green fluorescent protein (CxFV-GFP) were subsequently rescued in C6/36 cells. CPER is a simple method for the rapid generation of flaviviruses and other potential RNA viruses. A CPER-based recovery system for flaviviruses of different host ranges was established, which would facilitate the development of countermeasures against flavivirus outbreaks in the future.
Collapse
Affiliation(s)
- Hao-Long Dong
- Academy of Military Medical Sciences, Beijing 100071, China
| | - Mei-Juan He
- Academy of Military Medical Sciences, Beijing 100071, China
| | - Qing-Yang Wang
- Academy of Military Medical Sciences, Beijing 100071, China
| | - Jia-Zhen Cui
- Academy of Military Medical Sciences, Beijing 100071, China
| | - Zhi-Li Chen
- Academy of Military Medical Sciences, Beijing 100071, China
| | | | | | - Hao Cheng
- Academy of Military Medical Sciences, Beijing 100071, China
| | - Guo-Qing Xiong
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230000, China
| | - Ao Hu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230000, China
| | - Yuan-Yuan Lu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230000, China
| | - Chun-Lin Cheng
- School of Life Science, Hebei University, Baoding 071000, China
| | - Zhi-Xin Meng
- School of Life Science, Hebei University, Baoding 071000, China
| | - Chen Zhu
- Academy of Military Medical Sciences, Beijing 100071, China
| | - Guang Zhao
- Academy of Military Medical Sciences, Beijing 100071, China
| | - Gang Liu
- Academy of Military Medical Sciences, Beijing 100071, China
| | - Hui-Peng Chen
- Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
8
|
Habarugira G, Harrison JJ, Moran J, Suen WW, Colmant AMG, Hobson-Peters J, Isberg SR, Bielefeldt-Ohmann H, Hall RA. A chimeric vaccine protects farmed saltwater crocodiles from West Nile virus-induced skin lesions. NPJ Vaccines 2023; 8:93. [PMID: 37369653 DOI: 10.1038/s41541-023-00688-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
West Nile virus (WNV) causes skin lesions in farmed crocodiles leading to the depreciation of the value of their hides and significant economic losses. However, there is no commercially available vaccine designed for use in crocodilians against WNV. We tested chimeric virus vaccines composed of the non-structural genes of the insect-specific flavivirus Binjari virus (BinJV) and genes encoding the structural proteins of WNV. The BinJV/WNV chimera, is antigenically similar to wild-type WNV but replication-defective in vertebrates. Intramuscular injection of two doses of BinJV/WNV in hatchling saltwater crocodiles (Crocodylus porosus) elicited a robust neutralising antibody response and conferred protection against viremia and skin lesions after challenge with WNV. In contrast, mock-vaccinated crocodiles became viraemic and 22.2% exhibited WNV-induced lesions. This suggests that the BinJV/WNV chimera is a safe and efficacious vaccine for preventing WNV-induced skin lesions in farmed crocodilians.
Collapse
Affiliation(s)
- Gervais Habarugira
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Jessica J Harrison
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Jasmin Moran
- Centre for Crocodile Research, Noonamah, NT, Australia
| | - Willy W Suen
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
- Australian Centre for Disease Preparedness, The Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, 3219, Australia
| | - Agathe M G Colmant
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
- Unité des Virus Émergents (UVE) Aix-Marseille Univ-IRD 190-Inserm 1207, Marseille, France
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | | | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia.
| | - Roy A Hall
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
9
|
Pollak NM, Olsson M, Ahmed M, Tan J, Lim G, Setoh YX, Wong JCC, Lai YL, Hobson-Peters J, Macdonald J, McMillan D. Rapid Diagnostic Tests for the Detection of the Four Dengue Virus Serotypes in Clinically Relevant Matrices. Microbiol Spectr 2023; 11:e0279622. [PMID: 36682882 PMCID: PMC9927141 DOI: 10.1128/spectrum.02796-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The efficient and accurate diagnosis of dengue, a major mosquito-borne disease, is of primary importance for clinical care, surveillance, and outbreak control. The identification of specific dengue virus serotype 1 (DENV-1) to DENV-4 can help in understanding the transmission dynamics and spread of dengue disease. The four rapid low-resource serotype-specific dengue tests use a simple sample preparation reagent followed by reverse transcription-isothermal recombinase polymerase amplification (RT-RPA) combined with lateral flow detection (LFD) technology. Results are obtained directly from clinical sample matrices in 35 min, requiring only a heating block and pipettes for liquid handling. In addition, we demonstrate that the rapid sample preparation step inactivates DENV, improving laboratory safety. Human plasma and serum were spiked with DENV, and DENV was detected with analytical sensitivities of 333 to 22,500 median tissue culture infectious doses (TCID50)/mL. The analytical sensitivities in blood were 94,000 to 333,000 TCID50/mL. Analytical specificity testing confirmed that each test could detect multiple serotype-specific strains but did not respond to strains of other serotypes, closely related flaviviruses, or chikungunya virus. Clinical testing on 80 human serum samples demonstrated test specificities of between 94 and 100%, with a DENV-2 test sensitivity of 100%, detecting down to 0.004 PFU/μL, similar to the sensitivity of the PCR test; the other DENV tests detected down to 0.03 to 10.9 PFU/μL. Collectively, our data suggest that some of our rapid dengue serotyping tests provide a potential alternative to conventional labor-intensive RT-quantitative PCR (RT-qPCR) detection, which requires expensive thermal cycling instrumentation, technical expertise, and prolonged testing times. Our tests provide performance and speed without compromising specificity in human plasma and serum and could become promising tools for the detection of high DENV loads in resource-limited settings. IMPORTANCE The efficient and accurate diagnosis of dengue, a major mosquito-borne disease, is of primary importance for clinical care, surveillance, and outbreak control. This study describes the evaluation of four rapid low-resource serotype-specific dengue tests for the detection of specific DENV serotypes in clinical sample matrices. The tests use a simple sample preparation reagent followed by reverse transcription-isothermal recombinase polymerase amplification (RT-RPA) combined with lateral flow detection (LFD) technology. These tests have several advantages compared to RT-qPCR detection, such as a simple workflow, rapid sample processing and turnaround times (35 min from sample preparation to detection), minimal equipment needs, and improved laboratory safety through the inactivation of the virus during the sample preparation step. The low-resource formats of these rapid dengue serotyping tests have the potential to support effective dengue disease surveillance and enhance the diagnostic testing capacity in resource-limited countries with both endemic dengue and intense coronavirus disease 2019 (COVID-19) transmission.
Collapse
Affiliation(s)
- Nina M. Pollak
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- DMTC Ltd., Kew, Victoria, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Malin Olsson
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- DMTC Ltd., Kew, Victoria, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Madeeha Ahmed
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Javier Tan
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - George Lim
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Yin Xiang Setoh
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | | | - Yee Ling Lai
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Joanne Macdonald
- DMTC Ltd., Kew, Victoria, Australia
- BioCifer Pty. Ltd., Brisbane, Queensland, Australia
| | - David McMillan
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- DMTC Ltd., Kew, Victoria, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
10
|
Evidence that untranslated genomic sequences are key determinants of insect-specific flavivirus host restriction. Virology 2022; 574:102-114. [DOI: 10.1016/j.virol.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 11/18/2022]
|
11
|
Serological characterization of lineage II insect-specific flaviviruses compared with pathogenic mosquito-borne flaviviruses. Biochem Biophys Res Commun 2022; 616:115-121. [DOI: 10.1016/j.bbrc.2022.05.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/24/2022] [Indexed: 11/15/2022]
|
12
|
Reporter Flaviviruses as Tools to Demonstrate Homologous and Heterologous Superinfection Exclusion. Viruses 2022; 14:v14071501. [PMID: 35891480 PMCID: PMC9317482 DOI: 10.3390/v14071501] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/29/2022] Open
Abstract
Binjari virus (BinJV) is a lineage II or dual-host affiliated insect-specific flavivirus previously demonstrated as replication-deficient in vertebrate cells. Previous studies have shown that BinJV is tolerant to exchanging its structural proteins (prM-E) with pathogenic flaviviruses, making it a safe backbone for flavivirus vaccines. Here, we report generation by circular polymerase extension reaction of BinJV expressing zsGreen or mCherry fluorescent protein. Recovered BinJV reporter viruses grew to high titres (107−8 FFU/mL) in Aedes albopictus C6/36 cells assayed using immunoplaque assays (iPA). We also demonstrate that BinJV reporters could be semi-quantified live in vitro using a fluorescence microplate reader with an observed linear correlation between quantified fluorescence of BinJV reporter virus-infected C6/36 cells and iPA-quantitated virus titres. The utility of the BinJV reporter viruses was then examined in homologous and heterologous superinfection exclusion assays. We demonstrate that primary infection of C6/36 cells with BinJVzsGreen completely inhibits a secondary infection with homologous BinJVmCherry or heterologous ZIKVmCherry using fluorescence microscopy and virus quantitation by iPA. Finally, BinJVzsGreen infections were examined in vivo by microinjection of Aedes aegypti with BinJVzsGreen. At seven days post-infection, a strong fluorescence in the vicinity of salivary glands was detected in frozen sections. This is the first report on the construction of reporter viruses for lineage II insect-specific flaviviruses and establishes a tractable system for exploring flavivirus superinfection exclusion in vitro and in vivo.
Collapse
|
13
|
Replication is the key barrier during the dual-host adaptation of mosquito-borne flaviviruses. Proc Natl Acad Sci U S A 2022; 119:e2110491119. [PMID: 35294288 PMCID: PMC8944775 DOI: 10.1073/pnas.2110491119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Most viruses have a relatively narrow host range. In contrast, vector-borne flaviviruses, such as dengue virus and Zika virus, maintain their transmission cycle between arthropods and vertebrates, belonging to different phyla. How do these viruses adapt to the distinct cellular environments of two phyla? By comparing the single-host insect--specific flavivirus and dual-host Zika virus, we identified three key molecular factors that determine MBF host tropism. This study will greatly increase the understanding of entry, replication, and cross-species evolution of mosquito-borne flaviviruses. Mosquito-borne flaviviruses (MBFs) adapt to a dual-host transmission circle between mosquitoes and vertebrates. Dual-host affiliated insect-specific flaviviruses (dISFs), discovered from mosquitoes, are phylogenetically similar to MBFs but do not infect vertebrates. Thus, dISF–MBF chimeras could be an ideal model to study the dual-host adaptation of MBFs. Using the pseudoinfectious reporter virus particle and reverse genetics systems, we found dISFs entered vertebrate cells as efficiently as the MBFs but failed to initiate replication. Exchange of the untranslational regions (UTRs) of Donggang virus (DONV), a dISF, with those from Zika virus (ZIKV) rescued DONV replication in vertebrate cells, and critical secondary RNA structures were further mapped. Essential UTR-binding host factors were screened for ZIKV replication in vertebrate cells, displaying different binding patterns. Therefore, our data demonstrate a post-entry cross-species transmission mechanism of MBFs, while UTR-host interaction is critical for dual-host adaptation.
Collapse
|
14
|
Slonchak A, Parry R, Pullinger B, Sng JDJ, Wang X, Buck TF, Torres FJ, Harrison JJ, Colmant AMG, Hobson-Peters J, Hall RA, Tuplin A, Khromykh AA. Structural analysis of 3'UTRs in insect flaviviruses reveals novel determinants of sfRNA biogenesis and provides new insights into flavivirus evolution. Nat Commun 2022; 13:1279. [PMID: 35277507 PMCID: PMC8917146 DOI: 10.1038/s41467-022-28977-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Subgenomic flaviviral RNAs (sfRNAs) are virus-derived noncoding RNAs produced by pathogenic mosquito-borne flaviviruses (MBF) to counteract the host antiviral response. To date, the ability of non-pathogenic flaviviruses to produce and utilise sfRNAs remains largely unexplored, and it is unclear what role XRN1 resistance plays in flavivirus evolution and host adaptation. Herein the production of sfRNAs by several insect-specific flaviviruses (ISFs) that replicate exclusively in mosquitoes is shown, and the secondary structures of their complete 3'UTRs are determined. The xrRNAs responsible for the biogenesis of ISF sfRNAs are also identified, and the role of these sfRNAs in virus replication is demonstrated. We demonstrate that 3'UTRs of all classical ISFs, except Anopheles spp-asscoaited viruses, and of the dual-host associated ISF Binjari virus contain duplicated xrRNAs. We also reveal novel structural elements in the 3'UTRs of dual host-associated and Anopheles-associated classical ISFs. Structure-based phylogenetic analysis demonstrates that xrRNAs identified in Anopheles spp-associated ISF are likely ancestral to xrRNAs of ISFs and MBFs. In addition, our data provide evidence that duplicated xrRNAs are selected in the evolution of flaviviruses to provide functional redundancy, which preserves the production of sfRNAs if one of the structures is disabled by mutations or misfolding.
Collapse
Affiliation(s)
- Andrii Slonchak
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia.
| | - Rhys Parry
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Brody Pullinger
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Julian D J Sng
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Xiaohui Wang
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Teresa F Buck
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
- Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
| | - Francisco J Torres
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Jessica J Harrison
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Agathe M G Colmant
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia
| | - Roy A Hall
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia
| | - Andrew Tuplin
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Alexander A Khromykh
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia.
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia.
| |
Collapse
|
15
|
Hazlewood JE, Tang B, Yan K, Rawle DJ, Harrison JJ, Hall RA, Hobson-Peters J, Suhrbier A. The Chimeric Binjari-Zika Vaccine Provides Long-Term Protection against ZIKA Virus Challenge. Vaccines (Basel) 2022; 10:85. [PMID: 35062746 PMCID: PMC8781009 DOI: 10.3390/vaccines10010085] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 01/27/2023] Open
Abstract
We recently developed a chimeric flavivirus vaccine technology based on the novel insect-specific Binjari virus (BinJV) and used this to generate a chimeric ZIKV vaccine (BinJ/ZIKA-prME) that protected IFNAR-/- dams and fetuses from infection. Herein, we show that a single vaccination of IFNAR-/- mice with unadjuvanted BinJ/ZIKA-prME generated neutralizing antibody responses that were retained for 14 months. At 15 months post vaccination, mice were also completely protected against detectable viremia and substantial body weight loss after challenge with ZIKVPRVABC59. BinJ/ZIKA-prME vaccination thus provided long-term protective immunity without the need for adjuvant or replication of the vaccine in the vaccine recipient, both attractive features for a ZIKV vaccine.
Collapse
Affiliation(s)
- Jessamine E. Hazlewood
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; (J.E.H.); (B.T.); (K.Y.); (D.J.R.)
| | - Bing Tang
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; (J.E.H.); (B.T.); (K.Y.); (D.J.R.)
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; (J.E.H.); (B.T.); (K.Y.); (D.J.R.)
| | - Daniel J. Rawle
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; (J.E.H.); (B.T.); (K.Y.); (D.J.R.)
| | - Jessica J. Harrison
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia; (J.J.H.); (R.A.H.)
| | - Roy A. Hall
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia; (J.J.H.); (R.A.H.)
- Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD 4067, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia; (J.J.H.); (R.A.H.)
- Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD 4067, Australia
| | - Andreas Suhrbier
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; (J.E.H.); (B.T.); (K.Y.); (D.J.R.)
| |
Collapse
|
16
|
Harrison JJ, Hobson-Peters J, Bielefeldt-Ohmann H, Hall RA. Chimeric Vaccines Based on Novel Insect-Specific Flaviviruses. Vaccines (Basel) 2021; 9:1230. [PMID: 34835160 PMCID: PMC8623431 DOI: 10.3390/vaccines9111230] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
Vector-borne flaviviruses are responsible for nearly half a billion human infections worldwide each year, resulting in millions of cases of debilitating and severe diseases and approximately 115,000 deaths. While approved vaccines are available for some of these viruses, the ongoing efficacy, safety and supply of these vaccines are still a significant problem. New technologies that address these issues and ideally allow for the safe and economical manufacture of vaccines in resource-poor countries where flavivirus vaccines are in most demand are urgently required. Preferably a new vaccine platform would be broadly applicable to all flavivirus diseases and provide new candidate vaccines for those diseases not yet covered, as well as the flexibility to rapidly pivot to respond to newly emerged flavivirus diseases. Here, we review studies conducted on novel chimeric vaccines derived from insect-specific flaviviruses that provide a potentially safe and simple system to produce highly effective vaccines against a broad spectrum of flavivirus diseases.
Collapse
Affiliation(s)
- Jessica J. Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (J.H.-P.); (H.B.-O.); (R.A.H.)
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (J.H.-P.); (H.B.-O.); (R.A.H.)
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (J.H.-P.); (H.B.-O.); (R.A.H.)
- School of Veterinary Science, University of Queensland, Gatton, QLD 4343, Australia
| | - Roy A. Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (J.H.-P.); (H.B.-O.); (R.A.H.)
| |
Collapse
|
17
|
Scott CAP, Amarilla AA, Bibby S, Newton ND, Hall RA, Hobson-Peters J, Muller DA, Chappell KJ, Young PR, Modhiran N, Watterson D. Implications of Dengue Virus Maturation on Vaccine Induced Humoral Immunity in Mice. Viruses 2021; 13:v13091843. [PMID: 34578424 PMCID: PMC8473161 DOI: 10.3390/v13091843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
The use of dengue virus (DENV) vaccines has been hindered by the complexities of antibody dependent enhancement (ADE). Current late-stage vaccine candidates utilize attenuated and chimeric DENVs that produce particles of varying maturities. Antibodies that are elicited by preferentially exposed epitopes on immature virions have been linked to increased ADE. We aimed to further understand the humoral immunity promoted by DENV particles of varying maturities in an AG129 mouse model using a chimeric insect specific vaccine candidate, bDENV-2. We immunized mice with mature, partially mature, and immature bDENV-2 and found that immunization with partially mature bDENV-2 produced more robust and cross-neutralizing immune responses than immunization with immature or mature bDENV-2. Upon challenge with mouse adapted DENV-2 (D220), we observed 80% protection for mature bDENV-2 vaccinated mice and 100% for immature and partially mature vaccinated mice, suggesting that protection to homotypic challenge is not dependent on maturation. Finally, we found reduced in vitro ADE at subneutralising serum concentrations for mice immunized with mature bDENV-2. These results suggest that both immature and mature DENV particles play a role in homotypic protection; however, the increased risk of in vitro ADE from immature particles indicates potential safety benefits from mature DENV-based vaccines.
Collapse
Affiliation(s)
- Connor A. P. Scott
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.A.P.S.); (A.A.A.); (S.B.); (N.D.N.); (R.A.H.); (J.H.-P.); (D.A.M.); (K.J.C.); (P.R.Y.)
| | - Alberto A. Amarilla
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.A.P.S.); (A.A.A.); (S.B.); (N.D.N.); (R.A.H.); (J.H.-P.); (D.A.M.); (K.J.C.); (P.R.Y.)
| | - Summa Bibby
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.A.P.S.); (A.A.A.); (S.B.); (N.D.N.); (R.A.H.); (J.H.-P.); (D.A.M.); (K.J.C.); (P.R.Y.)
| | - Natalee D. Newton
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.A.P.S.); (A.A.A.); (S.B.); (N.D.N.); (R.A.H.); (J.H.-P.); (D.A.M.); (K.J.C.); (P.R.Y.)
| | - Roy A. Hall
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.A.P.S.); (A.A.A.); (S.B.); (N.D.N.); (R.A.H.); (J.H.-P.); (D.A.M.); (K.J.C.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.A.P.S.); (A.A.A.); (S.B.); (N.D.N.); (R.A.H.); (J.H.-P.); (D.A.M.); (K.J.C.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - David A. Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.A.P.S.); (A.A.A.); (S.B.); (N.D.N.); (R.A.H.); (J.H.-P.); (D.A.M.); (K.J.C.); (P.R.Y.)
| | - Keith J. Chappell
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.A.P.S.); (A.A.A.); (S.B.); (N.D.N.); (R.A.H.); (J.H.-P.); (D.A.M.); (K.J.C.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Paul R. Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.A.P.S.); (A.A.A.); (S.B.); (N.D.N.); (R.A.H.); (J.H.-P.); (D.A.M.); (K.J.C.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.A.P.S.); (A.A.A.); (S.B.); (N.D.N.); (R.A.H.); (J.H.-P.); (D.A.M.); (K.J.C.); (P.R.Y.)
- Correspondence: (N.M.); (D.W.)
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.A.P.S.); (A.A.A.); (S.B.); (N.D.N.); (R.A.H.); (J.H.-P.); (D.A.M.); (K.J.C.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD 4072, Australia
- Correspondence: (N.M.); (D.W.)
| |
Collapse
|
18
|
Charles J, Tangudu CS, Nunez-Avellaneda D, Brault AC, Blitvich BJ. The host range restriction of bat-associated no-known-vector flaviviruses occurs post-entry. J Gen Virol 2021; 102. [PMID: 34486974 PMCID: PMC8567430 DOI: 10.1099/jgv.0.001647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Most flaviviruses are transmitted horizontally between vertebrate hosts by haematophagous arthropods. Others exhibit host ranges restricted to vertebrates or arthropods. Vertebrate-specific flaviviruses are commonly referred to as no-known-vector (NKV) flaviviruses and can be separated into bat- and rodent-associated NKV flaviviruses. Rio Bravo virus (RBV) is one of eight recognized bat-associated NKV (B-NKV) flaviviruses. Studies designed to identify the genetic determinants that condition the host range restriction of B-NKV flaviviruses have never been performed. To investigate whether the host range restriction occurs at the level of attachment or entry, chimeric flaviviruses were created by inserting the pre-membrane and envelope protein genes of RBV into the genetic backbones of yellow fever virus (YFV) and Zika virus (ZIKV), two mosquito-borne flaviviruses associated with human disease. The chimeric viruses infected both vertebrate and mosquito cells. In vertebrate cells, all viruses produced similar mean peak titres, but the chimeric viruses grew more slowly than their parental viruses during early infection. In mosquito cells, the chimeric virus of YFV and RBV grew more slowly than YFV at early post-inoculation time points, but reached a similar mean peak titre. In contrast, the chimeric virus of ZIKV and RBV produced a mean peak titre that was approximately 10-fold lower than ZIKV. The chimeric virus of YFV and RBV produced an intermediate plaque phenotype, while the chimeric virus of ZIKV and RBV produced smaller plaques than both parental viruses. To conclude, we provide evidence that the structural glycoproteins of RBV permit entry into both mosquito and vertebrate cells, indicating that the host range restriction of B-NKV flaviviruses is mediated by a post-attachment/entry event.
Collapse
Affiliation(s)
- Jermilia Charles
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Chandra S Tangudu
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Daniel Nunez-Avellaneda
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Aaron C Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Bradley J Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
19
|
O'Brien CA, Harrison JJ, Colmant AMG, Traves RJ, Paramitha D, Hall-Mendelin S, Bielefeldt-Ohmann H, Vet LJ, Piyasena TBH, Newton ND, Yam AW, Hobson-Peters J, Hall RA. Improved detection of flaviviruses in Australian mosquito populations via replicative intermediates. J Gen Virol 2021; 102. [PMID: 34236957 DOI: 10.1099/jgv.0.001617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mosquito-borne flaviviruses are significant contributors to the arboviral disease burdens both in Australia and globally. While routine arbovirus surveillance remains a vital exercise to identify known flaviviruses in mosquito populations, novel or divergent and emerging species can be missed by these traditional methods. The MAVRIC (monoclonal antibodies to viral RNA intermediates in cells) system is an ELISA-based method for broad-spectrum isolation of positive-sense and double-stranded RNA (dsRNA) viruses based on detection of dsRNA in infected cells. While the MAVRIC ELISA has successfully been used to detect known and novel flaviviruses in Australian mosquitoes, we previously reported that dsRNA could not be detected in dengue virus-infected cells using this method. In this study we identified additional flaviviruses which evade detection of dsRNA by the MAVRIC ELISA. Utilising chimeric flaviviruses we demonstrated that this outcome may be dictated by the non-structural proteins and/or untranslated regions of the flaviviral genome. In addition, we report a modified fixation method that enables improved detection of flavivirus dsRNA and inactivation of non-enveloped viruses from mosquito populations using the MAVRIC system. This study demonstrates the utility of anti-dsRNA monoclonal antibodies for identifying viral replication in insect and vertebrate cell systems and highlights a unique characteristic of flavivirus replication.
Collapse
Affiliation(s)
- Caitlin A O'Brien
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Jessica J Harrison
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Agathe M G Colmant
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia.,Aix Marseille Univ., CNRS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489), Marseille, France
| | - Renee J Traves
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia.,Discipline of Infectious Diseases and Immunology, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Devina Paramitha
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology, Forensic and Scientific Services, Department of Health, PO Box 594, Archerfield, Queensland, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia.,School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Laura J Vet
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Thisun B H Piyasena
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Natalee D Newton
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alice W Yam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Roy A Hall
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
20
|
Hardy JM, Newton ND, Modhiran N, Scott CAP, Venugopal H, Vet LJ, Young PR, Hall RA, Hobson-Peters J, Coulibaly F, Watterson D. A unified route for flavivirus structures uncovers essential pocket factors conserved across pathogenic viruses. Nat Commun 2021; 12:3266. [PMID: 34075032 PMCID: PMC8169900 DOI: 10.1038/s41467-021-22773-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/24/2021] [Indexed: 12/27/2022] Open
Abstract
The epidemic emergence of relatively rare and geographically isolated flaviviruses adds to the ongoing disease burden of viruses such as dengue. Structural analysis is key to understand and combat these pathogens. Here, we present a chimeric platform based on an insect-specific flavivirus for the safe and rapid structural analysis of pathogenic viruses. We use this approach to resolve the architecture of two neurotropic viruses and a structure of dengue virus at 2.5 Å, the highest resolution for an enveloped virion. These reconstructions allow improved modelling of the stem region of the envelope protein, revealing two lipid-like ligands within highly conserved pockets. We show that these sites are essential for viral growth and important for viral maturation. These findings define a hallmark of flavivirus virions and a potential target for broad-spectrum antivirals and vaccine design. We anticipate the chimeric platform to be widely applicable for investigating flavivirus biology. Understanding virus assembly could identify potential drug targets. Here the authors use a safe and efficient method to solve pathogenic flavivirus structures, revealing two lipid-like ligands within highly conserved pockets of the stem region of envelope protein that are important for virus maturation.
Collapse
Affiliation(s)
- Joshua M Hardy
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Natalee D Newton
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Naphak Modhiran
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Connor A P Scott
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Hariprasad Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC, Australia
| | - Laura J Vet
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Fasséli Coulibaly
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
21
|
Choo JJY, Vet LJ, McMillan CLD, Harrison JJ, Scott CAP, Depelsenaire ACI, Fernando GJP, Watterson D, Hall RA, Young PR, Hobson-Peters J, Muller DA. A chimeric dengue virus vaccine candidate delivered by high density microarray patches protects against infection in mice. NPJ Vaccines 2021; 6:66. [PMID: 33963191 PMCID: PMC8105366 DOI: 10.1038/s41541-021-00328-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
Dengue viruses (DENV) cause an estimated 390 million infections globally. With no dengue-specific therapeutic treatment currently available, vaccination is the most promising strategy for its control. A wide range of DENV vaccines are in development, with one having already been licensed, albeit with limited distribution. We investigated the immunogenicity and protective efficacy of a chimeric virus vaccine candidate based on the insect-specific flavivirus, Binjari virus (BinJV), displaying the structural prM/E proteins of DENV (BinJ/DENV2-prME). In this study, we immunized AG129 mice with BinJ/DENV2-prME via a needle-free, high-density microarray patch (HD-MAP) delivery system. Immunization with a single, 1 µg dose of BinJ/DENV2-prME delivered via the HD-MAPs resulted in enhanced kinetics of neutralizing antibody induction when compared to needle delivery and complete protection against mortality upon virus challenge in the AG129 DENV mouse model.
Collapse
Affiliation(s)
- Jovin J Y Choo
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Laura J Vet
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Christopher L D McMillan
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jessica J Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Connor A P Scott
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | | | - Germain J P Fernando
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Vaxxas Pty Ltd, Translational Research Institute, Brisbane, QLD, Australia
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| | - David A Muller
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
22
|
Newton ND, Hardy JM, Modhiran N, Hugo LE, Amarilla AA, Bibby S, Venugopal H, Harrison JJ, Traves RJ, Hall RA, Hobson-Peters J, Coulibaly F, Watterson D. The structure of an infectious immature flavivirus redefines viral architecture and maturation. SCIENCE ADVANCES 2021; 7:eabe4507. [PMID: 33990320 PMCID: PMC8121421 DOI: 10.1126/sciadv.abe4507] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Flaviviruses are the cause of severe human diseases transmitted by mosquitoes and ticks. These viruses use a potent fusion machinery to enter target cells that needs to be restrained during viral assembly and egress. A molecular chaperone, premembrane (prM) maintains the virus particles in an immature, fusion-incompetent state until they exit the cell. Taking advantage of an insect virus that produces particles that are both immature and infectious, we determined the structure of the first immature flavivirus with a complete spike by cryo-electron microscopy. Unexpectedly, the prM chaperone forms a supporting pillar that maintains the immature spike in an asymmetric and upright state, primed for large rearrangements upon acidification. The collapse of the spike along a path defined by the prM chaperone is required, and its inhibition by a multivalent immunoglobulin M blocks infection. The revised architecture and collapse model are likely to be conserved across flaviviruses.
Collapse
Affiliation(s)
- Natalee D Newton
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Joshua M Hardy
- Infection and Immunity Program, Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Naphak Modhiran
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Leon E Hugo
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Alberto A Amarilla
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Summa Bibby
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Hariprasad Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC, Australia
| | - Jessica J Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Renee J Traves
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| | - Fasséli Coulibaly
- Infection and Immunity Program, Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
23
|
Fros JJ, Visser I, Tang B, Yan K, Nakayama E, Visser TM, Koenraadt CJM, van Oers MM, Pijlman GP, Suhrbier A, Simmonds P. The dinucleotide composition of the Zika virus genome is shaped by conflicting evolutionary pressures in mammalian hosts and mosquito vectors. PLoS Biol 2021; 19:e3001201. [PMID: 33872300 PMCID: PMC8084339 DOI: 10.1371/journal.pbio.3001201] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 04/29/2021] [Accepted: 03/23/2021] [Indexed: 12/29/2022] Open
Abstract
Most vertebrate RNA viruses show pervasive suppression of CpG and UpA dinucleotides, closely resembling the dinucleotide composition of host cell transcriptomes. In contrast, CpG suppression is absent in both invertebrate mRNA and RNA viruses that exclusively infect arthropods. Arthropod-borne (arbo) viruses are transmitted between vertebrate hosts by invertebrate vectors and thus encounter potentially conflicting evolutionary pressures in the different cytoplasmic environments. Using a newly developed Zika virus (ZIKV) model, we have investigated how demands for CpG suppression in vertebrate cells can be reconciled with potentially quite different compositional requirements in invertebrates and how this affects ZIKV replication and transmission. Mutant viruses with synonymously elevated CpG or UpA dinucleotide frequencies showed attenuated replication in vertebrate cell lines, which was rescued by knockout of the zinc-finger antiviral protein (ZAP). Conversely, in mosquito cells, ZIKV mutants with elevated CpG dinucleotide frequencies showed substantially enhanced replication compared to wild type. Host-driven effects on virus replication attenuation and enhancement were even more apparent in mouse and mosquito models. Infections with CpG- or UpA-high ZIKV mutants in mice did not cause typical ZIKV-induced tissue damage and completely protected mice during subsequent challenge with wild-type virus, which demonstrates their potential as live-attenuated vaccines. In contrast, the CpG-high mutants displayed enhanced replication in Aedes aegypti mosquitoes and a larger proportion of mosquitoes carried infectious virus in their saliva. These findings show that mosquito cells are also capable of discriminating RNA based on dinucleotide composition. However, the evolutionary pressure on the CpG dinucleotides of viral genomes in arthropod vectors directly opposes the pressure present in vertebrate host cells, which provides evidence that an adaptive compromise is required for arbovirus transmission. This suggests that the genome composition of arbo flaviviruses is crucial to maintain the balance between high-level replication in the vertebrate host and persistent replication in the mosquito vector. The genome of the flavivirus Zika virus is stuck in a tug-of-war between two directly opposing evolutionary pressures that are present in the cells of mammalian host organisms and mosquito vectors; this results in an adaptive compromise, as manifested in the virus’s genome dinucleotide composition.
Collapse
Affiliation(s)
- Jelke J. Fros
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
- * E-mail:
| | - Imke Visser
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Bing Tang
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kexin Yan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Eri Nakayama
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tessa M. Visser
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| | | | - Monique M. van Oers
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Peter Simmonds
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Insect-Specific Flavivirus Replication in Mammalian Cells Is Inhibited by Physiological Temperature and the Zinc-Finger Antiviral Protein. Viruses 2021; 13:v13040573. [PMID: 33805437 PMCID: PMC8066048 DOI: 10.3390/v13040573] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
The genus Flavivirus contains pathogenic vertebrate-infecting flaviviruses (VIFs) and insect-specific flaviviruses (ISF). ISF transmission to vertebrates is inhibited at multiple stages of the cellular infection cycle, via yet to be elucidated specific antiviral responses. The zinc-finger antiviral protein (ZAP) in vertebrate cells can bind CpG dinucleotides in viral RNA, limiting virus replication. Interestingly, the genomes of ISFs contain more CpG dinucleotides compared to VIFs. In this study, we investigated whether ZAP prevents two recently discovered lineage II ISFs, Binjari (BinJV) and Hidden Valley viruses (HVV) from replicating in vertebrate cells. BinJV protein and dsRNA replication intermediates were readily observed in human ZAP knockout cells when cultured at 34 °C. In ZAP-expressing cells, inhibition of the interferon response via interferon response factors 3/7 did not improve BinJV protein expression, whereas treatment with kinase inhibitor C16, known to reduce ZAP’s antiviral function, did. Importantly, at 34 °C, both BinJV and HVV successfully completed the infection cycle in human ZAP knockout cells evident from infectious progeny virus in the cell culture supernatant. Therefore, we identify vertebrate ZAP as an important barrier that protects vertebrate cells from ISF infection. This provides new insights into flavivirus evolution and the mechanisms associated with host switching.
Collapse
|
25
|
Tangudu CS, Charles J, Nunez-Avellaneda D, Hargett AM, Brault AC, Blitvich BJ. Chimeric Zika viruses containing structural protein genes of insect-specific flaviviruses cannot replicate in vertebrate cells due to entry and post-translational restrictions. Virology 2021; 559:30-39. [PMID: 33812340 DOI: 10.1016/j.virol.2021.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/04/2021] [Accepted: 03/21/2021] [Indexed: 02/06/2023]
Abstract
Long Pine Key virus (LPKV) and Lammi virus are insect-specific flaviviruses that phylogenetically affiliate with dual-host flaviviruses. The goal of this study was to provide insight into the genetic determinants that condition this host range restriction. Chimeras were initially created by replacing select regions of the Zika virus genome, including the premembrane and envelope protein (prM-E) genes, with the corresponding regions of the LPKV genome. Of the four chimeras produced, one (the prM-E swap) yielded virus that replicated in mosquito cells. Another chimeric virus with a mosquito replication-competent phenotype was created by inserting the prM-E genes of Lammi virus into a Zika virus genetic background. Vertebrate cells did not support the replication of either chimeric virus although trace to modest amounts of viral antigen were produced, consistent with suboptimal viral entry. These data suggest that dual-host affiliated insect-specific flaviviruses cannot replicate in vertebrate cells due to entry and post-translational restrictions.
Collapse
Affiliation(s)
- Chandra S Tangudu
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Jermilia Charles
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Daniel Nunez-Avellaneda
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Alissa M Hargett
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Aaron C Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Bradley J Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
26
|
Orba Y, Matsuno K, Nakao R, Kryukov K, Saito Y, Kawamori F, Loza Vega A, Watanabe T, Maemura T, Sasaki M, Hall WW, Hall RA, Pereira JA, Nakagawa S, Sawa H. Diverse mosquito-specific flaviviruses in the Bolivian Amazon basin. J Gen Virol 2021; 102. [PMID: 33416463 DOI: 10.1099/jgv.0.001518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The genus Flavivirus includes a range of mosquito-specific viruses in addition to well-known medically important arboviruses. Isolation and comprehensive genomic analyses of viruses in mosquitoes collected in Bolivia resulted in the identification of three novel flavivirus species. Psorophora flavivirus (PSFV) was isolated from Psorophora albigenu. The coding sequence of the PSFV polyprotein shares 60 % identity with that of the Aedes-associated lineage II insect-specific flavivirus (ISF), Marisma virus. Isolated PSFV replicates in both Aedes albopictus- and Aedes aegypti-derived cells, but not in mammalian Vero or BHK-21 cell lines. Two other flaviviruses, Ochlerotatus scapularis flavivirus (OSFV) and Mansonia flavivirus (MAFV), which were identified from Ochlerotatus scapularis and Mansonia titillans, respectively, group with the classical lineage I ISFs. The protein coding sequences of these viruses share only 60 and 40 % identity with the most closely related of known lineage I ISFs, including Xishuangbanna aedes flavivirus and Sabethes flavivirus, respectively. Phylogenetic analysis suggests that MAFV is clearly distinct from the groups of the current known Culicinae-associated lineage I ISFs. Interestingly, the predicted amino acid sequence of the MAFV capsid protein is approximately two times longer than that of any of the other known flaviviruses. Our results indicate that flaviviruses with distinct features can be found at the edge of the Bolivian Amazon basin at sites that are also home to dense populations of human-biting mosquitoes.
Collapse
Affiliation(s)
- Yasuko Orba
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Keita Matsuno
- Unit of Risk Analysis and Management, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Ryo Nakao
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kirill Kryukov
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Shizuoka, Japan
| | - Yumi Saito
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Fumihiko Kawamori
- Faculty of Veterinary Sciences, Gabriel Rene Moreno Autonomous University, Santa Cruz, Bolivia
| | - Ariel Loza Vega
- Faculty of Veterinary Sciences, Gabriel Rene Moreno Autonomous University, Santa Cruz, Bolivia
| | - Tokiko Watanabe
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tadashi Maemura
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - William W Hall
- Global Virus Network, Baltimore, Maryland, USA.,Centre for Research in Infectious Diseases, University College Dublin, Dublin, Ireland.,International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Juan Antonio Pereira
- Faculty of Veterinary Sciences, Gabriel Rene Moreno Autonomous University, Santa Cruz, Bolivia
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Hirofumi Sawa
- Global Virus Network, Baltimore, Maryland, USA.,International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| |
Collapse
|
27
|
McLean BJ, Hall-Mendelin S, Webb CE, Bielefeldt-Ohmann H, Ritchie SA, Hobson-Peters J, Hall RA, van den Hurk AF. The Insect-Specific Parramatta River Virus Is Vertically Transmitted by Aedes vigilax Mosquitoes and Suppresses Replication of Pathogenic Flaviviruses In Vitro. Vector Borne Zoonotic Dis 2020; 21:208-215. [PMID: 33325801 DOI: 10.1089/vbz.2020.2692] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insect-specific flaviviruses (ISFs) have been isolated from a range of mosquito species from different parts of the world. These viruses replicate efficiently in mosquitoes but do not appear to replicate in vertebrates. There is increasing evidence that ISFs persist in nature through vertical transmission, and that they interfere with the replication and transmission of pathogenic flaviviruses in the mosquito host. A novel ISF species, Parramatta River virus (PaRV), was previously shown to occur at high rates in Aedes (Ae.) vigilax mosquitoes collected from Sydney, Australia. We investigated whether vertical transmission was the mechanism of viral persistence in Ae. vigilax populations and whether PaRV affected replication of the pathogenic flaviviruses, West Nile virus (WNV), and dengue virus type 3 (DENV-3) in cultured mosquito cells. Progeny reared from eggs obtained from field-collected infected females had infection rates as high as 142 and 85 per 1000 for females and males, respectively. In vitro experiments showed that replication of both WNV and DENV-3 was significantly suppressed in Aedes albopictus (C6/36) cells persistently infected with PaRV. Our studies with PaRV support the findings of previous investigations that ISFs persist in nature through vertical transmission and that ISFs can suppress the replication of pathogenic flaviviruses in coinfected mosquito cells.
Collapse
Affiliation(s)
- Breeanna J McLean
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Archerfield, Australia
| | - Cameron E Webb
- Marie Bashir Institute of Infectious Diseases and Biosecurity, Medical Entomology, New South Wales Health Pathology, Sydney, Australia.,The University of Sydney, and Medical Entomology, New South Wales Health Pathology, Sydney, Australia
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Scott A Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Archerfield, Australia
| |
Collapse
|
28
|
A Zika Vaccine Generated Using the Chimeric Insect-Specific Binjari Virus Platform Protects against Fetal Brain Infection in Pregnant Mice. Vaccines (Basel) 2020; 8:vaccines8030496. [PMID: 32887302 PMCID: PMC7564101 DOI: 10.3390/vaccines8030496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Zika virus (ZIKV) is the etiological agent of congenital Zika syndrome (CZS), a spectrum of birth defects that can lead to life-long disabilities. A range of vaccines are in development with the target population including pregnant women and women of child-bearing age. Using a recently described chimeric flavivirus vaccine technology based on the novel insect-specific Binjari virus (BinJV), we generated a ZIKV vaccine (BinJ/ZIKA-prME) and illustrate herein its ability to protect against fetal brain infection. Female IFNAR−/− mice were vaccinated once with unadjuvanted BinJ/ZIKA-prME, were mated, and at embryonic day 12.5 were challenged with ZIKVPRVABC59. No infectious ZIKV was detected in maternal blood, placenta, or fetal heads in BinJ/ZIKA-prME-vaccinated mice. A similar result was obtained when the more sensitive qRT PCR methodology was used to measure the viral RNA. BinJ/ZIKA-prME vaccination also did not result in antibody-dependent enhancement of dengue virus infection or disease. BinJ/ZIKA-prME thus emerges as a potential vaccine candidate for the prevention of CSZ.
Collapse
|
29
|
Elrefaey AME, Abdelnabi R, Rosales Rosas AL, Wang L, Basu S, Delang L. Understanding the Mechanisms Underlying Host Restriction of Insect-Specific Viruses. Viruses 2020; 12:E964. [PMID: 32878245 PMCID: PMC7552076 DOI: 10.3390/v12090964] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Arthropod-borne viruses contribute significantly to global mortality and morbidity in humans and animals. These viruses are mainly transmitted between susceptible vertebrate hosts by hematophagous arthropod vectors, especially mosquitoes. Recently, there has been substantial attention for a novel group of viruses, referred to as insect-specific viruses (ISVs) which are exclusively maintained in mosquito populations. Recent discoveries of novel insect-specific viruses over the past years generated a great interest not only in their potential use as vaccine and diagnostic platforms but also as novel biological control agents due to their ability to modulate arbovirus transmission. While arboviruses infect both vertebrate and invertebrate hosts, the replication of insect-specific viruses is restricted in vertebrates at multiple stages of virus replication. The vertebrate restriction factors include the genetic elements of ISVs (structural and non-structural genes and the untranslated terminal regions), vertebrate host factors (agonists and antagonists), and the temperature-dependent microenvironment. A better understanding of these bottlenecks is thus warranted. In this review, we explore these factors and the complex interplay between ISVs and their hosts contributing to this host restriction phenomenon.
Collapse
Affiliation(s)
| | - Rana Abdelnabi
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Ana Lucia Rosales Rosas
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Lanjiao Wang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Sanjay Basu
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK;
| | - Leen Delang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| |
Collapse
|
30
|
Vet LJ, Setoh YX, Amarilla AA, Habarugira G, Suen WW, Newton ND, Harrison JJ, Hobson-Peters J, Hall RA, Bielefeldt-Ohmann H. Protective Efficacy of a Chimeric Insect-Specific Flavivirus Vaccine against West Nile Virus. Vaccines (Basel) 2020; 8:vaccines8020258. [PMID: 32485930 PMCID: PMC7349994 DOI: 10.3390/vaccines8020258] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/01/2022] Open
Abstract
Virulent strains of West Nile virus (WNV) are highly neuro-invasive and human infection is potentially lethal. However, no vaccine is currently available for human use. Here, we report the immunogenicity and protective efficacy of a vaccine derived from a chimeric virus, which was constructed using the structural proteins (prM and E) of the Kunjin strain of WNV (WNVKUN) and the genome backbone of the insect-specific flavivirus Binjari virus (BinJV). This chimeric virus (BinJ/WNVKUN-prME) exhibits an insect-specific phenotype and does not replicate in vertebrate cells. Importantly, it authentically presents the prM-E proteins of WNVKUN, which is antigenically very similar to other WNV strains and lineages. Therefore BinJ/WNVKUN-prME represents an excellent candidate to assess as a vaccine against virulent WNV strains, including the highly pathogenic WNVNY99. When CD1 mice were immunized with purified BinJ/WNVKUN-prME, they developed robust neutralizing antibody responses after a single unadjuvanted dose of 1 to 5 μg. We further demonstrated complete protection against viremia and mortality after lethal challenge with WNVNY99, with no clinical or subclinical pathology observed in vaccinated animals. These data suggest that BinJ/WNVKUN-prME represents a safe and effective WNV vaccine candidate that warrants further investigation for use in humans or in veterinary applications.
Collapse
Affiliation(s)
- Laura J. Vet
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia; (L.J.V.); (Y.X.S.); (A.A.A.); (W.W.S.); (N.D.N.); (J.J.H.); (J.H.-P.)
| | - Yin Xiang Setoh
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia; (L.J.V.); (Y.X.S.); (A.A.A.); (W.W.S.); (N.D.N.); (J.J.H.); (J.H.-P.)
| | - Alberto A. Amarilla
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia; (L.J.V.); (Y.X.S.); (A.A.A.); (W.W.S.); (N.D.N.); (J.J.H.); (J.H.-P.)
| | - Gervais Habarugira
- School of Veterinary Science, University of Queensland Gatton Campus, Queensland 4343, Australia;
| | - Willy W. Suen
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia; (L.J.V.); (Y.X.S.); (A.A.A.); (W.W.S.); (N.D.N.); (J.J.H.); (J.H.-P.)
| | - Natalee D. Newton
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia; (L.J.V.); (Y.X.S.); (A.A.A.); (W.W.S.); (N.D.N.); (J.J.H.); (J.H.-P.)
| | - Jessica J. Harrison
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia; (L.J.V.); (Y.X.S.); (A.A.A.); (W.W.S.); (N.D.N.); (J.J.H.); (J.H.-P.)
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia; (L.J.V.); (Y.X.S.); (A.A.A.); (W.W.S.); (N.D.N.); (J.J.H.); (J.H.-P.)
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Roy A. Hall
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia; (L.J.V.); (Y.X.S.); (A.A.A.); (W.W.S.); (N.D.N.); (J.J.H.); (J.H.-P.)
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland 4072, Australia
- Correspondence: (R.A.H.); (H.B.-O.)
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia; (L.J.V.); (Y.X.S.); (A.A.A.); (W.W.S.); (N.D.N.); (J.J.H.); (J.H.-P.)
- School of Veterinary Science, University of Queensland Gatton Campus, Queensland 4343, Australia;
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland 4072, Australia
- Correspondence: (R.A.H.); (H.B.-O.)
| |
Collapse
|