1
|
Tripathi A, Jaiswal A, Kumar D, Chavda P, Pandit R, Joshi M, Blake DP, Tomley FM, Joshi CG, Dubey SK. Antimicrobial resistance in plant endophytes associated with poultry-manure application revealed by selective culture and whole genome sequencing. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136166. [PMID: 39423640 DOI: 10.1016/j.jhazmat.2024.136166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/21/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Poultry manure is widely used as organic fertilizer in agriculture during the cultivation of crops, but the persistent high-level use of antibiotics in poultry production has raised concerns about the selection for reservoirs of antimicrobial resistance genes (ARGs). Previous studies have shown that the addition of poultry manure can increase the abundance of genes associated with resistance to tetracyclines, aminoglycosides, fluoroquinolones, sulfonamides, bacitracin, chloramphenicol, and macrolide-lincosamide-streptogramin in soil and plants. Understanding the microbial populations that harbor these ARGs is important to identify microorganisms that could enter the human food chain. Here, we test the hypothesis that environmental exposure to poultry manure increases the occurrence of antimicrobial resistance (AMR) in plant endophytes using selective culture, phenotypic Antibiotic Susceptibility Testing (AST), phylogenetic analysis, and whole genome sequencing (WGS). Endophytes from poultry manure treated Sorghum bicolor (L.) Moench plant root and stem samples showed increased phenotypic and genotypic resistance against multiple antibiotics compared to untreated controls. Comparison of AMR phenotype-to-genotype relationships highlighted the detection of multi-drug resistant (MDR) plant endophytes, demonstrating the value of genomic surveillance for emerging drug-resistant pathogens. The increased occurrence of ARGs in poultry manure-exposed endophytes highlights the need for responsible antibiotic use in poultry and animal farming to reduce contamination of ecological niches and transgression into endophytic plant microbiome compartments. It also emphasizes the requirement for proper manure management practices and vigilance in monitoring and surveillance efforts to tackle the growing problem of antibiotic resistance and preserve the efficacy of antibiotics for human and veterinary medicine.
Collapse
Affiliation(s)
- Animesh Tripathi
- Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Anjali Jaiswal
- Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Dinesh Kumar
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Priyank Chavda
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Ramesh Pandit
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Damer P Blake
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire, UK
| | - Fiona M Tomley
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire, UK
| | - Chaitanya G Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Suresh Kumar Dubey
- Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
2
|
Hou Y, Diao W, Jia R, Sun W, Feng W, Li B, Zhu J. Variations in antibiotic resistomes associated with archaeal, bacterial, and viral communities affected by integrated rice-fish farming in the paddy field ecosystem. ENVIRONMENTAL RESEARCH 2024; 251:118717. [PMID: 38518910 DOI: 10.1016/j.envres.2024.118717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
Antibiotic resistance genes (ARGs) serving as a newly recognized pollutant that poses potential risks to global human health, which in the paddy soil can be potentially altered by different agricultural production patterns. To elucidate the impacts and mechanisms of the widely used and sustainable agricultural production pattern, namely integrated rice-fish farming, on the antibiotic resistomes, we applied metagenomic sequencing to assess ARGs, mobile genetic elements (MGEs), bacteria, archaea, and viruses in paddy soil. There were 20 types and 359 subtypes of ARGs identified in paddy soil. The integrated rice-fish farming reduced the ARG and MGE diversities and the abundances of dominant ARGs and MGEs. Significantly decreased ARGs were mainly antibiotic deactivation and regulator types and primarily ranked level IV based on their potential threat to human health. The integrated rice-fish farming decreased the alpha diversities and altered microbial community compositions. MGEs, bacteria, archaea, and virus exhibited significant correlations with ARGs, while integrated rice-fish farming effectively changed their interrelationships. Viruses, bacteria, and MGEs played crucial roles in affecting the ARGs by the integrated rice-fish farming. The most crucial pathway by which integrated rice-fish farming affected ARGs was through the modulation of viral communities, thereby directly or indirectly influencing ARG abundance. Our research contributed to the control and restoration of ARGs pollution from a new perspective and providing theoretical support for the development of clean and sustainable agricultural production.
Collapse
Affiliation(s)
- Yiran Hou
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Weixu Diao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Rui Jia
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Wei Sun
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wenrong Feng
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Bing Li
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Jian Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| |
Collapse
|
3
|
Zalewska M, Błażejewska A, Szadziul M, Ciuchciński K, Popowska M. Effect of composting and storage on the microbiome and resistome of cattle manure from a commercial dairy farm in Poland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30819-30835. [PMID: 38616224 PMCID: PMC11096248 DOI: 10.1007/s11356-024-33276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
Manure from food-producing animals, rich in antibiotic-resistant bacteria and antibiotic resistance genes (ARGs), poses significant environmental and healthcare risks. Despite global efforts, most manure is not adequately processed before use on fields, escalating the spread of antimicrobial resistance. This study examined how different cattle manure treatments, including composting and storage, affect its microbiome and resistome. The changes occurring in the microbiome and resistome of the treated manure samples were compared with those of raw samples by high-throughput qPCR for ARGs tracking and sequencing of the V3-V4 variable region of the 16S rRNA gene to indicate bacterial community composition. We identified 203 ARGs and mobile genetic elements (MGEs) in raw manure. Post-treatment reduced these to 76 in composted and 51 in stored samples. Notably, beta-lactam, cross-resistance to macrolides, lincosamides and streptogramin B (MLSB), and vancomycin resistance genes decreased, while genes linked to MGEs, integrons, and sulfonamide resistance increased after composting. Overall, total resistance gene abundance significantly dropped with both treatments. During composting, the relative abundance of genes was lower midway than at the end. Moreover, higher biodiversity was observed in samples after composting than storage. Our current research shows that both composting and storage effectively reduce ARGs in cattle manure. However, it is challenging to determine which method is superior, as different groups of resistance genes react differently to each treatment, even though a notable overall reduction in ARGs is observed.
Collapse
Affiliation(s)
- Magdalena Zalewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Błażejewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Mateusz Szadziul
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karol Ciuchciński
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Popowska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
4
|
Li XY, Wu WF, Wu CY, Hu Y, Xiang Q, Li G, Lin XY, Zhu YG. Seeds Act as Vectors for Antibiotic Resistance Gene Dissemination in a Soil-Plant Continuum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21358-21369. [PMID: 38078407 DOI: 10.1021/acs.est.3c05678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Though the evidence for antibiotic resistance spread via plant microbiome is mounting, studies regarding antibiotic resistome in the plant seed, a reproductive organ and important food resource, are still in their infancy. This study investigated the effects of long-term organic fertilization on seed bacterial endophytes, resistome, and their intergenerational transfer in the microcosm. A total of 99 antibiotic resistance genes (ARGs) and 26 mobile genetic elements (MGEs) were detected by high-throughput quantitative PCR. The amount of organic fertilizer applied was positively correlated to the number and relative abundance of seed-associated ARGs and MGEs. Moreover, the transmission of ARGs from the rhizosphere to the seed was mainly mediated by the shared bacteria and MGEs. Notably, the rhizosphere of progeny seedlings derived from seeds harboring abundant ARGs was found to have a higher relative abundance of ARGs. Using structural equation models, we further revealed that seed resistome and MGEs were key factors affecting the ARGs in the progeny rhizosphere, implying the seed was a potential resistome reservoir for rhizosphere soil. This study highlights the overlooked role of seed endophytes in the dissemination of resistome in the soil-plant continuum, and more attention should be paid to plant seeds as vectors of ARGs within the "One-Health" framework.
Collapse
Affiliation(s)
- Xin-Yuan Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Wei-Feng Wu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Chun-Yan Wu
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Yan Hu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Qian Xiang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xian-Yong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yong-Guan Zhu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
5
|
Cullom A, Spencer MS, Williams MD, Falkinham JO, Brown C, Edwards MA, Pruden A. Premise Plumbing Pipe Materials and In-Building Disinfectants Shape the Potential for Proliferation of Pathogens and Antibiotic Resistance Genes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21382-21394. [PMID: 38071676 DOI: 10.1021/acs.est.3c05905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
In-building disinfectants are commonly applied to control the growth of pathogens in plumbing, particularly in facilities such as hospitals that house vulnerable populations. However, their application has not been well optimized, especially with respect to interactive effects with pipe materials and potential unintended effects, such as enrichment of antibiotic resistance genes (ARGs) across the microbial community. Here, we used triplicate convectively mixed pipe reactors consisting of three pipe materials (PVC, copper, and iron) for replicated simulation of the distal reaches of premise plumbing and evaluated the effects of incrementally increased doses of chlorine, chloramine, chlorine dioxide, and copper-silver disinfectants. We used shotgun metagenomic sequencing to characterize the resulting succession of the corresponding microbiomes over the course of 37 weeks. We found that both disinfectants and pipe material affected ARG and microbial community taxonomic composition both independently and interactively. Water quality and total bacterial numbers were not found to be predictive of pathogenic species markers. One result of particular concern was the tendency of disinfectants, especially monochloramine, to enrich ARGs. Metagenome assembly indicated that many ARGs were enriched specifically among the pathogenic species. Functional gene analysis was indicative of a response of the microbes to oxidative stress, which is known to co/cross-select for antibiotic resistance. These findings emphasize the need for a holistic evaluation of pathogen control strategies for plumbing.
Collapse
Affiliation(s)
- Abraham Cullom
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Matheu Storme Spencer
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Myra D Williams
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Joseph O Falkinham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Connor Brown
- Department of Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Marc A Edwards
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Amy Pruden
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| |
Collapse
|
6
|
Han B, Yang F, Shen S, Mu M, Zhang K. Effects of soil habitat changes on antibiotic resistance genes and related microbiomes in paddy fields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165109. [PMID: 37385504 DOI: 10.1016/j.scitotenv.2023.165109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023]
Abstract
The changes of paddy soil habitat profoundly affect the structure and function of soil microorganisms, but how this process drives the growth and spread of manure- derived antibiotic resistance genes (ARGs) after entering the soil is unclear. Herein, this study explored the environmental fate and behavior of various ARGs in the paddy soil during rice growth period. Results showed that most ARG abundances in flooded soil was lower than that in non-flooded soil during rice growth (decreased by 33.4 %). And soil dry-wet alternation altered microbial community structure in paddy field (P < 0.05), showing that Actinobacteria and Firmicutes increased in proportion under non-flooded conditions, and Chloroflexi, Proteobacteria and Acidobacteria evolved into the dominant groups in flooded soil. Meanwhile, the correlation between ARGs and bacterial communities was stronger than that with mobile genetic elements (MGEs) in both flooded and non-flooded paddy soils. Furthermore, soil properties, especially oxidation reduction potential (ORP), were proved to be an essential factor in regulating the variability of ARGs in the whole rice growth stage by structural equation model, with a direct influence (λ = 0.38, P < 0.05), following by similar effects of bacterial communities and MGEs (λ = 0.36, P < 0.05; λ = 0.29, P < 0.05). This study demonstrated that soil dry-wet alternation effectively reduced the proliferation and dissemination of most ARGs in paddy fields, providing a novel agronomic measure for pollution control of antibiotic resistance in farmland ecosystem.
Collapse
Affiliation(s)
- Bingjun Han
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China.
| | - Shizhou Shen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Dali, Yunnan, Agro-Ecosystem, National Observation and Research Station, Dali, China
| | - Meirui Mu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Dali, Yunnan, Agro-Ecosystem, National Observation and Research Station, Dali, China.
| |
Collapse
|
7
|
Ibekwe AM, Bhattacharjee AS, Phan D, Ashworth D, Schmidt MP, Murinda SE, Obayiuwana A, Murry MA, Schwartz G, Lundquist T, Ma J, Karathia H, Fanelli B, Hasan NA, Yang CH. Potential reservoirs of antimicrobial resistance in livestock waste and treated wastewater that can be disseminated to agricultural land. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162194. [PMID: 36781130 DOI: 10.1016/j.scitotenv.2023.162194] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Livestock manure, dairy lagoon effluent, and treated wastewater are known reservoirs of antibiotic resistance genes (ARGs), antibiotic-resistant bacteria (ARB), and virulence factor genes (VFGs), and their application to agricultural farmland could be a serious public health threat. However, their dissemination to agricultural lands and impact on important geochemical pathways such as the nitrogen (N) cycle have not been jointly explored. In this study, shotgun metagenomic sequencing and analyses were performed to examine the diversity and composition of microbial communities, ARGs, VFGs, and N cycling genes in different livestock manure/lagoon and treated wastewater collected from concentrated animal feeding operations (CAFOs) and a municipal wastewater treatment plant along the west coast of the United States. Multivariate analysis showed that diversity indices of bacterial taxa from the different microbiomes were not significantly different based on InvSimpson (P = 0.05), but differences in ARG mechanisms were observed between swine manure and other microbiome sources. Comparative resistome profiling showed that ARGs in microbiome samples belonged to four core resistance classes: aminoglycosides (40-55 %), tetracyclines (30-45 %), beta-lactam-resistance (20-35 %), macrolides (18-30 %), and >50 % of the VFGs that the 24 microbiomes harbored were phyletically affiliated with two bacteria, Bacteroidetes fragilis and Enterobacter aerogenes. Network analysis based on Spearman correlation showed co-occurrence patterns between several genes such as transporter-gene and regulator, efflux pump and involved-in-polymyxin- resistance, aminoglycoside, beta-lactam, and macrolide with VFGs and bacterial taxa such as Firmicutes, Candidatus Themoplasmatota, Actinobacteria, and Bacteroidetes. Metabolic reconstruction of metagenome-assembled genome (MAGs) analysis showed that the most prevalent drug resistance mechanisms were associated with carbapenem resistance, multidrug resistance (MDR), and efflux pump. Bacteroidales was the main taxa involved in dissimilatory nitrate reduction (DNRA) in dairy lagoon effluent. This study demonstrates that the dissemination of waste from these sources can increase the spread of ARGs, ARB, and VFGs into agricultural lands, negatively impacting both soil and human health.
Collapse
Affiliation(s)
- Abasiofiok M Ibekwe
- US Salinity Laboratory, USDA-ARS, 450 W. Big Springs Rd., Riverside, CA 92507, USA.
| | - Ananda S Bhattacharjee
- US Salinity Laboratory, USDA-ARS, 450 W. Big Springs Rd., Riverside, CA 92507, USA; Department of Environmental Sciences, University of California, Riverside, CA 92507, USA
| | - Duc Phan
- US Salinity Laboratory, USDA-ARS, 450 W. Big Springs Rd., Riverside, CA 92507, USA; Department of Chemical and Environmental Engineering, University of California, Riverside, 92507, CA, USA
| | - Daniel Ashworth
- US Salinity Laboratory, USDA-ARS, 450 W. Big Springs Rd., Riverside, CA 92507, USA
| | - Michael P Schmidt
- US Salinity Laboratory, USDA-ARS, 450 W. Big Springs Rd., Riverside, CA 92507, USA
| | - Shelton E Murinda
- Animal and Veterinary Sciences Department, California State Polytechnic University, Pomona, CA 91768, USA
| | - Amarachukwu Obayiuwana
- Department of Biological Sciences, Augustine University Ilara-Epe, Lagos State 106101, Nigeria
| | - Marcia A Murry
- Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768, USA
| | - Gregory Schwartz
- BioResource and Agricultural Engineering Department, College of Agriculture, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Tryg Lundquist
- Civil and Environmental Engineering Department, College of Engineering, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Jincai Ma
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | | | | | - Nur A Hasan
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA; EzBiome Inc, MD, USA
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| |
Collapse
|
8
|
Zhai W, Jiang W, Guo Q, Wang Z, Liu D, Zhou Z, Wang P. Existence of antibiotic pollutant in agricultural soil: Exploring the correlation between microbiome and pea yield. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162152. [PMID: 36775170 DOI: 10.1016/j.scitotenv.2023.162152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Due to sewage irrigation, manure fertilizer application or other agricultural activities, antibiotics have been introduced into farmland as an emerging contaminant, existing with other agrochemicals. However, the potential influences of antibiotics on the efficiency of agrochemicals and crops health are still unclear. In this work, the effect of antibiotics on fertilization efficiency and pea yield was evaluated, and the mechanism was explored in view of soil microbiome. Nitrogen utilization and pea yield were decreased by antibiotics. In specific, the weight of seeds decreased 9.5 % by 5 mg/kg antibiotics and decreased 25.1 % by 50 mg/kg antibiotics. For N nutrient in pea, antibiotics resulted in 62.5 %-63.7 % decrease in amino acid content and 8.3 %-35.3 % decrease in inorganic-N content. Further research showed that antibiotics interfered with N cycle in soil, inhibiting urea decomposition and denitrification process by reducing function genes ureC, nirK and norB in soil, thus decreasing N availability. Meanwhile, antibiotics destroyed the enzyme function in N assimilation. This work evaluated the environmental risk of antibiotics from fertilization efficiency and N utilization in crop. Antibiotics could not only affect N cycle, limiting the decomposition of N fertilizer, but also affect N utilization in plants, thus affecting the yield and even the quality of leguminous crops.
Collapse
Affiliation(s)
- Wangjing Zhai
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Wenqi Jiang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Qiqi Guo
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Zhixuan Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Peng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China.
| |
Collapse
|
9
|
Shay JA, Haniford LSE, Cooper A, Carrillo CD, Blais BW, Lau CHF. Exploiting a targeted resistome sequencing approach in assessing antimicrobial resistance in retail foods. ENVIRONMENTAL MICROBIOME 2023; 18:25. [PMID: 36991496 PMCID: PMC10052294 DOI: 10.1186/s40793-023-00482-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/15/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND With the escalating risk of antimicrobial resistance (AMR), there are limited analytical options available that can comprehensively assess the burden of AMR carried by clinical/environmental samples. Food can be a potential source of AMR bacteria for humans, but its significance in driving the clinical spread of AMR remains unclear, largely due to the lack of holistic-yet-sensitive tools for surveillance and evaluation. Metagenomics is a culture-independent approach well suited for uncovering genetic determinants of defined microbial traits, such as AMR, present within unknown bacterial communities. Despite its popularity, the conventional approach of non-selectively sequencing a sample's metagenome (namely, shotgun-metagenomics) has several technical drawbacks that lead to uncertainty about its effectiveness for AMR assessment; for instance, the low discovery rate of resistance-associated genes due to their naturally small genomic footprint within the vast metagenome. Here, we describe the development of a targeted resistome sequencing method and demonstrate its application in the characterization of the AMR gene profile of bacteria associated with several retail foods. RESULT A targeted-metagenomic sequencing workflow using a customized bait-capture system targeting over 4,000 referenced AMR genes and 263 plasmid replicon sequences was validated against both mock and sample-derived bacterial community preparations. Compared to shotgun-metagenomics, the targeted method consistently provided for improved recovery of resistance gene targets with a much-improved target detection efficiency (> 300-fold). Targeted resistome analyses conducted on 36 retail-acquired food samples (fresh sprouts, n = 10; ground meat, n = 26) and their corresponding bacterial enrichment cultures (n = 36) reveals in-depth features regarding the identity and diversity of AMR genes, most of which were otherwise undetected by the whole-metagenome shotgun sequencing method. Furthermore, our findings suggest that foodborne Gammaproteobacteria could be the major reservoir of food-associated AMR genetic determinants, and that the resistome structure of the selected high-risk food commodities are, to a large extent, dictated by microbiome composition. CONCLUSIONS For metagenomic sequencing-based surveillance of AMR, the target-capture method presented herein represents a more sensitive and efficient approach to evaluate the resistome profile of complex food or environmental samples. This study also further implicates retail foods as carriers of diverse resistance-conferring genes indicating a potential impact on the dissemination of AMR.
Collapse
Affiliation(s)
- Julie A Shay
- Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Laura S E Haniford
- Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Ashley Cooper
- Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Catherine D Carrillo
- Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Burton W Blais
- Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Calvin Ho-Fung Lau
- Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON, Canada.
| |
Collapse
|
10
|
Mokni-Tlili S, Hechmi S, Ouzari HI, Mechergui N, Ghorbel M, Jedidi N, Hassen A, Hamdi H. Co-occurrence of antibiotic and metal resistance in long-term sewage sludge-amended soils: influence of application rates and pedo-climatic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26596-26612. [PMID: 36369449 PMCID: PMC9652132 DOI: 10.1007/s11356-022-23802-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Urban sewage sludge (USS) is increasingly being used as an alternative organic amendment in agriculture. Because USS originates mostly from human excreta, partially metabolized pharmaceuticals have also been considered in risk assessment studies after reuse. In this regard, we investigated the cumulative effect of five annual USS applications on the spread of antibiotic-resistant bacteria (ARB) and their subsequent resistance to toxic metals in two unvegetated soils. Eventually, USS contained bacterial strains resistant to all addressed antibiotics with indices of resistance varying between 0.25 for gentamicin to 38% for ampicillin and azithromycin. Sludge-amended soils showed also the emergence of resistome for all tested antibiotics compared to non-treated controls. In this regard, the increase of sludge dose generally correlated with ARB counts, while soil texture had no influence. On the other hand, the multi-antibiotic resistance (MAR) of 52 isolates selected from USS and different soil treatments was investigated for 10 most prescribed antibiotics. Nine isolates showed significant MAR index (≥ 0.3) and co-resistance to Cd, As and Be as well. However, events including an extreme flash flood and the termination of USS applications significantly disrupted ARB communities in all soil treatments. In any case, this study highlighted the risks of ARB spread in sludge-amended soils and a greater concern with the recent exacerbation of antibiotic overuse following COVID-19 outbreak.
Collapse
Affiliation(s)
- Sonia Mokni-Tlili
- Water Research and Technology Center, University of Carthage, P.O. Box 273, 8020, Soliman, Tunisia
| | - Sarra Hechmi
- Water Research and Technology Center, University of Carthage, P.O. Box 273, 8020, Soliman, Tunisia
| | - Hadda-Imene Ouzari
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, LR03ES03, Tunis, Tunisia
| | - Najet Mechergui
- Water Research and Technology Center, University of Carthage, P.O. Box 273, 8020, Soliman, Tunisia
| | - Manel Ghorbel
- Water Research and Technology Center, University of Carthage, P.O. Box 273, 8020, Soliman, Tunisia
| | - Naceur Jedidi
- Water Research and Technology Center, University of Carthage, P.O. Box 273, 8020, Soliman, Tunisia
| | - Abdennaceur Hassen
- Water Research and Technology Center, University of Carthage, P.O. Box 273, 8020, Soliman, Tunisia
| | - Helmi Hamdi
- Food and Water Security Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
11
|
Han B, Shen S, Yang F, Wang X, Gao W, Zhang K. Exploring antibiotic resistance load in paddy-upland rotation fields amended with commercial organic and chemical/slow release fertilizer. Front Microbiol 2023; 14:1184238. [PMID: 37125153 PMCID: PMC10140351 DOI: 10.3389/fmicb.2023.1184238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Agricultural fertilization caused the dissemination of antibiotic resistance genes (ARGs) in agro-ecological environment, which poses a global threat to crop-food safety and human health. However, few studies are known about the influence of different agricultural fertilization modes on antibiotic resistome in the paddy-upland rotation soils. Therefore, we conducted a field experiment to compare the effect of different fertilization (chemical fertilizer, slow release fertilizer and commercial organic fertilizer replacement at various rates) on soil antibiotic resistome in paddy-upland rotation fields. Results revealed that a total of 100 ARG subtypes and 9 mobile genetic elements (MGEs) occurred in paddy-upland rotation soil, among which MDR-ARGs, MLSB-ARGs and tet-ARGs were the dominant resistance determinants. Long-term agricultural fertilization remarkably facilitated the vertical accumulation of ARGs, in particular that bla ampC and tetO in relative abundance showed significant enrichment with increasing depth. It's worth noting that slow release fertilizer significantly increased soil ARGs, when comparable to manure with 20% replacing amount, but chemical fertilizer had only slight impact on soil ARGs. Fertilization modes affected soil microbial communities, mainly concentrated in the surface layer, while the proportion of Proteobacteria with the highest abundance decreased gradually with increasing depth. Furthermore, microbial community and MGEs were further proved to be essential factors in regulating the variability of ARGs of different fertilization modes by structural equation model, and had strong direct influence (λ = 0.61, p < 0.05; λ = 0. 55, p < 0.01). The results provided scientific guidance for reducing the spreading risk of ARGs and control ARG dissemination in agricultural fertilization.
Collapse
Affiliation(s)
- Bingjun Han
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Shizhou Shen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
- Dali, Yunnan, Agro-Ecosystem, National Observation and Research Station, Dali, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
- Dali, Yunnan, Agro-Ecosystem, National Observation and Research Station, Dali, China
- *Correspondence: Fengxia Yang,
| | - Xiaolong Wang
- School of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Wenxuan Gao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
- Dali, Yunnan, Agro-Ecosystem, National Observation and Research Station, Dali, China
- Keqiang Zhang,
| |
Collapse
|
12
|
Barra Caracciolo A, Visca A, Rauseo J, Spataro F, Garbini GL, Grenni P, Mariani L, Mazzurco Miritana V, Massini G, Patrolecco L. Bioaccumulation of antibiotics and resistance genes in lettuce following cattle manure and digestate fertilization and their effects on soil and phyllosphere microbial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120413. [PMID: 36243186 DOI: 10.1016/j.envpol.2022.120413] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The degradation and bioaccumulation of selected antibiotics such as the sulfonamide sulfamethoxazole (SMX) and the fluoroquinolones enrofloxacin (ENR) and ciprofloxacin (CIP) were investigated in soil microcosm experiments where Lactuca sativa was grown with manure or digestate (1%) and spiked with a mixture of the three antibiotics (7.5 mg/kg each). The soil, rhizosphere and leaf phyllosphere were sampled (at 0 and 46 days) from each microcosm to analyze the antibiotic concentrations, main resistance genes (sul1, sul2, qnrS, aac-(6')-Ib-crand qepA), the intI1and tnpA mobile genetic elements and the microbial community structure.Overall results showed that SMX and CIP decreased (70-85% and 55-79%, respectively), and ENR was quite persistent during the 46-day experiment. In plant presence, CIP and ENR were partially up-taken from soil to plant. In fact the bioaccumulation factors were > 1, with higher values in manure than digestate amended soils. The most abundant gene in soil was sul2 in digestate- and aac-(6')-Ib-cr in the manure-amended microcosms. In soil, neither sulfamethoxazole-resistance (sul1 and sul2), nor fluoroquinolone-resistance (aac-(6')-Ib-cr, qepA and qnrS) gene abundances were correlated with any antibiotic concentration. On the contrary, in lettuce leaves, the aac-(6')-Ib-cr gene was the most abundant, in accordance with the fluoroquinolone bioaccumulation. Finally, digestate stimulated a higher soil microbial biodiversity, introducing and promoting more bacterial genera associated with antibiotic degradation and involved in soil fertility and decreased fluoroquinolone bioaccumulation.
Collapse
Affiliation(s)
| | - Andrea Visca
- Water Research Institute - National Research Council (IRSA-CNR), Rome, Italy.
| | - Jasmin Rauseo
- Institute of Polar Sciences, National Research Council (ISP-CNR), Rome, Italy
| | - Francesca Spataro
- Institute of Polar Sciences, National Research Council (ISP-CNR), Rome, Italy
| | - Gian Luigi Garbini
- Water Research Institute - National Research Council (IRSA-CNR), Rome, Italy
| | - Paola Grenni
- Water Research Institute - National Research Council (IRSA-CNR), Rome, Italy
| | - Livia Mariani
- Water Research Institute - National Research Council (IRSA-CNR), Rome, Italy
| | - Valentina Mazzurco Miritana
- Water Research Institute - National Research Council (IRSA-CNR), Rome, Italy; Department of Energy Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Giulia Massini
- Water Research Institute - National Research Council (IRSA-CNR), Rome, Italy; Department of Energy Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Luisa Patrolecco
- Institute of Polar Sciences, National Research Council (ISP-CNR), Rome, Italy
| |
Collapse
|
13
|
Baker M, Williams AD, Hooton SPT, Helliwell R, King E, Dodsworth T, María Baena-Nogueras R, Warry A, Ortori CA, Todman H, Gray-Hammerton CJ, Pritchard ACW, Iles E, Cook R, Emes RD, Jones MA, Kypraios T, West H, Barrett DA, Ramsden SJ, Gomes RL, Hudson C, Millard AD, Raman S, Morris C, Dodd CER, Kreft JU, Hobman JL, Stekel DJ. Antimicrobial resistance in dairy slurry tanks: A critical point for measurement and control. ENVIRONMENT INTERNATIONAL 2022; 169:107516. [PMID: 36122459 DOI: 10.1016/j.envint.2022.107516] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Waste from dairy production is one of the largest sources of contamination from antimicrobial resistant bacteria (ARB) and genes (ARGs) in many parts of the world. However, studies to date do not provide necessary evidence to inform antimicrobial resistance (AMR) countermeasures. We undertook a detailed, interdisciplinary, longitudinal analysis of dairy slurry waste. The slurry contained a population of ARB and ARGs, with resistances to current, historical and never-used on-farm antibiotics; resistances were associated with Gram-negative and Gram-positive bacteria and mobile elements (ISEcp1, Tn916, Tn21-family transposons). Modelling and experimental work suggested that these populations are in dynamic equilibrium, with microbial death balanced by fresh input. Consequently, storing slurry without further waste input for at least 60 days was predicted to reduce ARB spread onto land, with > 99 % reduction in cephalosporin resistant Escherichia coli. The model also indicated that for farms with low antibiotic use, further reductions are unlikely to reduce AMR further. We conclude that the slurry tank is a critical point for measurement and control of AMR, and that actions to limit the spread of AMR from dairy waste should combine responsible antibiotic use, including low total quantity, avoidance of human critical antibiotics, and choosing antibiotics with shorter half-lives, coupled with appropriate slurry storage.
Collapse
Affiliation(s)
- Michelle Baker
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK; School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Alexander D Williams
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Steven P T Hooton
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK; (a)Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Richard Helliwell
- School of Sociology and Social Policy, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK; School of Geography, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK; Ruralis, University Centre Dragvoll, N-7491 Trondheim, Norway
| | - Elizabeth King
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Thomas Dodsworth
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK; ResChem Analytical Ltd, 8 Jubilee Parkway, Jubilee Business Park, Stores Road, Derby DE21 4BJ, UK
| | - Rosa María Baena-Nogueras
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Andrew Warry
- Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Catherine A Ortori
- School of Pharmacy, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Henry Todman
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK; School of Mathematical Sciences, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Charlotte J Gray-Hammerton
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK; Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Alexander C W Pritchard
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Ethan Iles
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Ryan Cook
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Richard D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Michael A Jones
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Theodore Kypraios
- School of Mathematical Sciences, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Helen West
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - David A Barrett
- School of Pharmacy, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Stephen J Ramsden
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Rachel L Gomes
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Chris Hudson
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Andrew D Millard
- (a)Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Sujatha Raman
- School of Sociology and Social Policy, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK; Centre for Public Awareness of Science, Australian National University, Linnaeus Way, Acton ACT 2601, Canberra, Australia
| | - Carol Morris
- School of Geography, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Christine E R Dodd
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Jan-Ulrich Kreft
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT
| | - Jon L Hobman
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Dov J Stekel
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK; Department of Mathematics and Applied Mathematics, University of Johannesburg, Auckland Park Kingsway Campus, Rossmore, Johannesburg, South Africa.
| |
Collapse
|
14
|
Zou Y, Zhang Y, Zhou J, Bao C, Chen M, He W, Shi X. Effects of composting pig manure at different mature stages on ARGs in different types of soil-vegetable systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:116042. [PMID: 36029631 DOI: 10.1016/j.jenvman.2022.116042] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Aerobic composting is considered as an economically as well as environmentally friendly technology that prevents the diffusion of ARGs and ARBs from manure to farmland soil, on which many studies have been conducted. However, the transmission route and potential ecological risks of ARGs in soil-vegetable systems after application of manure at different maturity stages remain unclear. Therefore, through a pot experiment, this study analyzed the effects of manure composted from livestock excrement on ARGs and microbial community in different soil-vegetable systems, taking leafy plants (Shanghai green) and tuber plants (carrot) as examples. It was noted that the highly matured manure could reduce the ARGs contamination in soil and crops, and the ARGs in soil tended to accumulate in the direction of plant roots. The edible part of crops often had a more serious ecological risk of ARGs, and the potential pathogenic bacteria and ARGs could harm human health through exposure and dietary routes. In summary, this study provides new evidence for the transmission of ARGs in soil-vegetable systems with different mature stages of manure and highlights the potential safety risks of the transfer of antibiotic resistance from manure to soil and ultimately to the human food chain.
Collapse
Affiliation(s)
- Yun Zou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yuan Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China.
| | - Jie Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Canxin Bao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Minglong Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Wencheng He
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Xincheng Shi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
15
|
Li T, Li R, Cao Y, Tao C, Deng X, Ou Y, Liu H, Shen Z, Li R, Shen Q. Soil antibiotic abatement associates with the manipulation of soil microbiome via long-term fertilizer application. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129704. [PMID: 36104920 DOI: 10.1016/j.jhazmat.2022.129704] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The effects of different fertilization on microbial communities and resistome in agricultural soils with a history of fresh manure application remains largely unclear. Here, soil antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and microbial communities were deciphered using metagenomics approach from a long-term field experiment with different fertilizer inputs. A total of 541 ARG subtypes were identified, with Multidrug, Macrolides-Lincosamides-Streptogramins (MLS), and Bacitracin resistance genes as the most universal ARG types. The abundance of ARGs detected in manure (2.52 ARGs/16 S rRNA) treated soils was higher than chemical fertilizer (2.42 ARGs/16 S rRNA) or compost (2.37 ARGs/16 S rRNA) amended soils. The higher abundance of MGEs and the enrichment of Proteobacteria were observed in manure treated soils than in chemical fertilizer or compost amended soils. Proteobacter and Actinobacter were recognized as the main potential hosts of ARGs revealed by network analysis. Further soil pH was identified as the key driver in determining the composition of both microbial community and resistome. The present study investigated the mechanisms driving the microbial community, MGEs and ARG profiles of long-term fertilized soils with ARGs contamination, and our findings could support strategies to manage the dissemination of soil ARGs.
Collapse
Affiliation(s)
- Tingting Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Ruochen Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yifan Cao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Chengyuan Tao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xuhui Deng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yannan Ou
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Hongjun Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Zongzhuan Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| |
Collapse
|
16
|
Huo M, Ma W, Zhou K, Xu X, Liu Z, Huang L. Migration and toxicity of toltrazuril and its main metabolites in the environment. CHEMOSPHERE 2022; 302:134888. [PMID: 35561774 DOI: 10.1016/j.chemosphere.2022.134888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/13/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Veterinary drugs heavily used in livestock are passed into the environment through different ways, resulting in risks to terrestrial environments and humans. The migration of toltrazuril (TOL), an important anticoccidial drug used intensively in livestock, and its main metabolites between the chicken manure compost, soil and vegetables was investigated, and then the impacts of TOL on the soil bacterial community and ARGs, soil enzyme activities and phytotoxicity were detected. In the process of aerobic composting for 80 days, except for toltrazuril sulfoxide (the degradation half-life was 59.74 d), TOL and ponazuril (PON) were not significantly degraded. However, TOL and its metabolites were significantly degraded in fertilized soil, and the degradation half-life was 28.17-346.50 d. Among the three drugs, only PON could migrate from soil to vegetables, and the residual concentrations of PON in lettuce and radish were 2.64-70.02 μg kg-1 and 0-2.80 μg kg-1, respectively. Moreover, TOL and its main metabolisms had no significant effect on the bacterial community structure and the abundance of antibiotic resistance genes during composting, but affected the microbial activity in the soil. The presence of TOL and its main metabolites reduced soil urease activity, increased catalase activity, and decreased alkaline phosphatase activity at the beginning and then increased slightly. They had negative effects on plant growth. Compared with the control group, the inhibition rates of TOL and its metabolites on lettuce and radish seed germination were 8.33% and 26.74% respectively, and the inhibition rates of root elongation length were 25.88% and 34.45% respectively. These results showed that TOL and its main metabolites were ineffectively removed by aerobic composting, and could be migrated from composting to soil and vegetables, which had adverse effects on soil enzyme activity and plant growth. Therefore, its environmental ecological risk and human health risk needs to be further evaluated.
Collapse
Affiliation(s)
- Meixia Huo
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan, 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei, 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, 430070, China
| | - Wenjin Ma
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan, 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei, 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, 430070, China
| | - Kaixiang Zhou
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agriculture University, Wuhan, 430070, China; MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, 430070, China
| | - Xiangyue Xu
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan, 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei, 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, 430070, China
| | - Zhenli Liu
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan, 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei, 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agriculture University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, 430070, China
| | - Lingli Huang
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan, 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei, 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agriculture University, Wuhan, 430070, China; MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, 430070, China.
| |
Collapse
|
17
|
Keenum I, Wind L, Ray P, Guron G, Chen C, Knowlton K, Ponder M, Pruden A. Metagenomic tracking of antibiotic resistance genes through a pre-harvest vegetable production system: an integrated lab-, microcosm- and greenhouse-scale analysis. Environ Microbiol 2022; 24:3705-3721. [PMID: 35466491 PMCID: PMC9541739 DOI: 10.1111/1462-2920.16022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
Abstract
Prior research demonstrated the potential for agricultural production systems to contribute to the environmental spread of antibiotic resistance genes (ARGs). However, there is a need for integrated assessment of critical management points for minimizing this potential. Shotgun metagenomic sequencing data were analysed to comprehensively compare total ARG profiles characteristic of amendments (manure or compost) derived from either beef or dairy cattle (with and without dosing antibiotics according to conventional practice), soil (loamy sand or silty clay loam) and vegetable (lettuce or radish) samples collected across studies carried out at laboratory-, microcosm- and greenhouse-scale. Vegetables carried the greatest diversity of ARGs (n = 838) as well as the most ARG-mobile genetic element co-occurrences (n = 945). Radishes grown in manure- or compost-amended soils harboured a higher relative abundance of total (0.91 and 0.91 ARGs/16S rRNA gene) and clinically relevant ARGs than vegetables from other experimental conditions (average: 0.36 ARGs/16S rRNA gene). Lettuce carried the highest relative abundance of pathogen gene markers among the metagenomes examined. Total ARG relative abundances were highest on vegetables grown in loamy sand receiving antibiotic-treated beef amendments. The findings emphasize that additional barriers, such as post-harvest processes, merit further study to minimize potential exposure to consumers.
Collapse
Affiliation(s)
- Ishi Keenum
- Department of Civil and Environmental EngineeringVirginia TechBlacksburgVAUSA
| | - Lauren Wind
- Department of Biological Systems EngineeringVirginia TechBlacksburgVAUSA
| | - Partha Ray
- Department of Animal Sciences, School of Agriculture, Policy and DevelopmentUniversity of ReadingReadingRG6 6ARUK
| | - Giselle Guron
- Department of Food Science and TechnologyVirginia TechBlacksburgVAUSA
| | - Chaoqi Chen
- Department of Crop and Soil Environmental SciencesVirginia TechBlacksburgVAUSA
| | | | - Monica Ponder
- Department of Food Science and TechnologyVirginia TechBlacksburgVAUSA
| | - Amy Pruden
- Department of Civil and Environmental EngineeringVirginia TechBlacksburgVAUSA
| |
Collapse
|
18
|
Li S, Yao Q, Liu J, Yu Z, Li Y, Jin J, Liu X, Wang G. Liming mitigates the spread of antibiotic resistance genes in an acid black soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152971. [PMID: 35016930 DOI: 10.1016/j.scitotenv.2022.152971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/16/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
The threat of antibiotic resistance genes (ARGs) caused by animal manure application to human health has been the focus of attention in agriculture. Applying lime to acid soil for the amelioration of soil acidity is a prevailing agricultural practice. However, the role of lime on the spread of antibiotic resistome from soil to plant is unknown. In this study, a pot experiment of lettuce was established in the acid black soil with lime addition at the rate (w/w) of 0%, 0.08%, 0.16%, and 0.32% of the total soil mass to explore the transmission of ARGs introduced by the fresh poultry manure in the soil-plant system. The bulk and rhizosphere soils as well as the leaf samples were collected after lettuce was cultivated for 60 days, the bacterial community and antibiotic resistome in these samples were determined by using Illumina sequencing and high-throughput quantitative PCR (HT-qPCR) methods, respectively. Results showed that lime application decreased the number and abundance of ARGs and slowed down the spread of manure-derived ARGs in the soil-plant system. The ARGs and bacterial community composition were significantly varied among bulk soils, rhizosphere soils and leaf endophyte, and also influenced by lime within the same sampling types. The structural equation model further demonstrated that the lime addition had a negative effect on ARG diversity, which was also indirectly regulated by bacterial community diversity. These findings suggest that lime addition can alleviate the level and dissemination of ARGs in soils and provide a potential measure to control the spread of ARGs derived from animal manure.
Collapse
Affiliation(s)
- Sen Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qin Yao
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Junjie Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Zhenhua Yu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Yansheng Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Jian Jin
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Xiaobing Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Guanghua Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China.
| |
Collapse
|
19
|
Werner KA, Schneider D, Poehlein A, Diederich N, Feyen L, Axtmann K, Hübner T, Brüggemann N, Prost K, Daniel R, Grohmann E. Metagenomic Insights Into the Changes of Antibiotic Resistance and Pathogenicity Factor Pools Upon Thermophilic Composting of Human Excreta. Front Microbiol 2022; 13:826071. [PMID: 35432262 PMCID: PMC9009411 DOI: 10.3389/fmicb.2022.826071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/17/2022] [Indexed: 01/12/2023] Open
Abstract
In times of climate change, practicing a form of sustainable, climate-resilient and productive agriculture is of primordial importance. Compost could be one form of sustainable fertilizer, which is increasing humus, water holding capacity, and nutrient contents of soils. It could thereby strengthen agriculture toward the adverse effects of climate change, especially when additionally combined with biochar. To get access to sufficient amounts of suitable materials for composting, resources, which are currently treated as waste, such as human excreta, could be a promising option. However, the safety of the produced compost regarding human pathogens, pharmaceuticals (like antibiotics) and related resistance genes must be considered. In this context, we have investigated the effect of 140- and 154-days of thermophilic composting on the hygienization of human excreta and saw dust from dry toilets together with straw and green cuttings with and without addition of biochar. Compost samples were taken at the beginning and end of the composting process and metagenomic analysis was conducted to assess the fate of antibiotic resistance genes (ARGs) and pathogenicity factors of the microbial community over composting. Potential ARGs conferring resistance to major classes of antibiotics, such as beta-lactam antibiotics, vancomycin, the MLSB group, aminoglycosides, tetracyclines and quinolones were detected in all samples. However, relative abundance of ARGs decreased from the beginning to the end of composting. This trend was also found for genes encoding type III, type IV, and type VI secretion systems, that are involved in pathogenicity, protein effector transport into eukaryotic cells and horizontal gene transfer between bacteria, respectively. The results suggest that the occurrence of potentially pathogenic microorganisms harboring ARGs declines during thermophilic composting. Nevertheless, ARG levels did not decline below the detection limit of quantitative PCR (qPCR). Thresholds for the usage of compost regarding acceptable resistance gene levels are yet to be evaluated and defined.
Collapse
Affiliation(s)
- Katharina A. Werner
- Department of Microbiology, Faculty of Life Sciences and Technology, Berliner Hochschule für Technik, Berlin, Germany
| | - Dominik Schneider
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Nina Diederich
- Department of Microbiology, Faculty of Life Sciences and Technology, Berliner Hochschule für Technik, Berlin, Germany
| | - Lara Feyen
- Department of Microbiology, Faculty of Life Sciences and Technology, Berliner Hochschule für Technik, Berlin, Germany
| | - Katharina Axtmann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Tobias Hübner
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research GmbH—Umweltforschungszentrum Leipzig (UFZ), Leipzig, Germany
| | - Nicolas Brüggemann
- Institute of Bio- and Geosciences—Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany
| | - Katharina Prost
- Institute of Bio- and Geosciences—Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Elisabeth Grohmann
- Department of Microbiology, Faculty of Life Sciences and Technology, Berliner Hochschule für Technik, Berlin, Germany
- *Correspondence: Elisabeth Grohmann,
| |
Collapse
|
20
|
Jadeja NB, Worrich A. From gut to mud: dissemination of antimicrobial resistance between animal and agricultural niches. Environ Microbiol 2022; 24:3290-3306. [PMID: 35172395 DOI: 10.1111/1462-2920.15927] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
With increasing reports on antimicrobial resistance (AMR) in humans, animals and the environment, we are at risk of returning to a pre-antibiotic era. Therefore, AMR is recognized as one of the major global health threats of this century. Antibiotics are used extensively in farming systems to treat and prevent infections in food animals or to increase their growth. Besides the risk of a transfer of AMR between the human and the animal sector, there is another yet largely overlooked sector in the One Health triad. Human-dominated ecosystems such as agricultural soils are a major sink for antibiotics and AMR originating from livestock farming. This review summarizes current knowledge on the prevalence of AMR at the interface of animal and agricultural production and discusses the potential implications for human health. Soil resistomes are augmented by the application of manure from treated livestock. Subsequent transfer of AMR into plant microbiomes may likely play a critical role in human exposure to antibiotic resistance in the environment. Based on the knowledge that is currently available we advocate that more attention should be paid to the role of environmental resistomes in the AMR crisis.
Collapse
Affiliation(s)
- Niti B Jadeja
- Ashoka Trust for Research in Ecology and the Environment, PO, Royal Enclave, Srirampura, Jakkur, Bengaluru, Karnataka, 560064, India
| | - Anja Worrich
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Permoserstr. 15, Leipzig, 04318, Germany
| |
Collapse
|
21
|
Huang J, Mi J, Yan Q, Wen X, Zhou S, Wang Y, Ma B, Zou Y, Liao X, Wu Y. Animal manures application increases the abundances of antibiotic resistance genes in soil-lettuce system associated with shared bacterial distributions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147667. [PMID: 34004530 DOI: 10.1016/j.scitotenv.2021.147667] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
An increasing amount of animal manures is being used in agriculture, and the effect of animal manures application on the abundance of antibiotics resistance genes (ARGs) in soil-plant system has attracted widespread attention. However, the impacts of animal manures application on the various types of bacterial distribution that occur in soil-lettuce system are unclear. To address this topic, the effects of poultry manure, swine manure or chemical fertilizer application on ARG abundance and the distribution of shared bacteria were investigated in this study. In a lettuce pot experiment, 13 ARGs and 2 MGEs were quantified by qPCR, and bacterial communities in the soil, lettuce endosphere and lettuce phyllosphere were analysed by 16S rRNA sequence analysis. The results showed that the application of poultry or swine manure significantly increased ARG abundance in the soil, a result attributed mainly to increases in the abundances of tetG and tetC. The application of poultry manure, swine manure and chemical fertilizer significantly increased ARG abundance in the lettuce endosphere, and tetG abundance was significantly increased in the poultry and swine manure groups. However, animal manures application did not significantly increase ARG abundance in the lettuce phyllosphere. Flavobacteriaceae, Sphingomonadaceae and 11 other bacterial families were the shared bacteria in the soil, lettuce endosphere, and phyllosphere. The Streptomycetaceae and Methylobacteriaceae were significantly positively correlated with intI1 in both the soil and endosphere. Chemical fertilizer application increased both the proportions of Sphingomonadaceae and tetX abundance, which were positively correlated in the endosphere. Comamonadaceae and Flavobacteriaceae were not detected in the lettuce endosphere under swine manure application. Cu was related to Flavobacteriaceae in the lettuce endosphere. Overall, poultry and swine manure application significantly increased ARG abundance in the soil-lettuce system, which might be due to the shared bacterial distribution.
Collapse
Affiliation(s)
- Jielan Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jiandui Mi
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China
| | - Qiufan Yan
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shizheng Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China
| | - Baohua Ma
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Yongde Zou
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China.
| |
Collapse
|
22
|
Scott LC, Wilson MJ, Esser SM, Lee NL, Wheeler ME, Aubee A, Aw TG. Assessing visitor use impact on antibiotic resistant bacteria and antibiotic resistance genes in soil and water environments of Rocky Mountain National Park. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147122. [PMID: 33932658 DOI: 10.1016/j.scitotenv.2021.147122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have been detected in soil and water in close proximity to anthropogenic sources, but the extent to which human impact plays into ARB and ARGs entering the environment is not well described. This study aimed to determine the impact of visitor use on ARB and ARGs in a national park environment. Soil (n = 240) and water (n = 210) samples were collected across a gradient of human activity in Rocky Mountain National Park and analyzed for bacteria resistant to doxycycline, levofloxacin, and vancomycin. Amount of physical effort required to access a sampling site was used as a metric for the likelihood of human presence. A subset of samples was analyzed for the presence and abundance of six ARGs using quantitative polymerase chain reaction. Linear regression analysis demonstrated that anthropogenic factors including hiking effort and proximity to a toilet significantly contributed to the variance of the abundance of ARB for multiple antibiotics in soil and water. Additionally, ecological factors such as water movement, soil texture, and season may play a role in the detection of ARB and ARGs. Predictive analysis suggests that both human presence and human activities, such as waste elimination, significantly contributed to the abundance of ARB in soil and water. The results of this work evidence that the ecology of antibiotic resistance in remote environments is more complex than anthropogenic impact alone, necessitating further environmental characterization of ARB and ARGs.
Collapse
Affiliation(s)
- Laura C Scott
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Mark J Wilson
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Scott M Esser
- Continental Divide Research Learning Center, Rocky Mountain National Park. Estes Park, CO, USA
| | - Nicholas L Lee
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Michael E Wheeler
- School of Renewable Natural Resources, Louisiana State University, Baton Rouge, LA, USA
| | - Alexandra Aubee
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Tiong Gim Aw
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
23
|
Wind L, Keenum I, Gupta S, Ray P, Knowlton K, Ponder M, Hession WC, Pruden A, Krometis LA. Integrated Metagenomic Assessment of Multiple Pre-harvest Control Points on Lettuce Resistomes at Field-Scale. Front Microbiol 2021; 12:683410. [PMID: 34305845 PMCID: PMC8299786 DOI: 10.3389/fmicb.2021.683410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/07/2021] [Indexed: 02/01/2023] Open
Abstract
An integrated understanding of factors influencing the occurrence, distribution, and fate of antibiotic resistance genes (ARGs) in vegetable production systems is needed to inform the design and development of strategies for mitigating the potential for antibiotic resistance propagation in the food chain. The goal of the present study was to holistically track antibiotic resistance and associated microbiomes at three distinct pre-harvest control points in an agroecosystem in order to identify the potential impacts of key agricultural management strategies. Samples were collected over the course of a single growing season (67 days) from field-scale plots amended with various organic and inorganic amendments at agronomic rates. Dairy-derived manure and compost amendment samples (n = 14), soil samples (n = 27), and lettuce samples (n = 12) were analyzed via shotgun metagenomics to assess multiple pre-harvest factors as hypothetical control points that shape lettuce resistomes. Pre-harvest factors of interest included manure collection during/post antibiotic use, manure composting, and soil amended with organic (stockpiled manure/compost) versus chemical fertilizer. Microbial community resistome and taxonomic compositions were unique from amendment to soil to lettuce surface according to dissimilarity analysis. The highest resistome alpha diversity (i.e., unique ARGs, n = 642) was detected in amendment samples prior to soil application, while the composted manure had the lowest total ARG relative abundance (i.e., 16S rRNA gene-normalized). Regardless of amendment type, soils acted as an apparent ecological buffer, i.e., soil resistome and taxonomic profiles returned to background conditions 67 d-post amendment application. Effects of amendment conditions surprisingly re-emerged in lettuce phyllosphere resistomes, with the highest total ARG relative abundances recovered on the surface of lettuce plants grown in organically-fertilized soils (i.e., compost- and manure-amended soils). Co-occurrence analysis identified 55 unique ARGs found both in the soil amendments and on lettuce surfaces. Among these, arnA and pmrF were the most abundant ARGs co-occurring with mobile genetic elements (MGE). Other prominent ARG-MGE co-occurrences throughout this pre-harvest lettuce production chain included: TetM to transposon (Clostridiodies difficile) in the manure amendment and TriC to plasmid (Ralstonia solanacearum) on the lettuce surfaces. This suggests that, even with imposing manure management and post-amendment wait periods in agricultural systems, ARGs originating from manure can still be found on crop surfaces. This study demonstrates a comprehensive approach to identifying key control points for the propagation of ARGs in vegetable production systems, identifying potential ARG-MGE combinations that could inform future surveillance. The findings suggest that additional pre-harvest and potentially post-harvest interventions may be warranted to minimize risk of propagating antibiotic resistance in the food chain.
Collapse
Affiliation(s)
- Lauren Wind
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Ishi Keenum
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Suraj Gupta
- The Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, United States
| | - Partha Ray
- Department of Dairy Science, Virginia Tech, Blacksburg, VA, United States.,Department of Animal Sciences, University of Reading, Reading, United Kingdom
| | - Katharine Knowlton
- Department of Dairy Science, Virginia Tech, Blacksburg, VA, United States
| | - Monica Ponder
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, United States
| | - W Cully Hession
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Leigh-Anne Krometis
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
24
|
Ibekwe AM, Ors S, Ferreira JFS, Liu X, Suarez DL. Influence of seasonal changes and salinity on spinach phyllosphere bacterial functional assemblage. PLoS One 2021; 16:e0252242. [PMID: 34061881 PMCID: PMC8168849 DOI: 10.1371/journal.pone.0252242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/11/2021] [Indexed: 11/18/2022] Open
Abstract
The phyllosphere is the aerial part of plants that is exposed to different environmental conditions and is also known to harbor a wide variety of bacteria including both plant and human pathogens. However, studies on phyllosphere bacterial communities have focused on bacterial composition at different stages of plant growth without correlating their functional capabilities to bacterial communities. In this study, we examined the seasonal effects and temporal variabilities driving bacterial community composition and function in spinach phyllosphere due to increasing salinity and season and estimated the functional capacity of bacterial community16S V4 rRNA gene profiles by indirectly inferring the abundance of functional genes based on metagenomics inference tool Piphillin. The experimental design involved three sets of spinach (Spinacia oleracea L., cv. Racoon) grown with saline water during different seasons. Total bacteria DNA from leaf surfaces were sequenced using MiSeq® Illumina platform. About 66.35% of bacteria detected in the phyllosphere were dominated by four phyla- Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria. Permutational analysis of variance (PERMANOVA) showed that phyllosphere microbiomes were significantly (P < 0.003) affected by season, but not salinity (P = 0.501). The most abundant inferred functional pathways in leaf samples were the amino acids biosynthesis, ABC transporters, ribosome, aminoacyl-tRNA biosynthesis, two-component system, carbon metabolism, purine metabolism, and pyrimidine metabolism. The photosynthesis antenna proteins pathway was significantly enriched in June leaf samples, when compared to March and May. Several genes related to toxin co-regulated pilus biosynthesis proteins were also significantly enriched in June leaf samples, when compared to March and May leaf samples. Therefore, planting and harvesting times must be considered during leafy green production due to the influence of seasons in growth and proliferation of phyllosphere microbial communities.
Collapse
Affiliation(s)
| | - Selda Ors
- Ataturk University, Department of Agricultural Structures and Irrigation, Erzurum, Turkey
| | | | - Xuan Liu
- US Salinity Laboratory, USDA-ARS, Riverside, CA, United States of America
| | - Donald L. Suarez
- US Salinity Laboratory, USDA-ARS, Riverside, CA, United States of America
| |
Collapse
|
25
|
Macedo G, van Veelen HPJ, Hernandez-Leal L, van der Maas P, Heederik D, Mevius D, Bossers A, Schmitt H. Targeted metagenomics reveals inferior resilience of farm soil resistome compared to soil microbiome after manure application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145399. [PMID: 33736375 DOI: 10.1016/j.scitotenv.2021.145399] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 05/26/2023]
Abstract
Application of animal manure to soils results in the introduction of manure-derived bacteria and their antimicrobial resistance genes (ARGs) into soils. ResCap is a novel targeted-metagenomic approach that allows the detection of minority components of the resistome gene pool without the cost-prohibitive coverage depths and can provide a valuable tool to study the spread of antimicrobial resistance (AMR) in the environment. We used high-throughput sequencing and qPCR for 16S rRNA gene fragments as well as ResCap to explore the dynamics of bacteria, and ARGs introduced to soils and adjacent water ditches, both at community and individual scale, over a period of three weeks. The soil bacteriome and resistome showed strong resilience to the input of manure, as manuring did not impact the overall structure of the bacteriome, and its effects on the resistome were transient. Initially, manure application resulted in a substantial increase of ARGs in soils and adjacent waters, while not affecting the overall bacterial community composition. Still, specific families increased after manure application, either through the input of manure (e.g., Dysgonomonadaceae) or through enrichment after manuring (e.g., Pseudomonadaceae). Depending on the type of ARG, manure application resulted mostly in an increase (e.g., aph(6)-Id), but occasionally also in a decrease (e.g., dfrB3) of the absolute abundance of ARG clusters (FPKM/kg or L). This study shows that the structures of the bacteriome and resistome are shaped by different factors, where the bacterial community composition could not explain the changes in ARG diversity or abundances. Also, it highlights the potential of applying targeted metagenomic techniques, such as ResCap, to study the fate of AMR in the environment.
Collapse
Affiliation(s)
- Gonçalo Macedo
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands.
| | - H Pieter J van Veelen
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands
| | - Lucia Hernandez-Leal
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands
| | - Peter van der Maas
- Van Hall Larenstein, University of Applied Sciences, Agora 1, 8901 BV Leeuwarden, the Netherlands
| | - Dick Heederik
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584, CM, Utrecht, the Netherlands
| | - Dik Mevius
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands; Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, the Netherlands
| | - Alex Bossers
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584, CM, Utrecht, the Netherlands; Department of Infection Biology, Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, the Netherlands
| | - Heike Schmitt
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands
| |
Collapse
|
26
|
Manure-Based Amendments Influence Surface-Associated Bacteria and Markers of Antibiotic Resistance on Radishes Grown in Soils with Different Textures. Appl Environ Microbiol 2021; 87:AEM.02753-20. [PMID: 33712421 DOI: 10.1128/aem.02753-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/24/2021] [Indexed: 01/21/2023] Open
Abstract
A controlled greenhouse study was performed to determine the effect of manure or compost amendments, derived during or in the absence of antibiotic treatment of beef and dairy cattle, on radish taproot-associated microbiota and indicators of antibiotic resistance when grown in different soil textures. Bacterial beta diversity, determined by 16S rRNA gene amplicon sequencing, bifurcated according to soil texture (P < 0.001, R = 0.501). There was a striking cross-effect in which raw manure from antibiotic-treated and antibiotic-free beef and dairy cattle added to loamy sand (LS) elevated relative (16S rRNA gene-normalized) (by 0.9 to 1.9 log10) and absolute (per-radish) (by 1.1 to 3.0 log10) abundances of intI1 (an integrase gene and indicator of mobile multiantibiotic resistance) on radishes at harvest compared to chemical fertilizer-only control conditions (P < 0.001). Radishes tended to carry fewer copies of intI1 and sul1 when grown in silty clay loam than LS. Composting reduced relative abundance of intI1 on LS-grown radishes (0.6 to 2.4 log10 decrease versus corresponding raw manure; P < 0.001). Effects of antibiotic use were rarely discernible. Heterotrophic plate count bacteria capable of growth on media containing tetracycline, vancomycin, sulfamethazine, or erythromycin tended to increase on radishes grown in turned composted antibiotic-treated dairy or beef control (no antibiotics) manures relative to the corresponding raw manure in LS (0.8- to 2.3-log10 increase; P < 0.001), suggesting that composting sometimes enriches cultivable bacteria with phenotypic resistance. This study demonstrates that combined effects of soil texture and manure-based amendments influence the microbiota of radish surfaces and markers of antibiotic resistance, illuminating future research directions for reducing agricultural sources of antibiotic resistance.IMPORTANCE In working toward a comprehensive strategy to combat the spread of antibiotic resistance, potential farm-to-fork routes of dissemination are gaining attention. The effects of preharvest factors on the microbiota and corresponding antibiotic resistance indicators on the surfaces of produce commonly eaten raw is of special interest. Here, we conducted a controlled greenhouse study, using radishes as a root vegetable grown in direct contact with soil, and compared the effects of manure-based soil amendments, antibiotic use in the cattle from which the manure was sourced, composting of the manure, and soil texture, with chemical fertilizer only as a control. We noted significant effects of amendment type and soil texture on the composition of the microbiota and genes used as indicators of antibiotic resistance on radish surfaces. The findings take a step toward identifying agricultural practices that aid in reducing carriage of antibiotic resistance and corresponding risks to consumers.
Collapse
|
27
|
Zalewska M, Błażejewska A, Czapko A, Popowska M. Antibiotics and Antibiotic Resistance Genes in Animal Manure - Consequences of Its Application in Agriculture. Front Microbiol 2021; 12:610656. [PMID: 33854486 PMCID: PMC8039466 DOI: 10.3389/fmicb.2021.610656] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
Antibiotic resistance genes (ARGs) are a relatively new type of pollutant. The rise in antibiotic resistance observed recently is closely correlated with the uncontrolled and widespread use of antibiotics in agriculture and the treatment of humans and animals. Resistant bacteria have been identified in soil, animal feces, animal housing (e.g., pens, barns, or pastures), the areas around farms, manure storage facilities, and the guts of farm animals. The selection pressure caused by the irrational use of antibiotics in animal production sectors not only promotes the survival of existing antibiotic-resistant bacteria but also the development of new resistant forms. One of the most critical hot-spots related to the development and dissemination of ARGs is livestock and poultry production. Manure is widely used as a fertilizer thanks to its rich nutrient and organic matter content. However, research indicates that its application may pose a severe threat to human and animal health by facilitating the dissemination of ARGs to arable soil and edible crops. This review examines the pathogens, potentially pathogenic microorganisms and ARGs which may be found in animal manure, and evaluates their effect on human health through their exposure to soil and plant resistomes. It takes a broader view than previous studies of this topic, discussing recent data on antibiotic use in farm animals and the effect of these practices on the composition of animal manure; it also examines how fertilization with animal manure may alter soil and crop microbiomes, and proposes the drivers of such changes and their consequences for human health.
Collapse
Affiliation(s)
- Magdalena Zalewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Błażejewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Czapko
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Popowska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
28
|
Shen R, Yu L, Xu P, Liang Z, Lu Q, Liang D, He Z, Wang S. Water content as a primary parameter determines microbial reductive dechlorination activities in soil. CHEMOSPHERE 2021; 267:129152. [PMID: 33316619 DOI: 10.1016/j.chemosphere.2020.129152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Organohalide-respiring bacteria (OHRB) remove halogens from a variety of organohalides, which have been utilized for in situ remediation of different contaminated sites, e.g., groundwater, sediment and soil. Nonetheless, dehalogenation activities of OHRB and consequent remediation efficiencies can be synergistically affected by water content, soil type and inoculated/indigenous OHRB, which need to be disentangled to identify the key driving parameter and to elucidate the underlying mechanism. In this study, we investigated the impacts of water content (0-100%), soil type (laterite, brown soil and black soil) and inoculated OHRB (Dehalococcoides mccartyi CG1 and a river sediment culture) on reductive dechlorination of perchloroethene (PCE) and polychlorinated biphenyls (PCBs), as well as on associated microbial communities. Results suggested that the water content as a primary rate-limiting parameter governed dechlorination activities in environmental matrices, particularly in the soil, possibly through mediation of cell-to-organohalide mobility of OHRB. By contrast, interestingly, organohalide-dechlorinating microbial communities were predominantly clustered based on soil types, rather than water contents or inoculated OHRB. This study provided knowledge on the impacts of major parameters on OHRB-mediated reductive dechlorination in groundwater, sediment and soil for future optimization of in situ bioremediation of organohalides.
Collapse
Affiliation(s)
- Rui Shen
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ling Yu
- Analysis and Test Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Pan Xu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhiwei Liang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qihong Lu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Dawei Liang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space & Environment, Beihang University, Beijing, 100191, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
29
|
Cerqueira F, Christou A, Fatta-Kassinos D, Vila-Costa M, Bayona JM, Piña B. Effects of prescription antibiotics on soil- and root-associated microbiomes and resistomes in an agricultural context. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123208. [PMID: 32593021 DOI: 10.1016/j.jhazmat.2020.123208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/22/2020] [Accepted: 06/11/2020] [Indexed: 05/23/2023]
Abstract
The use of treated wastewater for crop irrigation is rapidly increasing to respond to the ever-growing demands for water and food resources. However, this practice may contribute to the spread of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) in agricultural settings. To evaluate this potential risk, we analyzed microbiomes and resistomes of soil and Lactuca sativa L. (lettuce) root samples from pots irrigated with tap water spiked with 0, 20, or 100 μg L-1 of a mixture of three antibiotics (Trimethoprim, Ofloxacin, Sulfamethoxazole). The presence of antibiotics induced changes in bacterial populations, particularly in soil, as revealed by 16S rDNA sequence analysis. Parallel shotgun sequencing identified a total of 56 different ARGs conferring resistance against 14 antibiotic families. Antibiotic -treated samples showed increased loads of ARGs implicated in mutidrug resistance or in both direct and indirect acquired resistance. These changes correlated with the prevalence of Xantomonadales species in the root microbiomes. We interpret these data as indicating different strategies of soil and root microbiomes to cope with the presence of antibiotics, and as a warning that their presence may increase the loads of ARBs and ARGs in edible plant parts, therefore constituting a potential risk for human consumers.
Collapse
Affiliation(s)
- Francisco Cerqueira
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council, Barcelona, Spain
| | - Anastasis Christou
- Agricultural Research Institute, Ministry of Agriculture, Rural Development and Environment, P.O. Box 22016, 1516, Nicosia, Cyprus
| | - Despo Fatta-Kassinos
- Civil and Environmental Engineering Department and Nireas, International Water Research Center, University of Cyprus, P.O. Box 20538, 1678, Nicosia, Cyprus
| | - Maria Vila-Costa
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council, Barcelona, Spain
| | - Josep Maria Bayona
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council, Barcelona, Spain
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council, Barcelona, Spain.
| |
Collapse
|
30
|
You R, Margenat A, Lanzas CS, Cañameras N, Carazo N, Navarro-Martín L, Matamoros V, Bayona JM, Díez S. Dose effect of Zn and Cu in sludge-amended soils on vegetable uptake of trace elements, antibiotics, and antibiotic resistance genes: Human health implications. ENVIRONMENTAL RESEARCH 2020; 191:109879. [PMID: 32841899 DOI: 10.1016/j.envres.2020.109879] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
The application of sewage sludge to agricultural fields reduces the need for mineral fertilizers by increasing soil organic matter, but may also increase soil pollution. Previous studies indicate that zinc and copper, as the most abundant elements in sewage sludge, affect plant uptake of other contaminants. This paper aims to investigate and compare the effect of increasing amounts of Zn and Cu in sludge-amended soils on the accumulation of trace elements (TEs), antibiotics (ABs), and antibiotic resistance genes (ARGs) in lettuce and radish. The vegetables were grown under controlled conditions, and the influence on plant physiology and human health were also evaluated. The results show that the addition of Zn and Cu significantly increased the concentration of TEs in the edible tissue of both vegetables. According to the hazard quotient (HQ) of the TEs, the human health risk increased 2 to 3 times and was 3-4 times greater in lettuce than in radish. In contrast to the TEs, the occurrence of ABs and most of the ARGs was higher in radish roots than lettuce leaves. ABs were not detected in lettuce leaves, and the amount of all ARGs except blaTEM was 10 times lower than in radish roots. On the other hand, the addition of Zn and Cu had no significant effect on the occurrence of ABs and ARGs in the edible part of the vegetables, and no damage was found to plant productivity or physiology. The results show that the consumption of lettuce and radish grown in sewage-sludge-amended soils under tested doses of Cu and Zn does not pose an adverse human health effect, as the total HQ value was always less than 1, and the presence of ABs and ARGs was not found to have any potential impact. Nevertheless, further studies are needed to estimate the long-term effect on human health of crops grown under frequent application of biosolids in arable soil.
Collapse
Affiliation(s)
- Rui You
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034, Barcelona, Spain
| | - Anna Margenat
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034, Barcelona, Spain
| | - Claudia Sanz Lanzas
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034, Barcelona, Spain
| | - Núria Cañameras
- Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, E-08860, Castelldefels, Spain
| | - Núria Carazo
- Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, E-08860, Castelldefels, Spain
| | - Laia Navarro-Martín
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034, Barcelona, Spain
| | - Víctor Matamoros
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034, Barcelona, Spain
| | - Josep M Bayona
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034, Barcelona, Spain
| | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034, Barcelona, Spain.
| |
Collapse
|
31
|
Zhang YJ, Hu HW, Chen QL, Yan H, Wang JT, Chen D, He JZ. Manure Application Did Not Enrich Antibiotic Resistance Genes in Root Endophytic Bacterial Microbiota of Cherry Radish Plants. Appl Environ Microbiol 2020; 86:e02106-19. [PMID: 31704674 PMCID: PMC6952223 DOI: 10.1128/aem.02106-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/01/2019] [Indexed: 01/13/2023] Open
Abstract
Growing evidence suggests that livestock manure used as organic fertilizer in agriculture may lead to the potential propagation of antibiotic resistance genes (ARGs) from "farm to fork." However, little is known about the impacts of manure fertilization on the incidence of ARGs in the plant-associated microbiomes (including rhizosphere, endosphere, and phyllosphere), which hampers our ability to assess the dissemination of antibiotic resistance in the soil-plant system. Here, we constructed a pot experiment to explore the effects of poultry and cattle manure applications on the shifts in the resistome in the plant microbiome of harvested cherry radish. A total of 144 ARGs conferring resistance to eight major classes of antibiotics were detected among all the samples. Rhizosphere and phyllosphere microbiomes harbored significantly higher diversity and abundance of ARGs than did root endophytic microbiomes of cherry radish. Manure application significantly increased the abundance of ARGs in the rhizosphere and phyllosphere but not in the endophytes of the root, which is the edible part of cherry radish. Soil and plant microbiomes changed dramatically after manure applications and clustered separately according to different sample types and treatments. Structural equation modeling revealed that bacterial abundance was the most important factor modulating the distribution patterns of soil and plant resistomes after accounting for multiple drivers. Taken together, we provide evidence that enrichment of the resistome in the rhizosphere and phyllosphere of cherry radish is more obvious than with the endosphere after manure application, suggesting that manure amendment might not enhance the dissemination of ARGs into the root of vegetables in the pot experiment.IMPORTANCE Our study provides important evidence that manure application increased the occurrence of ARGs in the rhizosphere and phyllosphere of cherry radish, compared with that in the endophytic bacterial microbiota of root, which is the edible part of cherry radish. Our findings suggest that although manure amendment is a significant route of ARGs entering agricultural soils, these manure-derived ARGs may be at low risk of migrating into the endophytes of root vegetables.
Collapse
Affiliation(s)
- Yu-Jing Zhang
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Qing-Lin Chen
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Hui Yan
- College of Animal Science and Technology, Agricultural University of Hebei, Baoding, China
| | - Jun-Tao Wang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Deli Chen
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|