1
|
Xia B, Li Z, Zhu W, Wu Z, Zhang Y, Zhu Y, Sun H, Niu G. Identification and phylogenetic analysis of Jingmen tick virus in ticks and sheep from Henan Province, China. Virol J 2024; 21:325. [PMID: 39707432 DOI: 10.1186/s12985-024-02587-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024] Open
Abstract
Jingmen tick virus (JMTV) is a novel segmented Flavivirus that was first identified from Rhipicephalus microplus in the Jingmen region of Hubei Province, China, in 2010. Subsequently, it was detected in a variety of countries and regions around the world. Meanwhile, JMTV has been proved to be pathogenic to humans and animals and could cause viremia in animals. However, the pathogenic mechanism of JMTV and what role animals play in the viral cycle have not yet been elucidated. In this study, 38 sheep sera were collected from Xinyang region of Henan Province, China and 204 ticks attached to the sheep were collected. The qRT-PCR and nested PCR were used to confirm the presence of JMTV in serum and tick samples. The results showed that the positive rate of JMTV in serum and ticks was 13.16% (5/38) and 7.84% (16/204), respectively. Phylogenetic analysis showed that JMTV sequences in sheep and ticks shared a high degree of identity with each other, and JMTV was relatively conserved in evolution. These results enriched the evidence for the prevalence of JMTV in animals and further deepened our understanding of the mechanisms and routes of JMTV transmission.
Collapse
Affiliation(s)
- Baicheng Xia
- Shandong Second Medical University, Weifang, 261053, China
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Zhenhua Li
- Shandong Second Medical University, Weifang, 261053, China
| | - Wenbing Zhu
- Shandong Second Medical University, Weifang, 261053, China
| | - Zhen Wu
- Shandong Second Medical University, Weifang, 261053, China
| | - Yuli Zhang
- Shandong Second Medical University, Weifang, 261053, China
| | - Yujing Zhu
- Suqian First Hospital, Suqian, 223812, China.
| | - Hengyi Sun
- Shandong Second Medical University, Weifang, 261053, China.
| | - Guoyu Niu
- Shandong Second Medical University, Weifang, 261053, China.
| |
Collapse
|
2
|
Gömer A, Lang A, Janshoff S, Steinmann J, Steinmann E. Epidemiology and global spread of emerging tick-borne Alongshan virus. Emerg Microbes Infect 2024; 13:2404271. [PMID: 39259276 PMCID: PMC11423535 DOI: 10.1080/22221751.2024.2404271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
The emergence and spread of novel viral pathogens is a major threat to human health, particularly in the context of climate and human-induced change in land use. Alongshan virus (ALSV) is a tick-borne virus associated with human disease, which was first identified in northeast China. More recently, several studies reported the emergence of ALSV in mammalian and arthropod hosts in multiple different countries outside of Asia, and the first viral genome sequencing data has become available. ALSV is a member of the Jingmenvirus group closely related to the Flaviviridae family. Unusually, the positive-sense, single-stranded RNA genome of ALSV is segmented and consists of four distinct segments, two of which show homology with the NS3 and NS5 protein encoding regions of non-segmented flaviviruses. Transmission of arthropod-borne pathogens will likely increase in the future due to environmental change mediated by a variety of environmental and ecological factors and increasing human encroachment into wild animal habitats. In this review, we present current knowledge of global ALSV distribution and emergence patterns, highlight genetic diversity, evolution and susceptible species. Finally, we discuss the role of this emerging tick-borne virus in the context of urbanization and global health.
Collapse
Affiliation(s)
- André Gömer
- Department for Molecular und Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Arthur Lang
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, General Hospital Nuremberg, Paracelsus Medical University, Nuremberg, Germany
| | - Saskia Janshoff
- Department for Molecular und Medical Virology, Ruhr University Bochum, Bochum, Germany
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Joerg Steinmann
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, General Hospital Nuremberg, Paracelsus Medical University, Nuremberg, Germany
- Institute of Medical Microbiology, University Hospital of Essen, Essen, Germany
| | - Eike Steinmann
- Department for Molecular und Medical Virology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
3
|
López Y, Thomas R, Muñoz-Leal S, López-Mejia Y, Galeano K, Garcia A, Romero L, la Hoz DED, Martinez C, Calderón A, Gastelbondo B, Contreras H, Olivieri G, Rubiano L, Paternina L, Hoyos-López R, Ortiz A, Garay E, Alemán-Santos M, Rivero R, Miranda J, Florez L, Ballesteros J, Contreras V, Tique V, Fragoso P, Guzman C, Arrieta G, Mattar S. Hard ticks (Ixodida: Ixodidae) in the Colombian Caribbean harbor the Jingmen tick virus: an emerging arbovirus of public health concern. Parasit Vectors 2024; 17:268. [PMID: 38918818 PMCID: PMC11202343 DOI: 10.1186/s13071-024-06362-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Ticks are obligate hematophagous ectoparasites involved in transmitting viruses of public health importance. The objective of this work was to identify the Jingmen tick virus in hard ticks from the Colombian Caribbean, an arbovirus of importance for public health. METHODS Ticks were collected in rural areas of Córdoba and Cesar, Colombia. Taxonomic identification of ticks was carried out, and pools of 13 individuals were formed. RNA extraction was performed. Library preparation was performed with the MGIEasy kit, and next-generation sequencing (NGS) with MGI equipment. Bioinformatic analyses and taxonomic assignments were performed using the Galaxy platform, and phylogenetic analyses were done using IQ-TREE2. RESULTS A total of 766 ticks were collected, of which 87.33% (669/766) were Rhipicephalus microplus, 5.4% (42/766) Dermacentor nitens, 4.2% (32/766) Rhipicephalus linnaei, and 3.0% (23/766) Amblyomma dissimile. Complete and partial segments 1, 2, 3, and 4 of Jingmen tick virus (JMTV) were detected in the metatranscriptome of the species R. microplus, D. nitens, and A. dissimile. The JMTVs detected are phylogenetically related to JMTVs detected in Aedes albopictus in France, JMTVs detected in R. microplus in Trinidad and Tobago, JMTVs in R. microplus and A. variegatum in the French Antilles, and JMTVs detected in R. microplus in Colombia. Interestingly, our sequences clustered closely with JMTV detected in humans from Kosovo. CONCLUSIONS JMTV was detected in R. microplus, D. nitens, and A. dissimile. JMTV could pose a risk to humans. Therefore, it is vital to establish epidemiological surveillance measures to better understand the possible role of JMTV in tropical diseases.
Collapse
Affiliation(s)
- Yesica López
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Córdoba, Colombia
| | - Richard Thomas
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Sebastián Muñoz-Leal
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Yeimi López-Mejia
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Córdoba, Colombia
| | - Ketty Galeano
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Córdoba, Colombia
| | - Alejandra Garcia
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Córdoba, Colombia
| | - Luis Romero
- Universidad de Sucre, Investigaciones Biomédicas, Sucre, Colombia
| | | | - Caty Martinez
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Córdoba, Colombia
| | - Alfonso Calderón
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Córdoba, Colombia
| | - Bertha Gastelbondo
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Córdoba, Colombia
- Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba-GIMBIC, Universidad de Córdoba, Montería, Colombia
- Grupo de Salud Pública y Auditoría en Salud, Corporación Universitaria del Caribe- CECAR, Sincelejo, Colombia
| | - Héctor Contreras
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Córdoba, Colombia
| | - Gino Olivieri
- Grupo de Investigación Parasitología y Agroecología Milenio, Universidad Popular del Cesar, Valledupar Cesar, Colombia
| | - Luis Rubiano
- Grupo de Investigación Parasitología y Agroecología Milenio, Universidad Popular del Cesar, Valledupar Cesar, Colombia
| | - Luis Paternina
- Universidad de Sucre, Investigaciones Biomédicas, Sucre, Colombia
| | - Richard Hoyos-López
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Córdoba, Colombia
| | - Anggie Ortiz
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Córdoba, Colombia
| | - Evelyn Garay
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Córdoba, Colombia
| | - Maira Alemán-Santos
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Córdoba, Colombia
| | - Ricardo Rivero
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
| | - Jorge Miranda
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Córdoba, Colombia
| | - Luis Florez
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Córdoba, Colombia
| | - Jolaime Ballesteros
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Córdoba, Colombia
| | - Verónica Contreras
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Córdoba, Colombia
| | - Vaneza Tique
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Córdoba, Colombia
| | - Pedro Fragoso
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Córdoba, Colombia
| | - Camilo Guzman
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Córdoba, Colombia
| | - German Arrieta
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Córdoba, Colombia
- Grupo de Salud Pública y Auditoría en Salud, Corporación Universitaria del Caribe- CECAR, Sincelejo, Colombia
| | - Salim Mattar
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Córdoba, Colombia.
| |
Collapse
|
4
|
Liu Z, Hu R, Cao H, Huang P, Yan H, Meng P, Xiong Z, Dai X, Yang F, Wang L, Qiu Q, Yan L, Zhang T. Identification and phylogenetic analysis of Jingmen tick virus in Jiangxi Province, China. Front Vet Sci 2024; 11:1375852. [PMID: 38756509 PMCID: PMC11096534 DOI: 10.3389/fvets.2024.1375852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
Jingmen tick virus (JMTV) is a newly identified segmented flavivirus that has been recognized in multiple hosts, such as humans, buffalos, bats, rodents, mosquitos and ticks. Various clinical cases and studies manifested that JMTV is a true arbovirus with wide host spectrum and showed potential threats toward public health. JMTV has been reported in multiple countries in Asia, Europe, Africa, and America. Moreover, wild boars serve as an important intermediary between humans and the wild ecological system. In China, it has been reported in nine provinces, while the prevalence and the distribution of JMTV in most regions including Jiangxi Province are still unknown. Thus, to profile the distribution of JMTV in Jiangxi Province, an epidemiological investigation was carried out from 2020 to 2022. In current study, 66 ticks were collected from 17 wild boars in Jiangxi Province. The results showed that 12 out of 66 ticks were JMTV positive, indicating JMTV is prevalent in ticks and boars in Jiangxi Province. The genome sequences of JMTV strain WY01 were sequenced to profile viral evolution of JMTV in China. Phylogenetic analysis divided JMTV strains into two genotypes, Group I and Group II. WY01 belongs to Group II and it shares the closest evolutionary relationship with the Japan strains rather than the strains from neighboring provinces in China suggesting that JMTV might have complex transmission routes. Overall, current study, for the first time, reported that JMTV is prevalent in Jiangxi Province and provided additional information concerning JMTV distribution and evolution in China.
Collapse
Affiliation(s)
- Zirui Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Engineering Research Center for Animal Health Products, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Peng Huang
- Jiangxi Wildlife and Plant Conservation Center, Nanchang, China
| | - Hui Yan
- Jiangxi Wildlife and Plant Conservation Center, Nanchang, China
| | - Puyan Meng
- Jiangxi Academy of Forestry, Nanchang, China
| | - Zhiwei Xiong
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Biotechnology Vocational College, Nanchang, China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Li Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Qian Qiu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Linjie Yan
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Tao Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
5
|
Antúnez MP, Marín Montesinos JC, Corduneanu A, Obregón D, Moutailler S, Cabezas-Cruz A. Tick-borne viruses and their risk to public health in the Caribbean: Spotlight on bats as reservoirs in Cuba. Heliyon 2024; 10:e26118. [PMID: 38375245 PMCID: PMC10875593 DOI: 10.1016/j.heliyon.2024.e26118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
In recent decades, tick-borne diseases (TBDs) have surged and expanded globally due to factors like changes in human activities, land use patterns, and climate change, and it have been associated with the emergence of zoonotic diseases. Cuba faces the impact of ticks on human health and the economy. Although Cuba has studied TBDs extensively for the past 50 years, focus on tick-borne viral pathogens affecting humans remains scant. Despite TBDs not currently being a major health concern in Cuba, factors like inadequate clinician awareness, climate conditions, global tick emergence, and evidence of zoonotic pathogens in ticks underscore the importance of enhanced TBD surveillance in the country. Here we revised the available information on ticks as vectors of pathogenic viruses to humans, spotlighting bats as potential reservoirs of tick-borne viruses (TBVs). Ticks on bats have gained interest as potential reservoirs of pathogenic viruses to humans in Cuba and worldwide. Understanding their role in maintaining viruses and their potential transmission to humans is crucial for the implementation of surveillance and control programs to reduce the risk of tick-borne viral diseases and public health management.
Collapse
Affiliation(s)
- Maritza Pupo Antúnez
- Laboratorio de Virología. Departamento de Microbiología y Virología. Facultad de Biología, Universidad de la Habana, C.P. 10400, Plaza de la Revolución, Cuba
| | - José Carlos Marín Montesinos
- Laboratorio de Virología. Departamento de Microbiología y Virología. Facultad de Biología, Universidad de la Habana, C.P. 10400, Plaza de la Revolución, Cuba
| | - Alexandra Corduneanu
- Department of Animal Breeding and Animal Production, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca-Napoca, Romania
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sara Moutailler
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| |
Collapse
|
6
|
Tsishevskaya AA, Alkhireenko DA, Bayandin RB, Kartashov MY, Ternovoi VA, Gladysheva AV. Untranslated Regions of a Segmented Kindia Tick Virus Genome Are Highly Conserved and Contain Multiple Regulatory Elements for Viral Replication. Microorganisms 2024; 12:239. [PMID: 38399643 PMCID: PMC10893285 DOI: 10.3390/microorganisms12020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Novel segmented tick-borne RNA viruses belonging to the group of Jingmenviruses (JMVs) are widespread across Africa, Asia, Europe, and America. In this work, we obtained whole-genome sequences of two Kindia tick virus (KITV) isolates and performed modeling and the functional annotation of the secondary structure of 5' and 3' UTRs from JMV and KITV viruses. UTRs of various KITV segments are characterized by the following points: (1) the polyadenylated 3' UTR; (2) 5' DAR and 3' DAR motifs; (3) a highly conserved 5'-CACAG-3' pentanucleotide; (4) a binding site of the La protein; (5) multiple UAG sites providing interactions with the MSI1 protein; (6) three homologous sequences in the 5' UTR and 3' UTR of segment 2; (7) the segment 2 3' UTR of a KITV/2017/1 isolate, which comprises two consecutive 40 nucleotide repeats forming a Y-3 structure; (8) a 35-nucleotide deletion in the second repeat of the segment 2 3' UTR of KITV/2018/1 and KITV/2018/2 isolates, leading to a modification of the Y-3 structure; (9) two pseudoknots in the segment 2 3' UTR; (10) the 5' UTR and 3' UTR being represented by patterns of conserved motifs; (11) the 5'-CAAGUG-3' sequence occurring in early UTR hairpins. Thus, we identified regulatory elements in the UTRs of KITV, which are characteristic of orthoflaviviruses. This suggests that they hold functional significance for the replication of JMVs and the evolutionary similarity between orthoflaviviruses and segmented flavi-like viruses.
Collapse
Affiliation(s)
- Anastasia A. Tsishevskaya
- State Research Center of Virology and Biotechnology «Vector», 630559 Kol’tsovo, Russia; (A.A.T.); (D.A.A.); (R.B.B.); (M.Y.K.); (V.A.T.)
- Physics Department, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Daria A. Alkhireenko
- State Research Center of Virology and Biotechnology «Vector», 630559 Kol’tsovo, Russia; (A.A.T.); (D.A.A.); (R.B.B.); (M.Y.K.); (V.A.T.)
- Natural Sciences Department, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Roman B. Bayandin
- State Research Center of Virology and Biotechnology «Vector», 630559 Kol’tsovo, Russia; (A.A.T.); (D.A.A.); (R.B.B.); (M.Y.K.); (V.A.T.)
| | - Mikhail Yu. Kartashov
- State Research Center of Virology and Biotechnology «Vector», 630559 Kol’tsovo, Russia; (A.A.T.); (D.A.A.); (R.B.B.); (M.Y.K.); (V.A.T.)
| | - Vladimir A. Ternovoi
- State Research Center of Virology and Biotechnology «Vector», 630559 Kol’tsovo, Russia; (A.A.T.); (D.A.A.); (R.B.B.); (M.Y.K.); (V.A.T.)
| | - Anastasia V. Gladysheva
- State Research Center of Virology and Biotechnology «Vector», 630559 Kol’tsovo, Russia; (A.A.T.); (D.A.A.); (R.B.B.); (M.Y.K.); (V.A.T.)
| |
Collapse
|