1
|
Naicker SD, Firacative C, van Schalkwyk E, Maphanga TG, Monroy-Nieto J, Bowers JR, Engelthaler DM, Meyer W, Govender NP. Molecular type distribution and fluconazole susceptibility of clinical Cryptococcus gattii isolates from South African laboratory-based surveillance, 2005–2013. PLoS Negl Trop Dis 2022; 16:e0010448. [PMID: 35767529 PMCID: PMC9242473 DOI: 10.1371/journal.pntd.0010448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
As is the case globally, Cryptococcus gattii is a less frequent cause of cryptococcosis than Cryptococcus neoformans in South Africa. We performed multilocus sequence typing (MLST) and fluconazole susceptibility testing of 146 isolates randomly selected from 750 South African patients with C. gattii disease identified through enhanced laboratory surveillance, 2005 to 2013. The dominant molecular type was VGIV (101/146, 70%), followed by VGI (40/146, 27%), VGII (3/146, 2%) and VGIII (2/146, 1%). Among the 146 C. gattii isolates, 99 different sequence types (STs) were identified, with ST294 (14/146, 10%) and ST155 (10/146, 7%) being most commonly observed. The fluconazole MIC50 and MIC90 values of 105 (of 146) randomly selected C. gattii isolates were 4 μg/ml and 16 μg/ml, respectively. VGIV isolates had a lower MIC50 value compared to non-VGIV isolates, but these values were within one double-dilution of each other. HIV-seropositive patients had a ten-fold increased adjusted odds of a VGIV infection compared to HIV-seronegative patients, though with small numbers (99/136; 73% vs. 2/10; 20%), the confidence interval (CI) was wide (95% CI: 1.93–55.31, p = 0.006). Whole genome phylogeny of 98 isolates of South Africa’s most prevalent molecular type, VGIV, identified that this molecular type is highly diverse, with two interesting clusters of ten and six closely related isolates being identified, respectively. One of these clusters consisted only of patients from the Mpumalanga Province in South Africa, suggesting a similar environmental source. This study contributed new insights into the global population structure of this important human pathogen. Cryptococcus is the most common cause of meningitis among adults in South Africa. Most human disease is caused by the members of two species complexes within the genus, Cryptococcus neoformans and Cryptococcus gattii. The environmental range of these species complexes, both found in soil, overlaps in southern Africa though C. gattii is a less common human pathogen. C. gattii is divided into six molecular types: VGI, VGII, VGIII, VGIV, VGV and VGVI. In earlier molecular epidemiology studies including relatively few isolates, most southern African isolates were confirmed as molecular type VGIV. We aimed to determine the molecular diversity of C. gattii in South Africa by genotyping patient isolates obtained through laboratory surveillance, 2005–2013. We confirmed that VGIV was the dominant molecular type and that HIV-seropositive patients were more likely to be infected with VGIV compared to those HIV-seronegative. Analysis of the genomes of South African VGIV isolates revealed that they spanned the whole VGIV clade and confirmed that most isolates did not cluster specifically. However, we observed two interesting clusters of closely related isolates, consisting of patients from three neighbouring provinces in South Africa, suggesting a similar environmental source. Further studies of clinical and environmental African C. gattii isolates are needed to gain a better understanding of this pathogen.
Collapse
Affiliation(s)
- Serisha D. Naicker
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses), a Division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| | - Carolina Firacative
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Erika van Schalkwyk
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses), a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Tsidiso G. Maphanga
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses), a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Juan Monroy-Nieto
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
| | - Jolene R. Bowers
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
| | - David M. Engelthaler
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Westmead, New South Wales, Australia
- Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Research and Educational Network, Westmead Hospital, Western Sydney Local Health District, Westmead, New South Wales, Australia
- Curtin Medical School, Curtin University, Perth, Australia
| | - Nelesh P. Govender
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses), a Division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Medical Research Council Centre for Medical Mycology, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | | |
Collapse
|
2
|
Danesi P, Falcaro C, Schmertmann LJ, de Miranda LHM, Krockenberger M, Malik R. Cryptococcus in Wildlife and Free-Living Mammals. J Fungi (Basel) 2021; 7:jof7010029. [PMID: 33419125 PMCID: PMC7825559 DOI: 10.3390/jof7010029] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/22/2020] [Accepted: 01/01/2021] [Indexed: 12/21/2022] Open
Abstract
Cryptococcosis is typically a sporadic disease that affects a broad range of animal species globally. Disease is a consequence of infection with members of the Cryptococcus neoformans or Cryptococcus gattii species complexes. Although cryptococcosis in many domestic animals has been relatively well-characterized, free-living wildlife animal species are often neglected in the literature outside of occasional case reports. This review summarizes the clinical presentation, pathological findings and potential underlying causes of cryptococcosis in various other animals, including terrestrial wildlife species and marine mammals. The evaluation of the available literature supports the hypothesis that anatomy (particularly of the respiratory tract), behavior and environmental exposures of animals play vital roles in the outcome of host–pathogen–environment interactions resulting in different clinical scenarios. Key examples range from koalas, which exhibit primarily C. gattii species complex disease presumably due to their behavior and environmental exposure to eucalypts, to cetaceans, which show predominantly pulmonary lesions due to their unique respiratory anatomy. Understanding the factors at play in each clinical scenario is a powerful investigative tool, as wildlife species may act as disease sentinels.
Collapse
Affiliation(s)
- Patrizia Danesi
- Laboratory of Parasitology, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Padua, Italy;
- Correspondence:
| | - Christian Falcaro
- Laboratory of Parasitology, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Padua, Italy;
| | - Laura J. Schmertmann
- Veterinary Pathology Diagnostic Services, Sydney School of Veterinary Science, The University of Sydney, Sydney 2006, Australia; (L.J.S.); (L.H.M.d.M.); (M.K.)
| | - Luisa Helena Monteiro de Miranda
- Veterinary Pathology Diagnostic Services, Sydney School of Veterinary Science, The University of Sydney, Sydney 2006, Australia; (L.J.S.); (L.H.M.d.M.); (M.K.)
| | - Mark Krockenberger
- Veterinary Pathology Diagnostic Services, Sydney School of Veterinary Science, The University of Sydney, Sydney 2006, Australia; (L.J.S.); (L.H.M.d.M.); (M.K.)
| | - Richard Malik
- Centre for Veterinary Education, The University of Sydney, Sydney 2006, Australia;
| |
Collapse
|
3
|
Canfield GS, Henao-Martínez AF, Franco-Paredes C, Zhelnin K, Wilson ML, Shihadeh KC, Wyles D, Gardner EM. Corticosteroids for Posttransplant Immune Reconstitution Syndrome in Cryptococcus gattii Meningoencephalitis: Case Report and Literature Review. Open Forum Infect Dis 2019; 6:ofz460. [PMID: 31737740 PMCID: PMC6847472 DOI: 10.1093/ofid/ofz460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 10/21/2019] [Indexed: 11/12/2022] Open
Abstract
Cryptococcus gattii represents an emerging fungal pathogen of immunocompromised and immunocompetent hosts in the United States. To our knowledge, this is the first case of posttransplant immune reconstitution syndrome due to C. gattii meningoencephalitis successfully treated with corticosteroids. We also report successful maintenance phase treatment with isavuconazole, a novel triazole, following fluconazole-induced prolonged QT syndrome.
Collapse
Affiliation(s)
- Gregory S Canfield
- Department of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Andrés F Henao-Martínez
- Department of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Carlos Franco-Paredes
- Department of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
- Hospital Infantil de Mexico, Federico Gomez, Mexico City, Mexico
| | - Kristen Zhelnin
- Deparment of Pathology, Denver Health Medical Center, Denver, Colorado, USA
| | - Michael L Wilson
- Deparment of Pathology, Denver Health Medical Center, Denver, Colorado, USA
| | | | - David Wyles
- Department of Infectious Diseases, Denver Health Medical Center, Denver, Colorado, USA
| | - Edward M Gardner
- Department of Infectious Diseases, Denver Health Medical Center, Denver, Colorado, USA
| |
Collapse
|
4
|
Freij JB, Fu MS, De Leon Rodriguez CM, Dziedzic A, Jedlicka AE, Dragotakes Q, Rossi DCP, Jung EH, Coelho C, Casadevall A. Conservation of Intracellular Pathogenic Strategy among Distantly Related Cryptococcal Species. Infect Immun 2018; 86:e00946-17. [PMID: 29712729 PMCID: PMC6013651 DOI: 10.1128/iai.00946-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/02/2018] [Indexed: 01/22/2023] Open
Abstract
The genus Cryptococcus includes several species pathogenic for humans. Until recently, the two major pathogenic species were recognized to be Cryptococcus neoformans and Cryptococcus gattii We compared the interaction of murine macrophages with three C. gattii species complex strains (WM179, R265, and WM161, representing molecular types VGI, VGIIa, and VGIII, respectively) and one C. neoformans species complex strain (H99, molecular type VNI) to ascertain similarities and differences in the yeast intracellular pathogenic strategy. The parameters analyzed included nonlytic exocytosis frequency, phagolysosomal pH, intracellular capsular growth, phagolysosomal membrane permeabilization, and macrophage transcriptional response, assessed using time-lapse microscopy, fluorescence microscopy, flow cytometry, and gene expression microarray analysis. The most striking result was that the intracellular pathogenic strategies of C. neoformans and C. gattii species complex strains were qualitatively similar, despite the species having separated an estimated 100 million years ago. Macrophages exhibited a leaky phagolysosomal membrane phenotype and nonlytic exocytosis when infected with either C. gattii or C. neoformans Conservation of the intracellular strategy among species that separated long ago suggests that it is ancient and possibly maintained by similar selection pressures through eons.
Collapse
Affiliation(s)
- Joudeh B Freij
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Man Shun Fu
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Amanda Dziedzic
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Anne E Jedlicka
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Quigly Dragotakes
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Diego C P Rossi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Eric H Jung
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Albert Einstein School of Medicine, Department of Microbiology and Immunology, New York, New York, USA
| | - Carolina Coelho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Ecoepidemiology of Cryptococcus gattii in Developing Countries. J Fungi (Basel) 2017; 3:jof3040062. [PMID: 29371578 PMCID: PMC5753164 DOI: 10.3390/jof3040062] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 01/06/2023] Open
Abstract
Cryptococcosis is a systemic infection caused by species of the encapsulated yeast Cryptococcus. The disease may occur in immunocompromised and immunocompetent hosts and is acquired by the inhalation of infectious propagules present in the environment. Cryptococcus is distributed in a plethora of ecological niches, such as soil, pigeon droppings, and tree hollows, and each year new reservoirs are discovered, which helps researchers to better understand the epidemiology of the disease. In this review, we describe the ecoepidemiology of the C. gattii species complex focusing on clinical cases and ecological reservoirs in developing countries from different continents. We also discuss some important aspects related to the antifungal susceptibility of different species within the C. gattii species complex and bring new insights on the revised Cryptococcus taxonomy.
Collapse
|