1
|
Xiong L, Goerlich K, Do E, Mitchell AP. Strain variation in the Candida albicans iron limitation response. mSphere 2024; 9:e0037224. [PMID: 38980069 PMCID: PMC11288005 DOI: 10.1128/msphere.00372-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/16/2024] [Indexed: 07/10/2024] Open
Abstract
Iron acquisition is critical for pathogens to proliferate during invasive infection, and the human fungal pathogen Candida albicans is no exception. The iron regulatory network, established in reference strain SC5314 and derivatives, includes the central player Sef1, a transcription factor that activates iron acquisition genes in response to iron limitation. Here, we explored potential variation in this network among five diverse C. albicans strains through mutant analysis, Nanostring gene expression profiling, and, for two strains, RNA-Seq. Our findings highlight four features that may inform future studies of natural variation and iron acquisition in this species. (i) Conformity: In all strains, major iron acquisition genes are upregulated during iron limitation, and a sef1Δ/Δ mutation impairs that response and growth during iron limitation. (ii) Response variation: Some aspects of the iron limitation response vary among strains, notably the activation of hypha-associated genes. As this gene set is tied to tissue damage and virulence, variation may impact the progression of infection. (iii) Genotype-phenotype variation: The impact of a sef1Δ/Δ mutation on cell wall integrity varies, and for the two strains examined the phenotype correlated with sef1Δ/Δ impact on several cell wall integrity genes. (iv) Phenotype discovery: DNA repair genes were induced modestly by iron limitation in sef1Δ/Δ mutants, with fold changes we would usually ignore. However, the response occurred in both strains tested and was reminiscent of a much stronger response described in Cryptococcus neoformans, a suggestion that it may have biological meaning. In fact, we observed that the iron limitation of a sef1Δ/Δ mutant caused recessive phenotypes to emerge at two heterozygous loci. Overall, our results show that a network that is critical for pathogen proliferation presents variation outside of its core functions.IMPORTANCEA key virulence factor of Candida albicans is the ability to maintain iron homeostasis in the host where iron is scarce. We focused on a central iron regulator, SEF1. We found that iron regulator Sef1 is required for growth, cell wall integrity, and genome integrity during iron limitation. The novel aspect of this work is the characterization of strain variation in a circuit that is required for survival in the host and the connection of iron acquisition to genome integrity in C. albicans.
Collapse
Affiliation(s)
- Liping Xiong
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | | - Eunsoo Do
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
Xiong L, Pereira De Sa N, Zarnowski R, Huang MY, Mota Fernandes C, Lanni F, Andes DR, Del Poeta M, Mitchell AP. Biofilm-associated metabolism via ERG251 in Candida albicans. PLoS Pathog 2024; 20:e1012225. [PMID: 38739655 PMCID: PMC11115363 DOI: 10.1371/journal.ppat.1012225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/23/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Biofilm formation by the fungal pathogen Candida albicans is the basis for its ability to infect medical devices. The metabolic gene ERG251 has been identified as a target of biofilm transcriptional regulator Efg1, and here we report that ERG251 is required for biofilm formation but not conventional free-living planktonic growth. An erg251Δ/Δ mutation impairs biofilm formation in vitro and in an in vivo catheter infection model. In both in vitro and in vivo biofilm contexts, cell number is reduced and hyphal length is limited. To determine whether the mutant defect is in growth or some other aspect of biofilm development, we examined planktonic cell features in a biofilm-like environment, which was approximated with sealed unshaken cultures. Under those conditions, the erg251Δ/Δ mutation causes defects in growth and hyphal extension. Overexpression in the erg251Δ/Δ mutant of the paralog ERG25, which is normally expressed more weakly than ERG251, partially improves biofilm formation and biofilm hyphal content, as well as growth and hyphal extension in a biofilm-like environment. GC-MS analysis shows that the erg251Δ/Δ mutation causes a defect in ergosterol accumulation when cells are cultivated under biofilm-like conditions, but not under conventional planktonic conditions. Overexpression of ERG25 in the erg251Δ/Δ mutant causes some increase in ergosterol levels. Finally, the hypersensitivity of efg1Δ/Δ mutants to the ergosterol inhibitor fluconazole is reversed by ERG251 overexpression, arguing that reduced ERG251 expression contributes to this efg1Δ/Δ phenotype. Our results indicate that ERG251 is required for biofilm formation because its high expression levels are necessary for ergosterol synthesis in a biofilm-like environment.
Collapse
Affiliation(s)
- Liping Xiong
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Nivea Pereira De Sa
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Robert Zarnowski
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Manning Y. Huang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Caroline Mota Fernandes
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Frederick Lanni
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - David R. Andes
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
3
|
Phan QT, Solis NV, Cravener MV, Swidergall M, Lin J, Huang MY, Liu H, Singh S, Ibrahim AS, Mazzone M, Mitchell AP, Filler SG. Candida albicans stimulates formation of a multi-receptor complex that mediates epithelial cell invasion during oropharyngeal infection. PLoS Pathog 2023; 19:e1011579. [PMID: 37611070 PMCID: PMC10479894 DOI: 10.1371/journal.ppat.1011579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/05/2023] [Accepted: 07/25/2023] [Indexed: 08/25/2023] Open
Abstract
Fungal invasion of the oral epithelium is central to the pathogenesis of oropharyngeal candidiasis (OPC). Candida albicans invades the oral epithelium by receptor-induced endocytosis but this process is incompletely understood. We found that C. albicans infection of oral epithelial cells induces c-Met to form a multi-protein complex with E-cadherin and the epidermal growth factor receptor (EGFR). E-cadherin is necessary for C. albicans to activate both c-Met and EGFR and to induce the endocytosis of C. albicans. Proteomics analysis revealed that c-Met interacts with C. albicans Hyr1, Als3 and Ssa1. Both Hyr1 and Als3 are required for C. albicans to stimulate c-Met and EGFR in oral epithelial cells in vitro and for full virulence during OPC in mice. Treating mice with small molecule inhibitors of c-Met and EGFR ameliorates OPC, demonstrating the potential therapeutic efficacy of blocking these host receptors for C. albicans.
Collapse
Affiliation(s)
- Quynh T. Phan
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Norma V. Solis
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Max V. Cravener
- Department of Microbiology, University of Georgia, Athens, Georgia United States of America
| | - Marc Swidergall
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Jianfeng Lin
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Manning Y. Huang
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - Hong Liu
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Shakti Singh
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Ashraf S. Ibrahim
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia United States of America
| | - Scott G. Filler
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| |
Collapse
|
4
|
Sharma A, Solis NV, Huang MY, Lanni F, Filler SG, Mitchell AP. Hgc1 Independence of Biofilm Hyphae in Candida albicans. mBio 2023; 14:e0349822. [PMID: 36779720 PMCID: PMC10128054 DOI: 10.1128/mbio.03498-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/25/2023] [Indexed: 02/14/2023] Open
Abstract
Biofilm and hypha formation are central to virulence of the fungal pathogen Candida albicans. The G1 cyclin gene HGC1 is required for hypha formation under diverse in vitro and in vivo growth conditions. Hgc1 is required for disseminated infection and is a linchpin in the argument that hyphal morphogenesis itself is required for pathogenicity. We report here that HGC1 is dispensable for hypha formation during biofilm formation both in vitro, under strong inducing conditions, and in vivo, in a mouse oropharyngeal candidiasis model. These findings are validated with two or more C. albicans isolates. Systematic screening of overexpressed cyclin genes indicates that CCN1 and CLN3 can compensate partially for Hgc1 function during biofilm growth. This conclusion is also supported by the severity of the hgc1Δ/Δ ccn1Δ/Δ double mutant biofilm defect. Our results suggest that hypha formation in biofilm is accomplished by combined action of multiple cyclins, not solely by Hgc1. IMPORTANCE The HGC1 gene encodes a cyclin that is required for virulence of the fungal pathogen Candida albicans. It is required to produce the elongated hyphal filaments of free-living planktonic cells that are associated with virulence. Here, we show that HGC1 is not required to produce hyphae in the alternative growth form of a biofilm community. We observe Hgc1-independent hyphae in two infection-relevant situations, biofilm growth in vitro and biofilm-like oropharyngeal infection. Our analysis suggests that hypha formation in the biofilm state reflects combined action of multiple cyclins.
Collapse
Affiliation(s)
- Anupam Sharma
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Norma V. Solis
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Manning Y. Huang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Frederick Lanni
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Scott G. Filler
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Phan QT, Solis NV, Cravener MV, Swidergall M, Lin J, Huang MY, Liu H, Singh S, Ibrahim AS, Mazzone M, Mitchell AP, Filler SG. Candida albicans stimulates the formation of a multi-receptor complex that mediates epithelial cell invasion during oropharyngeal infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529756. [PMID: 36865306 PMCID: PMC9980113 DOI: 10.1101/2023.02.23.529756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Fungal invasion of the oral epithelium is central to the pathogenesis of oropharyngeal candidiasis (OPC). Candida albicans invades the oral epithelium by receptor-induced endocytosis but this process is incompletely understood. We found that C. albicans infection of oral epithelial cells induces c-Met to form a multi-protein complex with E-cadherin and the epidermal growth factor receptor (EGFR). E-cadherin is necessary for C. albicans to activate both c-Met and EGFR and to induce the endocytosis of C. albicans . Proteomics analysis revealed that c-Met interacts with C. albicans Hyr1, Als3 and Ssa1. Both Hyr1 and Als3 were required for C. albicans stimulation of c-Met and EGFR in oral epithelial cells in vitro and for full virulence during OPC in mice. Treating mice with small molecule inhibitors of c-Met and EGFR ameliorated OPC, demonstrating the potential therapeutic efficacy of blocking these host receptors for C. albicans . Graphical abstract Highlights c-Met is an oral epithelial cell receptor for Candida albicans C. albicans infection causes c-Met and the epidermal growth factor receptor (EGFR) to form a complex with E-cadherin, which is required for c-Met and EGFR function C. albicans Hyr1 and Als3 interact with c-Met and EGFR, inducing oral epithelial cell endocytosis and virulence during oropharyngeal candidiasis Dual blockade of c-Met and EGFR ameliorates oropharyngeal candidiasis.
Collapse
Affiliation(s)
- Quynh T. Phan
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Norma V. Solis
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Max V. Cravener
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| | - Marc Swidergall
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jianfeng Lin
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Manning Y. Huang
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Hong Liu
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Shakti Singh
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ashraf S. Ibrahim
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Massimiliano Mazzone
- 1Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B3000, Belgium
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| | - Scott G. Filler
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
6
|
Peng H, Zheng Y, Zhao Z, Li J. Multigene editing: current approaches and beyond. Brief Bioinform 2021; 22:bbaa396. [PMID: 33428725 DOI: 10.1093/bib/bbaa396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/15/2020] [Accepted: 12/03/2020] [Indexed: 11/14/2022] Open
Abstract
CRISPR/Cas9 multigene editing is an active and widely studied topic in the fields of biomedicine and biology. It involves a simultaneous participation of multiple single-guide RNAs (sgRNAs) to edit multiple target genes in a way that each gene is edited by one of these sgRNAs. There are possibly numerous sgRNA candidates capable of on-target editing on each of these genes with various efficiencies. Meanwhile, each of these sgRNA candidates may cause unwanted off-target editing at many other genes. Therefore, selection optimization of these multiple sgRNAs is demanded so as to minimize the number of sgRNAs and thus reduce the collective negative effects caused by the off-target editing. This survey reviews wet-laboratory approaches to the implementation of multigene editing and their needs of computational tools for better design. We found that though off-target editing is unavoidable during the gene editing, those disfavored cuttings by some target genes' sgRNAs can potentially become on-target editing sites for some other genes of interests. This off-to-on role conversion is beneficial to optimize the sgRNA selection in multigene editing. We present a preference cutting score to assess those beneficial off-target cutting sites, which have a few mismatches with their host genes' on-target editing sites. These potential sgRNAs can be prioritized for recommendation via ranking their on-target average cutting efficiency, the total off-target site number and their average preference cutting score. We also present case studies on cancer-associated genes to demonstrate tremendous usefulness of the new method.
Collapse
Affiliation(s)
- Hui Peng
- Data Science Institute, University of Technology Sydney, PO Box 123, Ultimo, NSW 2007, Australia
- School of Computing, National University of Singapore, 13 Computing Drive, 117417, Singapore
| | - Yi Zheng
- Data Science Institute, University of Technology Sydney, PO Box 123, Ultimo, NSW 2007, Australia
| | - Zhixun Zhao
- Data Science Institute, University of Technology Sydney, PO Box 123, Ultimo, NSW 2007, Australia
| | - Jinyan Li
- Data Science Institute, University of Technology Sydney, PO Box 123, Ultimo, NSW 2007, Australia
| |
Collapse
|
7
|
Anderson TM, Shammami MA, Taddei SM, Finkel JS. How to Use a Mutant Library to Identify Genes Required for Biofilm Formation in the Pathogenic Fungus Candida albicans. UJEMI+ 2021; 2:1-13. [PMID: 35493534 PMCID: PMC9052792 DOI: 10.14288/ujemi.v2i.193711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With over 1 billion infections and the causative agents showing critical diseases such as pancreatic cancer, the study of pathogenic fungi has never been more critical. In 2017, the United States spent $7.2 billion on fungal diseases. $4.5 billion was allocated to 75,055 hospitalizations, while $2.6 billion went to 8,993,230 outpatient visits. For Candida infections specifically, the cost was $1.4 billion. Currently, there are few classes of antifungals available, and resistance is growing. The identification of genes required for biofilm formation is essential for new antifungal development. This review details how to identify, verify, and characterize defective biofilm formation mutants in C. albicans. This includes how to run an in vitro biofilm formation assay, how to create clean deletions using the modified CRISPR-Cas9 system, how to assay to identify the potential causes of the defect, and how to create complementation strains to confirm the mutant defect.
Collapse
Affiliation(s)
- Tania M Anderson
- Department of Biology, College of Engineering and Science, University of Detroit Mercy, USA
| | - Marcelio A Shammami
- Department of Biology, College of Engineering and Science, University of Detroit Mercy, USA
| | - Steven M Taddei
- Department of Biology, College of Engineering and Science, University of Detroit Mercy, USA
| | - Jonathan S Finkel
- Department of Biology, College of Engineering and Science, University of Detroit Mercy, USA
| |
Collapse
|
8
|
Huang MY, Cravener MC, Mitchell AP. Targeted Genetic Changes in Candida albicans Using Transient CRISPR-Cas9 Expression. Curr Protoc 2021; 1:e19. [PMID: 33491919 PMCID: PMC7842826 DOI: 10.1002/cpz1.19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Candida albicans is an opportunistic fungal pathogen responsible for significant disease and mortality. Absent complete mating and other convenient methods, dissection of its virulence factors relies on robust tools to delete, complement, and otherwise modify genes of interest in this diploid organism. Here we describe the design principles and use of CRISPR associated nuclease 9 (Cas9) and single-guide RNAs transiently expressed from PCR cassettes to modify genes of interest, generating homozygous mutants in a single transformation step. © 2021 Wiley Periodicals LLC. Basic Protocol 1: PCR amplification of CRISPR components Basic Protocol 2: Transformation of Candida albicans Basic Protocol 3: Selecting and genotyping transformants Alternate Protocol 1: Deletion with recyclable markers by CRISPR induced marker excision (CRIME) Alternate Protocol 2: Knock-in and combining multiple cassettes with overlapping homology.
Collapse
Affiliation(s)
- Manning Y. Huang
- Department of Biochemistry and Biophysics, University of
California San Francisco School of Medicine, San Francisco, California 94518,
USA
| | - Max C. Cravener
- Department of Microbiology, University of Georgia, Athens,
Georgia 30602, USA
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens,
Georgia 30602, USA
| |
Collapse
|
9
|
Lagree K, Woolford CA, Huang MY, May G, McManus CJ, Solis NV, Filler SG, Mitchell AP. Roles of Candida albicans Mig1 and Mig2 in glucose repression, pathogenicity traits, and SNF1 essentiality. PLoS Genet 2020; 16:e1008582. [PMID: 31961865 PMCID: PMC6994163 DOI: 10.1371/journal.pgen.1008582] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/31/2020] [Accepted: 12/20/2019] [Indexed: 12/16/2022] Open
Abstract
Metabolic adaptation is linked to the ability of the opportunistic pathogen Candida albicans to colonize and cause infection in diverse host tissues. One way that C. albicans controls its metabolism is through the glucose repression pathway, where expression of alternative carbon source utilization genes is repressed in the presence of its preferred carbon source, glucose. Here we carry out genetic and gene expression studies that identify transcription factors Mig1 and Mig2 as mediators of glucose repression in C. albicans. The well-studied Mig1/2 orthologs ScMig1/2 mediate glucose repression in the yeast Saccharomyces cerevisiae; our data argue that C. albicans Mig1/2 function similarly as repressors of alternative carbon source utilization genes. However, Mig1/2 functions have several distinctive features in C. albicans. First, Mig1 and Mig2 have more co-equal roles in gene regulation than their S. cerevisiae orthologs. Second, Mig1 is regulated at the level of protein accumulation, more akin to ScMig2 than ScMig1. Third, Mig1 and Mig2 are together required for a unique aspect of C. albicans biology, the expression of several pathogenicity traits. Such Mig1/2-dependent traits include the abilities to form hyphae and biofilm, tolerance of cell wall inhibitors, and ability to damage macrophage-like cells and human endothelial cells. Finally, Mig1 is required for a puzzling feature of C. albicans biology that is not shared with S. cerevisiae: the essentiality of the Snf1 protein kinase, a central eukaryotic carbon metabolism regulator. Our results integrate Mig1 and Mig2 into the C. albicans glucose repression pathway and illuminate connections among carbon control, pathogenicity, and Snf1 essentiality. All organisms tailor genetic programs to the available nutrients, such as sources of carbon. Here we define two key regulators of the genetic programs for carbon source utilization in the fungal pathogen Candida albicans. The two regulators have many shared roles, yet are partially specialized to control carbon acquisition and metabolism, respectively. In addition, the regulators together control traits associated with pathogenicity, an indication that carbon regulation is integrated into the pathogenicity program. Finally, the regulators help to explain a long-standing riddle—that the central carbon regulator Snf1 is essential for C. albicans viability.
Collapse
Affiliation(s)
- Katherine Lagree
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Carol A. Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Manning Y. Huang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Gemma May
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - C. Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Norma V. Solis
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Scott G. Filler
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Aaron P. Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
10
|
Román E, Prieto D, Alonso-Monge R, Pla J. New insights of CRISPR technology in human pathogenic fungi. Future Microbiol 2019; 14:1243-1255. [DOI: 10.2217/fmb-2019-0183] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas systems have emerged as a powerful tool for genome manipulation. Class 2 type II CRISPR/ CAS9 is so far the most studied system and has been implemented in many biological systems such as mammalian cells, plants, fungi and bacteria. Fungi are important causes of human diseases worldwide. Genetic manipulation of pathogenic fungi is critical to develop new therapeutic approaches and novel antifungals. We will review here the progress done with CRISPR/ CAS9 systems in human pathogenic fungi, with emphasis in Candida albicans and the main modifications that have improved their usefulness in biological research. We finally discuss possible future outcomes and applications to the developed in a near future.
Collapse
Affiliation(s)
- Elvira Román
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Daniel Prieto
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Rebeca Alonso-Monge
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jesús Pla
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
11
|
Huang MY, Woolford CA, May G, McManus CJ, Mitchell AP. Circuit diversification in a biofilm regulatory network. PLoS Pathog 2019; 15:e1007787. [PMID: 31116789 PMCID: PMC6530872 DOI: 10.1371/journal.ppat.1007787] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/23/2019] [Indexed: 11/18/2022] Open
Abstract
Genotype-phenotype relationships can vary extensively among members of a species. One cause of this variation is circuit diversification, the alteration of gene regulatory relationships among members of a species. Circuit diversification is thought to be a starting point for the circuit divergence or rewiring that occurs during speciation. How widespread is circuit diversification? Here we address this question with the fungal pathogen Candida albicans, which forms biofilms rich in distinctive hyphal cells as a prelude to infection. Our understanding of the biofilm/hyphal regulatory network comes primarily from studies of one clinical isolate, strain SC5314, and its marked derivatives. We used CRISPR-based methods to create mutations of four key biofilm transcription factor genes–BCR1, UME6, BRG1, and EFG1 –in SC5314 and four additional clinical isolates. Phenotypic analysis revealed that mutations in BCR1 or UME6 have variable impact across strains, while mutations in BRG1 or EFG1 had uniformly severe impact. Gene expression, sampled with Nanostring probes and examined comprehensively for EFG1 via RNA-Seq, indicates that regulatory relationships are highly variable among isolates. Our results suggest that genotype-phenotype relationships vary in this strain panel in part because of differences in control of BRG1 by BCR1, a hypothesis that is supported through engineered constitutive expression of BRG1. Overall, the data show that circuit diversification is the rule, not the exception, in this biofilm/hyphal regulatory network. Much of what we know about microbial pathogens is derived from in-depth analysis of one or a few standard laboratory strains. This statement is especially true for the fungal pathogen Candida albicans, because most studies have centered on strain SC5314 and its genetically marked derivatives. Here we examine the functional impact of mutations of four key biofilm regulators across five different clinical isolates. We observe that functional impact of the mutations, based on biological phenotypes and gene expression effects, varies extensively among the isolates. Our results support the idea that gene function should be validated with multiple strain isolates. In addition, our results indicate that a core regulatory network, which comprises regulatory relationships common to multiple isolates, may be enriched for functionally relevant genes.
Collapse
Affiliation(s)
- Manning Y. Huang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Carol A. Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Gemma May
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - C. Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Aaron P. Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
12
|
Abstract
Morphological changes are critical for the virulence of a range of plant and human fungal pathogens.
Candida albicans is a major human fungal pathogen whose ability to switch between different morphological states is associated with its adaptability and pathogenicity. In particular,
C. albicans can switch from an oval yeast form to a filamentous hyphal form, which is characteristic of filamentous fungi. What mechanisms underlie hyphal growth and how are they affected by environmental stimuli from the host or resident microbiota? These questions are the focus of intensive research, as understanding
C. albicans hyphal growth has broad implications for cell biological and medical research.
Collapse
Affiliation(s)
- Robert A Arkowitz
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, Nice, France
| | - Martine Bassilana
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, Nice, France
| |
Collapse
|
13
|
Evans BA, Pickerill ES, Vyas VK, Bernstein DA. CRISPR-mediated Genome Editing of the Human Fungal Pathogen Candida albicans. J Vis Exp 2018:10.3791/58764. [PMID: 30507925 PMCID: PMC7020622 DOI: 10.3791/58764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
This method describes the efficient CRISPR mediated genome editing of the diploid human fungal pathogen Candida albicans. CRISPR-mediated genome editing in C. albicans requires Cas9, guide RNA, and repair template. A plasmid expressing a yeast codon optimized Cas9 (CaCas9) has been generated. Guide sequences directly upstream from a PAM site (NGG) are cloned into the Cas9 expression vector. A repair template is then made by primer extension in vitro. Cotransformation of the repair template and vector into C. albicans leads to genome editing. Depending on the repair template used, the investigator can introduce nucleotide changes, insertions, or deletions. As C. albicans is a diploid, mutations are made in both alleles of a gene, provided that the A and B alleles do not harbor SNPs that interfere with guide targeting or repair template incorporation. Multimember gene families can be edited in parallel if suitable conserved sequences exist in all family members. The C. albicans CRISPR system described is flanked by FRT sites and encodes flippase. Upon induction of flippase, the antibiotic marker (CaCas9) and guide RNA are removed from the genome. This allows the investigator to perform subsequent edits to the genome. C. albicans CRISPR is a powerful fungal genetic engineering tool, and minor alterations to the described protocols permit the modification of other fungal species including C. glabrata, N. castellii, and S. cerevisiae.
Collapse
Affiliation(s)
- Ben A Evans
- Department of Biology, Ball State University
| | | | | | | |
Collapse
|