1
|
Krishnan VP, Negi MS, Peesapati R, Vijayraghavan U. Cryptococcus neoformans Slu7 ensures nuclear positioning during mitotic progression through RNA splicing. PLoS Genet 2024; 20:e1011272. [PMID: 38768219 PMCID: PMC11142667 DOI: 10.1371/journal.pgen.1011272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/31/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024] Open
Abstract
The position of the nucleus before it divides during mitosis is variable in different budding yeasts. Studies in the pathogenic intron-rich fungus Cryptococcus neoformans reveal that the nucleus moves entirely into the daughter bud before its division. Here, we report functions of a zinc finger motif containing spliceosome protein C. neoformans Slu7 (CnSlu7) in cell cycle progression. The budding yeast and fission yeast homologs of Slu7 have predominant roles for intron 3' splice site definition during pre-mRNA splicing. Using a conditional knockdown strategy, we show CnSlu7 is an essential factor for viability and is required for efficient cell cycle progression with major role during mitosis. Aberrant nuclear migration, including improper positioning of the nucleus as well as the spindle, were frequently observed in cells depleted of CnSlu7. However, cell cycle delays observed due to Slu7 depletion did not activate the Mad2-dependent spindle assembly checkpoint (SAC). Mining of the global transcriptome changes in the Slu7 knockdown strain identified downregulation of transcripts encoding several cell cycle regulators and cytoskeletal factors for nuclear migration, and the splicing of specific introns of these genes was CnSlu7 dependent. To test the importance of splicing activity of CnSlu7 on nuclear migration, we complemented Slu7 knockdown cells with an intron less PAC1 minigene and demonstrated that the nuclear migration defects were significantly rescued. These findings show that CnSlu7 regulates the functions of diverse cell cycle regulators and cytoskeletal components, ensuring timely cell cycle transitions and nuclear division during mitosis.
Collapse
Affiliation(s)
- Vishnu Priya Krishnan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Manendra Singh Negi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Raghavaram Peesapati
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Usha Vijayraghavan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
2
|
Wagner M, Song Y, Jiménez-Ruiz E, Härtle S, Meissner M. The SUN-like protein TgSLP1 is essential for nuclear division in the apicomplexan parasite Toxoplasma gondii. J Cell Sci 2023; 136:jcs260337. [PMID: 37815466 PMCID: PMC10629696 DOI: 10.1242/jcs.260337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
Connections between the nucleus and the cytoskeleton are important for positioning and division of the nucleus. In most eukaryotes, the linker of nucleoskeleton and cytoskeleton (LINC) complex spans the outer and inner nuclear membranes and connects the nucleus to the cytoskeleton. In opisthokonts, it is composed of Klarsicht, ANC-1 and Syne homology (KASH) domain proteins and Sad1 and UNC-84 (SUN) domain proteins. Given that the nucleus is positioned at the posterior pole of Toxoplasma gondii, we speculated that apicomplexan parasites must have a similar mechanism that integrates the nucleus and the cytoskeleton. Here, we identified three UNC family proteins in the genome of the apicomplexan parasite T. gondii. Whereas the UNC-50 protein TgUNC1 localised to the Golgi and appeared to be not essential for the parasite, the SUN domain protein TgSLP2 showed a diffuse pattern throughout the parasite. The second SUN domain protein, TgSLP1, was expressed in a cell cycle-dependent manner and was localised close to the mitotic spindle and, more detailed, at the kinetochore. We demonstrate that conditional knockout of TgSLP1 leads to failure of nuclear division and loss of centrocone integrity.
Collapse
Affiliation(s)
- Mirjam Wagner
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, LMU, Munich, 82152, Planegg, Germany
| | - Yuan Song
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, LMU, Munich, 82152, Planegg, Germany
| | - Elena Jiménez-Ruiz
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, LMU, Munich, 82152, Planegg, Germany
| | - Sonja Härtle
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, LMU, Munich, 82152, Planegg, Germany
| | - Markus Meissner
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, LMU, Munich, 82152, Planegg, Germany
| |
Collapse
|
3
|
London N, Medina-Pritchard B, Spanos C, Rappsilber J, Jeyaprakash AA, Allshire RC. Direct recruitment of Mis18 to interphase spindle pole bodies promotes CENP-A chromatin assembly. Curr Biol 2023; 33:4187-4201.e6. [PMID: 37714149 DOI: 10.1016/j.cub.2023.08.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/17/2023]
Abstract
CENP-A chromatin specifies mammalian centromere identity, and its chaperone HJURP replenishes CENP-A when recruited by the Mis18 complex (Mis18C) via M18BP1/KNL2 to CENP-C at kinetochores during interphase. However, the Mis18C recruitment mechanism remains unresolved in species lacking M18BP1, such as fission yeast. Fission yeast centromeres cluster at G2 spindle pole bodies (SPBs) when CENP-ACnp1 is replenished and where Mis18C also localizes. We show that SPBs play an unexpected role in concentrating Mis18C near centromeres through the recruitment of Mis18 by direct binding to the major SPB linker of nucleoskeleton and cytoskeleton (LINC) component Sad1. Mis18C recruitment by Sad1 is important for CENP-ACnp1 chromatin establishment and acts in parallel with a CENP-C-mediated Mis18C recruitment pathway to maintain centromeric CENP-ACnp1 but operates independently of Sad1-mediated centromere clustering. SPBs therefore provide a non-chromosomal scaffold for both Mis18C recruitment and centromere clustering during G2. This centromere-independent Mis18-SPB recruitment provides a mechanism that governs de novo CENP-ACnp1 chromatin assembly by the proximity of appropriate sequences to SPBs and highlights how nuclear spatial organization influences centromere identity.
Collapse
Affiliation(s)
- Nitobe London
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Bethan Medina-Pritchard
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Christos Spanos
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK; Institute of Biotechnology, Technische Universität, 13355 Berlin, Germany
| | - A Arockia Jeyaprakash
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK; Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Robin C Allshire
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|
4
|
O’Meara MJ, Rapala JR, Nichols CB, Alexandre C, Billmyre RB, Steenwyk JL, Alspaugh JA, O’Meara TR. CryptoCEN: A Co-Expression Network for Cryptococcus neoformans reveals novel proteins involved in DNA damage repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553567. [PMID: 37645941 PMCID: PMC10462067 DOI: 10.1101/2023.08.17.553567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Elucidating gene function is a major goal in biology, especially among non-model organisms. However, doing so is complicated by the fact that molecular conservation does not always mirror functional conservation, and that complex relationships among genes are responsible for encoding pathways and higher-order biological processes. Co-expression, a promising approach for predicting gene function, relies on the general principal that genes with similar expression patterns across multiple conditions will likely be involved in the same biological process. For Cryptococcus neoformans, a prevalent human fungal pathogen greatly diverged from model yeasts, approximately 60% of the predicted genes in the genome lack functional annotations. Here, we leveraged a large amount of publicly available transcriptomic data to generate a C. neoformans Co-Expression Network (CryptoCEN), successfully recapitulating known protein networks, predicting gene function, and enabling insights into the principles influencing co-expression. With 100% predictive accuracy, we used CryptoCEN to identify 13 new DNA damage response genes, underscoring the utility of guilt-by-association for determining gene function. Overall, co-expression is a powerful tool for uncovering gene function, and decreases the experimental tests needed to identify functions for currently under-annotated genes.
Collapse
Affiliation(s)
- Matthew J. O’Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jackson R. Rapala
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Connie B. Nichols
- Departments of Medicine and Molecular Genetics/Microbiology; and Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Christina Alexandre
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - R. Blake Billmyre
- Departments of Pharmaceutical and Biomedical Sciences/Infectious Disease, College of Pharmacy/College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - J. Andrew Alspaugh
- Departments of Medicine and Molecular Genetics/Microbiology; and Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Teresa R. O’Meara
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Regulatory basis for reproductive flexibility in a meningitis-causing fungal pathogen. Nat Commun 2022; 13:7938. [PMID: 36566249 PMCID: PMC9790007 DOI: 10.1038/s41467-022-35549-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Pathogenic fungi of the genus Cryptococcus can undergo two sexual cycles, involving either bisexual diploidization (after fusion of haploid cells of different mating type) or unisexual diploidization (by autodiploidization of a single cell). Here, we construct a gene-deletion library for 111 transcription factor genes in Cryptococcus deneoformans, and explore the roles of these regulatory networks in the two reproductive modes. We show that transcription factors crucial for bisexual syngamy induce the expression of known mating determinants as well as other conserved genes of unknown function. Deletion of one of these genes, which we term FMP1, leads to defects in bisexual reproduction in C. deneoformans, its sister species Cryptococcus neoformans, and the ascomycete Neurospora crassa. Furthermore, we show that a recently evolved regulatory cascade mediates pre-meiotic unisexual autodiploidization, supporting that this reproductive process is a recent evolutionary innovation. Our findings indicate that genetic circuits with different evolutionary ages govern hallmark events distinguishing unisexual and bisexual reproduction in Cryptococcus.
Collapse
|
6
|
The Cyclin Cln1 Controls Polyploid Titan Cell Formation following a Stress-Induced G 2 Arrest in Cryptococcus. mBio 2021; 12:e0250921. [PMID: 34634930 PMCID: PMC8510536 DOI: 10.1128/mbio.02509-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The pathogenic yeast Cryptococcus neoformans produces polyploid titan cells in response to the host lung environment that are critical for host adaptation and subsequent disease. We analyzed the in vivo and in vitro cell cycles to identify key aspects of the C. neoformans cell cycle that are important for the formation of titan cells. We identified unbudded 2C cells, referred to as a G2 arrest, produced both in vivo and in vitro in response to various stresses. Deletion of the nonessential cyclin Cln1 resulted in overproduction of titan cells in vivo and transient morphology defects upon release from stationary phase in vitro. Using a copper-repressible promoter PCTR4-CLN1 strain and a two-step in vitro titan cell formation assay, our in vitro studies revealed Cln1 functions after the G2 arrest. These studies highlight unique cell cycle alterations in C. neoformans that ultimately promote genomic diversity and virulence in this important fungal pathogen.
Collapse
|
7
|
Chatterjee S, Som S, Varshney N, Satyadev P, Sanyal K, Paul R. Mechanics of microtubule organizing center clustering and spindle positioning in budding yeast Cryptococcus neoformans. Phys Rev E 2021; 104:034402. [PMID: 34654156 DOI: 10.1103/physreve.104.034402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/09/2021] [Indexed: 11/07/2022]
Abstract
The dynamic process of mitotic spindle assembly depends on multitudes of inter-dependent interactions involving kinetochores (KTs), microtubules (MTs), spindle pole bodies (SPBs), and molecular motors. Before forming the mitotic spindle, multiple visible microtubule organizing centers (MTOCs) coalesce into a single focus to serve as an SPB in the pathogenic budding yeast, Cryptococcus neoformans. To explain this unusual phenomenon in the fungal kingdom, we propose a "search and capture" model, in which cytoplasmic MTs (cMTs) nucleated by MTOCs grow and capture each other to promote MTOC clustering. Our quantitative modeling identifies multiple redundant mechanisms mediated by a combination of cMT-cell cortex interactions and inter-cMT coupling to facilitate MTOC clustering within the physiological time limit as determined by time-lapse live-cell microscopy. Besides, we screen various possible mechanisms by computational modeling and propose optimal conditions that favor proper spindle positioning-a critical determinant for timely chromosome segregation. These analyses also reveal that a combined effect of MT buckling, dynein pull, and cortical push maintains spatiotemporal spindle localization.
Collapse
Affiliation(s)
| | - Subhendu Som
- Indian Association for the Cultivation of Science, Kolkata-700032, India
| | - Neha Varshney
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Pvs Satyadev
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Raja Paul
- Indian Association for the Cultivation of Science, Kolkata-700032, India
| |
Collapse
|
8
|
Yadav V, Sun S, Heitman J. Uniparental nuclear inheritance following bisexual mating in fungi. eLife 2021; 10:66234. [PMID: 34338631 PMCID: PMC8412948 DOI: 10.7554/elife.66234] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/27/2021] [Indexed: 01/11/2023] Open
Abstract
Some remarkable animal species require an opposite-sex partner for their sexual development but discard the partner’s genome before gamete formation, generating hemi-clonal progeny in a process called hybridogenesis. Here, we discovered a similar phenomenon, termed pseudosexual reproduction, in a basidiomycete human fungal pathogen, Cryptococcus neoformans, where exclusive uniparental inheritance of nuclear genetic material was observed during bisexual reproduction. Analysis of strains expressing fluorescent reporter proteins revealed instances where only one of the parental nuclei was present in the terminal sporulating basidium. Whole-genome sequencing revealed that the nuclear genome of the progeny was identical with one or the other parental genome. Pseudosexual reproduction was also detected in natural isolate crosses where it resulted in mainly MATα progeny, a bias observed in Cryptococcus ecological distribution as well. The mitochondria in these progeny were inherited from the MATa parent, resulting in nuclear-mitochondrial genome exchange. The meiotic recombinase Dmc1 was found to be critical for pseudosexual reproduction. These findings reveal a novel, and potentially ecologically significant, mode of eukaryotic microbial reproduction that shares features with hybridogenesis in animals. Sexual reproduction enables organisms to recombine their genes to generate progeny that have higher levels of evolutionary fitness. This process requires reproductive cells – like the sperm and egg – to fuse together and mix their two genomes, resulting in offspring that are genetically distinct from their parents. In a disease-causing fungus called Cryptococcus neoformans, sexual reproduction occurs when two compatible mating types (MATa and MATα) merge together to form long branched filaments called hyphae. Cells in the hyphae contain two nuclei – one from each parent – which fuse in specialized cells at the end of the branches called basidia. The fused nucleus is then divided into four daughter nuclei, which generate spores that can develop into new organisms. In nature, the mating types of C. neoformans exhibit a peculiar distribution where MATα represents 95% or more of the population. However, it is not clear how this fungus successfully reproduces with such an unusually skewed distribution of mating types. To investigate this further, Yadav et al. tracked the reproductive cycle of C. neoformans applying genetic techniques, fluorescence microscopy, and whole-genome sequencing. This revealed that during hyphal branching some cells lose the nucleus of one of the two mating types. As a result, the nuclei of the generated spores only contain genetic information from one parent. Yadav et al. named this process pseudosexual reproduction as it defies the central benefit of sex, which is to produce offspring with a new combination of genetic information. Further experiments showed that this unconventional mode of reproduction can be conducted by fungi isolated from both environmental samples and clinical patient samples. This suggests that pseudosexual reproduction is a widespread and conserved process that may provide significant evolutionary benefits. C. neoformans represents a flexible and adaptable model organism to explore the impact and evolutionary advantages of sex. Further studies of the unique reproductive strategies employed by this fungus may improve the understanding of similar processes in other eukaryotes, including animals and plants. This research may also have important implications for understanding and controlling the growth of other disease-causing microbes.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| |
Collapse
|
9
|
Guin K, Sreekumar L, Sanyal K. Implications of the Evolutionary Trajectory of Centromeres in the Fungal Kingdom. Annu Rev Microbiol 2020; 74:835-853. [PMID: 32706633 DOI: 10.1146/annurev-micro-011720-122512] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromosome segregation during the cell cycle is an evolutionarily conserved, fundamental biological process. Dynamic interaction between spindle microtubules and the kinetochore complex that assembles on centromere DNA is required for faithful chromosome segregation. The first artificial minichromosome was constructed by cloning the centromere DNA of the budding yeast Saccharomyces cerevisiae. Since then, centromeres have been identified in >60 fungal species. The DNA sequence and organization of the sequence elements are highly diverse across these fungal centromeres. In this article, we provide a comprehensive view of the evolution of fungal centromeres. Studies of this process facilitated the identification of factors influencing centromere specification, maintenance, and propagation through many generations. Additionally, we discuss the unique features and plasticity of centromeric chromatin and the involvement of centromeres in karyotype evolution. Finally, we discuss the implications of recurrent loss of RNA interference (RNAi) and/or heterochromatin components on the trajectory of the evolution of fungal centromeres and propose the centromere structure of the last common ancestor of three major fungal phyla-Ascomycota, Basidiomycota, and Mucoromycota.
Collapse
Affiliation(s)
- Krishnendu Guin
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka 560064, India; , ,
| | - Lakshmi Sreekumar
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka 560064, India; , ,
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka 560064, India; , ,
| |
Collapse
|
10
|
Centromere scission drives chromosome shuffling and reproductive isolation. Proc Natl Acad Sci U S A 2020; 117:7917-7928. [PMID: 32193338 DOI: 10.1073/pnas.1918659117] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A fundamental characteristic of eukaryotic organisms is the generation of genetic variation via sexual reproduction. Conversely, significant large-scale genome structure variations could hamper sexual reproduction, causing reproductive isolation and promoting speciation. The underlying processes behind large-scale genome rearrangements are not well understood and include chromosome translocations involving centromeres. Recent genomic studies in the Cryptococcus species complex revealed that chromosome translocations generated via centromere recombination have reshaped the genomes of different species. In this study, multiple DNA double-strand breaks (DSBs) were generated via the CRISPR/Cas9 system at centromere-specific retrotransposons in the human fungal pathogen Cryptococcus neoformans The resulting DSBs were repaired in a complex manner, leading to the formation of multiple interchromosomal rearrangements and new telomeres, similar to chromothripsis-like events. The newly generated strains harboring chromosome translocations exhibited normal vegetative growth but failed to undergo successful sexual reproduction with the parental wild-type strain. One of these strains failed to produce any spores, while another produced ∼3% viable progeny. The germinated progeny exhibited aneuploidy for multiple chromosomes and showed improved fertility with both parents. All chromosome translocation events were accompanied without any detectable change in gene sequences and thus suggest that chromosomal translocations alone may play an underappreciated role in the onset of reproductive isolation and speciation.
Collapse
|
11
|
Abstract
Magnaporthe oryzae is an important fungal pathogen that causes a loss of 10% to 30% of the annual rice crop due to the devastating blast disease. In most organisms, kinetochores are clustered together or arranged at the metaphase plate to facilitate synchronized anaphase separation of sister chromatids in mitosis. In this study, we showed that the initially clustered kinetochores separate and position randomly prior to anaphase in M. oryzae. Centromeres in M. oryzae occupy large genomic regions and form on AT-rich DNA without any common sequence motifs. Overall, this study identified atypical kinetochore dynamics and mapped functional centromeres in M. oryzae to define the roles of centromeric and pericentric boundaries in kinetochore assembly on epigenetically specified centromere loci. This study should pave the way for further understanding of the contribution of heterochromatin in genome stability and virulence of the blast fungus and its related species of high economic importance. Precise kinetochore-microtubule interactions ensure faithful chromosome segregation in eukaryotes. Centromeres, identified as scaffolding sites for kinetochore assembly, are among the most rapidly evolving chromosomal loci in terms of the DNA sequence and length and organization of intrinsic elements. Neither the centromere structure nor the kinetochore dynamics is well studied in plant-pathogenic fungi. Here, we sought to understand the process of chromosome segregation in the rice blast fungus Magnaporthe oryzae. High-resolution imaging of green fluorescent protein (GFP)-tagged inner kinetochore proteins CenpA and CenpC revealed unusual albeit transient declustering of centromeres just before anaphase separation of chromosomes in M. oryzae. Strikingly, the declustered centromeres positioned randomly at the spindle midzone without an apparent metaphase plate per se. Using CenpA chromatin immunoprecipitation followed by deep sequencing, all seven centromeres in M. oryzae were found to be regional, spanning 57-kb to 109-kb transcriptionally poor regions. Highly AT-rich and heavily methylated DNA sequences were the only common defining features of all the centromeres in rice blast. Lack of centromere-specific DNA sequence motifs or repetitive elements suggests an epigenetic specification of centromere function in M. oryzae. PacBio genome assemblies and synteny analyses facilitated comparison of the centromeric/pericentromeric regions in distinct isolates of rice blast and wheat blast and in Magnaporthiopsis poae. Overall, this study revealed unusual centromere dynamics and precisely identified the centromere loci in the top model fungal pathogens that belong to Magnaporthales and cause severe losses in the global production of food crops and turf grasses.
Collapse
|
12
|
Nuclear migration in budding yeasts: position before division. Curr Genet 2019; 65:1341-1346. [PMID: 31152215 DOI: 10.1007/s00294-019-01000-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 02/03/2023]
Abstract
Positioning the nucleus to a specific cellular location is a prerequisite for high-fidelity transmission of the genetic material to daughter cells. The cellular location of the nucleus just before its division is variable in budding yeast species which rely on a variety of mechanisms for nuclear division. Dynamic growth and shrinkage kinetics of microtubules (MTs) and forces exerted by the MT plus- and minus-end-directed motor proteins empower nuclear movement. Even though the overall process of nuclear migration is largely conserved across budding yeasts, in-depth molecular analyses of newly emerging model budding yeasts began to reveal striking differences from the paradigms that have been established based on the studies performed in the well-characterized budding yeast Saccharomyces cerevisiae. Here, we highlight the molecular players involved in differential nuclear migration in diverse budding yeasts.
Collapse
|
13
|
Varshney N, Som S, Chatterjee S, Sridhar S, Bhattacharyya D, Paul R, Sanyal K. Spatio-temporal regulation of nuclear division by Aurora B kinase Ipl1 in Cryptococcus neoformans. PLoS Genet 2019; 15:e1007959. [PMID: 30763303 PMCID: PMC6392335 DOI: 10.1371/journal.pgen.1007959] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/27/2019] [Accepted: 01/11/2019] [Indexed: 11/29/2022] Open
Abstract
The nuclear division takes place in the daughter cell in the basidiomycetous budding yeast Cryptococcus neoformans. Unclustered kinetochores gradually cluster and the nucleus moves to the daughter bud as cells enter mitosis. Here, we show that the evolutionarily conserved Aurora B kinase Ipl1 localizes to the nucleus upon the breakdown of the nuclear envelope during mitosis in C. neoformans. Ipl1 is shown to be required for timely breakdown of the nuclear envelope as well. Ipl1 is essential for viability and regulates structural integrity of microtubules. The compromised stability of cytoplasmic microtubules upon Ipl1 depletion results in a significant delay in kinetochore clustering and nuclear migration. By generating an in silico model of mitosis, we previously proposed that cytoplasmic microtubules and cortical dyneins promote atypical nuclear division in C. neoformans. Improving the previous in silico model by introducing additional parameters, here we predict that an effective cortical bias generated by cytosolic Bim1 and dynein regulates dynamics of kinetochore clustering and nuclear migration. Indeed, in vivo alterations of Bim1 or dynein cellular levels delay nuclear migration. Results from in silico model and localization dynamics by live cell imaging suggests that Ipl1 spatio-temporally influences Bim1 or/and dynein activity along with microtubule stability to ensure timely onset of nuclear division. Together, we propose that the timely breakdown of the nuclear envelope by Ipl1 allows its own nuclear entry that helps in spatio-temporal regulation of nuclear division during semi-open mitosis in C. neoformans. Unlike the model ascomycetous budding yeast Saccharomyces cerevisiae, microtubule organizing centers (MTOCs) coalesce to form the spindle pole body (SPB) in C. neoformans. This process also ensures unclustered kinetochores to gradually cluster in this organism. As C. neoformans cells enter mitosis, the nuclear envelope ruptures and the nucleus eventually moves to the daughter bud before division. Here, we combine cell and systems biology techniques to understand the key determinants of nuclear division in C. neoformans. We show that the evolutionarily conserved Aurora B kinase Ipl1 enters the nucleus during the mitotic phase as cells undergo semi-open mitosis. Ipl1 regulates dynamics of cytoplasmic microtubules, cytosolic proteins such as Bim1 and dynein-mediated cortical forces and integrity of the nuclear envelope to ensure timely kinetochore clustering and nuclear division in this medically relevant human pathogenic budding yeast.
Collapse
Affiliation(s)
- Neha Varshney
- Molecular Mycology Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Subhendu Som
- Department of Solid State Physics, Indian Association for the Cultivation of Science, Kolkata, India
| | - Saptarshi Chatterjee
- Department of Solid State Physics, Indian Association for the Cultivation of Science, Kolkata, India
| | - Shreyas Sridhar
- Molecular Mycology Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Dibyendu Bhattacharyya
- Tata Memorial Centre, Advanced Centre for Treatment Research and Education in Cancer, Kharghar, Navi Mumbai, India
| | - Raja Paul
- Department of Solid State Physics, Indian Association for the Cultivation of Science, Kolkata, India
- * E-mail: (RP); (KS)
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
- * E-mail: (RP); (KS)
| |
Collapse
|