1
|
Beurdeley-Fehlbaum P, Pennington M, Hégerlé N, Albert M, Bennett A, Cheval J, Clark A, Cruveiller S, Desbrousses C, Frederick J, Gros E, Hunter K, Jaber T, Gaiser M, Jouffroy O, Lamamy A, Melkowski M, Moro J, Niksa P, Pillai S, Eloit M, Ruppach H. Evaluation of a viral transcriptome Next Generation Sequencing assay as an alternative to animal assays for viral safety testing of cell substrates. Vaccine 2023; 41:5383-5391. [PMID: 37468389 DOI: 10.1016/j.vaccine.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023]
Abstract
The viral safety of biological products is ensured by tests throughout the production chain, and, for certain products, by steps in the manufacturing process enabling the elimination or inactivation of viruses. Current testing programs include sample inoculation in animals and embryonic eggs. Following the 3Rs principles of replacement, reduction, and refinement of animal-use methods, such techniques are intended to be replaced not only for ethical reasons but also because of their inherent technical limitations, their long turnaround times, and their limits in virus detection. Therefore, we have compared the limit and range of sensitivity of in vivo tests used for viral testing of cells with a transcriptomic assay based on Next Generation Sequencing (NGS). Cell cultures were infected with a panel of nine (9) viruses, among them only five (5) were detected, with variable sensitivity, by in vivo tests. The transcriptomic assay was able to detect one (1) infected cell among 103 to 107 non-infected cells for all viruses assessed, including those not detected by the conventional in vivo tests. Here we show that NGS extends the breath of detection of viral contaminants compared to traditional testing. Collectively, these results support the replacement of the conventional in vivo tests by an NGS-based transcriptomic assay for virus safety testing of cell substrates.
Collapse
Affiliation(s)
| | - Matthew Pennington
- KCAS Bioanalytical & Biomarker Services, 10830 S Clay Blair Blvd., Olathe, KS 66061, USA
| | | | | | - Amy Bennett
- Charles River Laboratories, Inc., 251 Ballardvale Street, 01887-1000 Wilmington, MA, USA
| | | | - Allison Clark
- Charles River Laboratories, Inc., 251 Ballardvale Street, 01887-1000 Wilmington, MA, USA
| | | | | | - Janalyn Frederick
- Charles River Laboratories, Inc., 251 Ballardvale Street, 01887-1000 Wilmington, MA, USA.
| | - Edwige Gros
- PathoQuest, 11 rue Watt, 75013 Paris, France
| | - Kathryn Hunter
- Charles River Laboratories, Inc., 251 Ballardvale Street, 01887-1000 Wilmington, MA, USA
| | - Tareq Jaber
- Charles River Laboratories, Inc., 251 Ballardvale Street, 01887-1000 Wilmington, MA, USA
| | - Madison Gaiser
- Charles River Laboratories, Inc., 251 Ballardvale Street, 01887-1000 Wilmington, MA, USA.
| | | | | | | | - Jennifer Moro
- Charles River Laboratories, Inc., 251 Ballardvale Street, 01887-1000 Wilmington, MA, USA
| | - Paula Niksa
- Charles River Laboratories, Inc., 251 Ballardvale Street, 01887-1000 Wilmington, MA, USA
| | - Shenba Pillai
- Charles River Laboratories, Inc., 251 Ballardvale Street, 01887-1000 Wilmington, MA, USA
| | - Marc Eloit
- PathoQuest, 11 rue Watt, 75013 Paris, France; Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 27 Avenue du Général Leclerc, 94704 Maisons-Alfort, France; Institut Pasteur, Université Paris Cité, Laboratoire de Découverte des Pathogènes, 25 rue du Docteur Roux, 75015 Paris, France.
| | - Horst Ruppach
- Charles River Laboratories, Inc., 251 Ballardvale Street, 01887-1000 Wilmington, MA, USA
| |
Collapse
|
2
|
Barone PW, Keumurian FJ, Neufeld C, Koenigsberg A, Kiss R, Leung J, Wiebe M, Ait-Belkacem R, Azimpour Tabrizi C, Barbirato C, Beurdeley P, Brussel A, Cassart JP, Cote C, Deneyer N, Dheenadhayalan V, Diaz L, Geiselhoeringer A, Gilleece MM, Goldmann J, Hickman D, Holden A, Keiner B, Kopp M, Kreil TR, Lambert C, Logvinoff C, Michaels B, Modrof J, Mullan B, Mullberg J, Murphy M, O'Donnell S, Peña J, Ruffing M, Ruppach H, Salehi N, Shaid S, Silva L, Snyder R, Spedito-Jovial M, Vandeputte O, Westrek B, Yang B, Yang P, Springs SL. Historical evaluation of the in vivo adventitious virus test and its potential for replacement with next generation sequencing (NGS). Biologicals 2023; 81:101661. [PMID: 36621353 DOI: 10.1016/j.biologicals.2022.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/29/2022] [Indexed: 01/09/2023] Open
Abstract
The Consortium on Adventitious Agent Contamination in Biomanufacturing (CAACB) collected historical data from 20 biopharmaceutical industry members on their experience with the in vivo adventitious virus test, the in vitro virus test, and the use of next generation sequencing (NGS) for viral safety. Over the past 20 years, only three positive in vivo adventitious virus test results were reported, and all were also detected in another concurrent assay. In more than three cases, data collected as a part of this study also found that the in vivo adventitious virus test had given a negative result for a sample that was later found to contain virus. Additionally, the in vivo adventitious virus test had experienced at least 21 false positives and had to be repeated an additional 21 times all while using more than 84,000 animals. These data support the consideration and need for alternative broad spectrum viral detection tests that are faster, more sensitive, more accurate, more specific, and more humane. NGS is one technology that may meet this need. Eighty one percent of survey respondents are either already actively using or exploring the use of NGS for viral safety. The risks and challenges of replacing in vivo adventitious virus testing with NGS are discussed. It is proposed to update the overall virus safety program for new biopharmaceutical products by replacing in vivo adventitious virus testing approaches with modern methodologies, such as NGS, that maintain or even improve the final safety of the product.
Collapse
Affiliation(s)
| | | | | | | | - Robert Kiss
- MIT Center for Biomedical Innovation, USA; UPSIDE Foods, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Kojima S, Kamada AJ, Parrish NF. Virus-derived variation in diverse human genomes. PLoS Genet 2021; 17:e1009324. [PMID: 33901175 PMCID: PMC8101998 DOI: 10.1371/journal.pgen.1009324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/06/2021] [Accepted: 03/25/2021] [Indexed: 11/19/2022] Open
Abstract
Acquisition of genetic material from viruses by their hosts can generate inter-host structural genome variation. We developed computational tools enabling us to study virus-derived structural variants (SVs) in population-scale whole genome sequencing (WGS) datasets and applied them to 3,332 humans. Although SVs had already been cataloged in these subjects, we found previously-overlooked virus-derived SVs. We detected non-germline SVs derived from squirrel monkey retrovirus (SMRV), human immunodeficiency virus 1 (HIV-1), and human T lymphotropic virus (HTLV-1); these variants are attributable to infection of the sequenced lymphoblastoid cell lines (LCLs) or their progenitor cells and may impact gene expression results and the biosafety of experiments using these cells. In addition, we detected new heritable SVs derived from human herpesvirus 6 (HHV-6) and human endogenous retrovirus-K (HERV-K). We report the first solo-direct repeat (DR) HHV-6 likely to reflect DR rearrangement of a known full-length endogenous HHV-6. We used linkage disequilibrium between single nucleotide variants (SNVs) and variants in reads that align to HERV-K, which often cannot be mapped uniquely using conventional short-read sequencing analysis methods, to locate previously-unknown polymorphic HERV-K loci. Some of these loci are tightly linked to trait-associated SNVs, some are in complex genome regions inaccessible by prior methods, and some contain novel HERV-K haplotypes likely derived from gene conversion from an unknown source or introgression. These tools and results broaden our perspective on the coevolution between viruses and humans, including ongoing virus-to-human gene transfer contributing to genetic variation between humans.
Collapse
Affiliation(s)
- Shohei Kojima
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Center for Integrative Medical Sciences and RIKEN Cluster for Pioneering Research, Yokohama, Japan
| | - Anselmo Jiro Kamada
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Center for Integrative Medical Sciences and RIKEN Cluster for Pioneering Research, Yokohama, Japan
| | - Nicholas F. Parrish
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Center for Integrative Medical Sciences and RIKEN Cluster for Pioneering Research, Yokohama, Japan
- * E-mail:
| |
Collapse
|
4
|
Khan AS, Blümel J, Deforce D, Gruber MF, Jungbäck C, Knezevic I, Mallet L, Mackay D, Matthijnssens J, O'Leary M, Theuns S, Victoria J, Neels P. Report of the second international conference on next generation sequencing for adventitious virus detection in biologics for humans and animals. Biologicals 2020; 67:94-111. [PMID: 32660862 PMCID: PMC7351673 DOI: 10.1016/j.biologicals.2020.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 11/20/2022] Open
Abstract
The IABS-EU, in association with PROVAXS and Ghent University, hosted the "2nd Conference on Next Generation Sequencing (NGS) for Adventitious Virus Detection in Human and Veterinary Biologics" held on November 13th and 14th 2019, in Ghent, Belgium. The meeting brought together international experts from regulatory agencies, the biotherapeutics and biologics industries, contract research organizations, and academia, with the goal to develop a scientific consensus on the readiness of NGS for detecting adventitious viruses, and on the use of this technology to supplement or replace/substitute the currently used assays. Participants discussed the progress on the standardization and validation of the technical and bioinformatics steps in NGS for characterization and safety evaluation of biologics, including human and animal vaccines. It was concluded that NGS can be used for the detection of a broad range of viruses, including novel viruses, and therefore can complement, supplement or even replace some of the conventional adventitious virus detection assays. Furthermore, the development of reference viral standards, complete and correctly annotated viral databases, and protocols for the validation and follow-up investigations of NGS signals is necessary to enable broader use of NGS. An international collaborative effort, involving regulatory authorities, industry, academia, and other stakeholders is ongoing toward this goal.
Collapse
Affiliation(s)
- Arifa S Khan
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
| | | | | | - Marion F Gruber
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Carmen Jungbäck
- International Association for Biological Standardization for Europe, Lyon, France
| | | | | | | | | | - Maureen O'Leary
- P95 Pharmacovigilance and Epidemiology Services, Leuven, Belgium
| | | | | | - Pieter Neels
- International Association for Biological Standardization for Europe, Lyon, France
| |
Collapse
|
5
|
Kiesslich S, Kamen AA. Vero cell upstream bioprocess development for the production of viral vectors and vaccines. Biotechnol Adv 2020; 44:107608. [PMID: 32768520 PMCID: PMC7405825 DOI: 10.1016/j.biotechadv.2020.107608] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022]
Abstract
The Vero cell line is considered the most used continuous cell line for the production of viral vectors and vaccines. Historically, it is the first cell line that was approved by the WHO for the production of human vaccines. Comprehensive experimental data on the production of many viruses using the Vero cell line can be found in the literature. However, the vast majority of these processes is relying on the microcarrier technology. While this system is established for the large-scale manufacturing of viral vaccine, it is still quite complex and labor intensive. Moreover, scale-up remains difficult and is limited by the surface area given by the carriers. To overcome these and other drawbacks and to establish more efficient manufacturing processes, it is a priority to further develop the Vero cell platform by applying novel bioprocess technologies. Especially in times like the current COVID-19 pandemic, advanced and scalable platform technologies could provide more efficient and cost-effective solutions to meet the global vaccine demand. Herein, we review the prevailing literature on Vero cell bioprocess development for the production of viral vectors and vaccines with the aim to assess the recent advances in bioprocess development. We critically underline the need for further research activities and describe bottlenecks to improve the Vero cell platform by taking advantage of recent developments in the cell culture engineering field.
Collapse
Affiliation(s)
- Sascha Kiesslich
- Department of Bioengineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada
| | - Amine A Kamen
- Department of Bioengineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada.
| |
Collapse
|
6
|
Charlebois RL, Sathiamoorthy S, Logvinoff C, Gisonni-Lex L, Mallet L, Ng SHS. Sensitivity and breadth of detection of high-throughput sequencing for adventitious virus detection. NPJ Vaccines 2020; 5:61. [PMID: 32699651 PMCID: PMC7368052 DOI: 10.1038/s41541-020-0207-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
High-throughput sequencing (HTS) is capable of broad virus detection encompassing both known and unknown adventitious viruses in a variety of sample matrices. We describe the development of a general-purpose HTS-based method for the detection of adventitious viruses. Performance was evaluated using 16 viruses equivalent to well-characterized National Institutes of Health (NIH) virus stocks and another six viruses of interest. A viral vaccine crude harvest and a cell substrate matrix were spiked with 22 viruses. Specificity was demonstrated for all 22 viruses at the species level. Our method was capable of detecting and identifying adventitious viruses spiked at 104 genome copies per milliliter in a viral vaccine crude harvest and 0.01 viral genome copies spiked per cell in a cell substrate matrix. Moreover, 9 of the 11 NIH model viruses with published in vivo data were detected by HTS with an equivalent or better sensitivity (in a viral vaccine crude harvest). Our general-purpose HTS method is unbiased and highly sensitive for the detection of adventitious viruses, and has a large breadth of detection, which may obviate the need to perform in vivo testing.
Collapse
Affiliation(s)
| | | | | | | | - Laurent Mallet
- Analytical Sciences, Sanofi Pasteur, Marcy L'Étoile, France
| | - Siemon H S Ng
- Analytical Sciences, Sanofi Pasteur, Toronto, ON M2R 3T4 Canada
| |
Collapse
|
7
|
Desbrousses C, Archer F, Colin A, Bobet-Erny A, Champavère A, Gros E, Beurdeley P, Cruveiller S, Tardy F, Eloit M. High-Throughput Sequencing (HTS) of newly synthetized RNAs enables one shot detection and identification of live mycoplasmas and differentiation from inert nucleic acids. Biologicals 2020; 65:18-24. [PMID: 32222272 DOI: 10.1016/j.biologicals.2020.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/19/2020] [Accepted: 03/11/2020] [Indexed: 11/26/2022] Open
Abstract
Mycoplasma contamination threatens both the safety of biologics produced in cell substrates as well as the quality of scientific results based on cell-culture observations. Methods currently used to detect contamination of cells include culture, enzymatic activity, immunofluorescence and PCR but suffer from some limitations. High throughput sequencing (HTS) can be used to identify microbes like mycoplasmas in biologics since it enables an unbiased approach to detection without the need to design specific primers to pre-amplify target sequences but it does not enable the confirmation of microbial infection since this could reflect carryover of inert sequences. In order to unambiguously differentiate the presence of live or dead mycoplasmas in biological products, the present method was developed based on metabolic RNA labelling of newly synthetized mycoplasmal RNAs. HTS of labelled RNA detected A549 cell infection with Acholeplasma laidlawii in a manner similar to both PCR and culture and demonstrated that this technique can unambiguously identify bacterial species and differentiates infected cells from cells exposed to a high inoculum of heat-inactivated mycoplasmas. This method therefore combines the advantage of culture (that detects only live microorganisms) with those of molecular tests (rapidity) together with a very broad range of bacterial detection and identification.
Collapse
Affiliation(s)
| | - Fabienne Archer
- University of Lyon, Université Claude Bernard Lyon1, INRAE, EPHE, IVPC, Viral Infections and Comparative Pathology, UMR754, F69007, Lyon, France
| | - Adélie Colin
- Université de Lyon, Anses Laboratoire de Lyon, VetAgro Sup, UMR Mycoplasmoses des Ruminants, F69364, Lyon, France
| | - Alexandra Bobet-Erny
- University of Lyon, Université Claude Bernard Lyon1, INRAE, EPHE, IVPC, Viral Infections and Comparative Pathology, UMR754, F69007, Lyon, France
| | - Angélique Champavère
- University of Lyon, Université Claude Bernard Lyon1, INRAE, EPHE, IVPC, Viral Infections and Comparative Pathology, UMR754, F69007, Lyon, France
| | | | | | | | - Florence Tardy
- Université de Lyon, Anses Laboratoire de Lyon, VetAgro Sup, UMR Mycoplasmoses des Ruminants, F69364, Lyon, France
| | - Marc Eloit
- PathoQuest, Paris, France; Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, 94704 Cedex, France; Pathogen Discovery Laboratory, Institut Pasteur, Paris, France.
| |
Collapse
|