1
|
Gostaviceanu A, Gavrilaş S, Copolovici L, Copolovici DM. Graphene-Oxide Peptide-Containing Materials for Biomedical Applications. Int J Mol Sci 2024; 25:10174. [PMID: 39337659 PMCID: PMC11432502 DOI: 10.3390/ijms251810174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
This review explores the application of graphene-based materials (GBMs) in biomedicine, focusing on graphene oxide (GO) and its interactions with peptides and proteins. GO, a versatile nanomaterial with oxygen-containing functional groups, holds significant potential for biomedical applications but faces challenges related to toxicity and environmental impact. Peptides and proteins can be functionalized on GO surfaces through various methods, including non-covalent interactions such as π-π stacking, electrostatic forces, hydrophobic interactions, hydrogen bonding, and van der Waals forces, as well as covalent bonding through reactions involving amide bond formation, esterification, thiol chemistry, and click chemistry. These approaches enhance GO's functionality in several key areas: biosensing for sensitive biomarker detection, theranostic imaging that integrates diagnostics and therapy for real-time treatment monitoring, and targeted cancer therapy where GO can deliver drugs directly to tumor sites while being tracked by imaging techniques like MRI and photoacoustic imaging. Additionally, GO-based scaffolds are advancing tissue engineering and aiding tissues' bone, muscle, and nerve tissue regeneration, while their antimicrobial properties are improving infection-resistant medical devices. Despite its potential, addressing challenges related to stability and scalability is essential to fully harness the benefits of GBMs in healthcare.
Collapse
Affiliation(s)
- Andreea Gostaviceanu
- Institute for Interdisciplinary Research, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
- Biomedical Sciences Doctoral School, University of Oradea, University St., No. 1, 410087 Oradea, Romania
| | - Simona Gavrilaş
- Institute for Interdisciplinary Research, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
- Faculty of Food Engineering, Tourism and Environmental Protection, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania
| | - Lucian Copolovici
- Institute for Interdisciplinary Research, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
- Faculty of Food Engineering, Tourism and Environmental Protection, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania
| | - Dana Maria Copolovici
- Institute for Interdisciplinary Research, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
- Faculty of Food Engineering, Tourism and Environmental Protection, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania
| |
Collapse
|
2
|
Barman P, Sharma C, Joshi S, Sharma S, Maan M, Rishi P, Singla N, Saini A. In Vivo Acute Toxicity and Therapeutic Potential of a Synthetic Peptide, DP1 in a Staphylococcus aureus Infected Murine Wound Excision Model. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10176-1. [PMID: 37910332 DOI: 10.1007/s12602-023-10176-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 11/03/2023]
Abstract
Bacterial infections at the surgical sites are one of the most prevalent skin infections that impair the healing mechanism. They account for about 20% of all types of infections and lead to approximately 75% of surgical-site infection-associated mortality. Several antibiotics, such as cephalosporins, fluoroquinolones, quinolones, penicillin, sulfonamides, etc., that are used to treat such wound infections not only counter infections but also disrupt the normal flora. Moreover, antibiotics, when used for a prolonged duration, may impair the formation of new blood vessels, delay collagen production, or inhibit the migration of certain cells involved in wound repair, leading to an impaired healing process. Therefore, there is a dire need for alternate therapeutic approaches against such infections. Antimicrobial peptides have gained considerable attention as a promising strategy to counter these pathogens and prevent the spread of infection. Recently, we have reported a designed peptide, DP1, and its broad-spectrum in vitro antimicrobial activity against Gram-positive and Gram-negative bacteria. In the present study, in vivo acute toxicity of DP1 was evaluated and even at a high dose (20 mg/kg body weight) of DP1, a 100% survival of mice was observed. Subsequently, a Staphylococcus aureus-infected murine wound excision model was established to assess the wound healing efficacy of DP1. The study revealed significant wound healing vis-a-vis attenuated S. aureus bioburden at the wound site and also controlled the oxidative stress depicting anti-oxidant activity as well. Healing of the infected wounds was also verified by histopathological examination. Based on the results of this study, it can be concluded that DP1 improves wound resolution despite infections and promotes the healing mechanism. Hence, DP1 holds compelling potential as a novel antimicrobial drug that requires further explorations in clinical platforms.
Collapse
Affiliation(s)
- Panchali Barman
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Chandigarh, 160014, India
| | - Chakshu Sharma
- Department of Biophysics, Panjab University, Chandigarh, U.T, 160014, India
| | - Shubhi Joshi
- Department of Biophysics, Panjab University, Chandigarh, U.T, 160014, India
| | - Sheetal Sharma
- Department of Biophysics, Panjab University, Chandigarh, U.T, 160014, India
| | - Mayank Maan
- Department of Biophysics, Panjab University, Chandigarh, U.T, 160014, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, U.T, 160014, India
| | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh, U.T, 160014, India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Chandigarh, U.T, 160014, India.
| |
Collapse
|
3
|
Lu Y, Xiang F, Xu L, Tian H, Tao Q, Jia K, Yin H, Ye C, Fang R, Peng L. The protective role of chicken cathelicidin-1 against Streptococcus suis serotype 2 in vitro and in vivo. Vet Res 2023; 54:65. [PMID: 37605242 PMCID: PMC10463303 DOI: 10.1186/s13567-023-01199-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/24/2023] [Indexed: 08/23/2023] Open
Abstract
Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen with the characteristics of high mortality and morbidity, which brings great challenges to prevent and control epidemic disease in the swine industry. Cathelicidins (CATH) are antimicrobial peptides with antimicrobial and immunomodulatory activities. In this study, bactericidal and anti-inflammatory effects of chicken cathelicidin-1 (CATH-1) were investigated in vitro and in vivo against SS2 infection. The results show that CATH-1 exhibited a better bactericidal effect compared to other species' cathelicidins including chickens (CATH-2, -3, and -B1), mice (CRAMP) and pigs (PMAP-36 and PR-39), which rapidly killed bacteria in 20 min by a time-killing curve assay. Furthermore, CATH-1 destroyed the bacterial morphology and affected bacterial ultrastructure as observed under electron microscopy. Moreover, CATH-1 antibacterial activity in vivo shows that CATH-1 increased survival rate of SS2-infected mice by 60% and significantly reduced the bacterial load in the lungs, liver, spleen, blood, and peritoneal lavage as well as the release of SS2-induced inflammatory cytokines including IL-1α, IL-1β, IL-12, and IL-18. Importantly, CATH-1 did not show severe histopathological changes in mice. Further studies on the mechanism of anti-inflammatory activity show that CATH-1 not only reduced the inflammatory response through direct neutralization, but also by regulating the TLR2/4/NF-κB/ERK pathway. This study provides a scientific basis for the research and development of antimicrobial peptides as new antimicrobial agents.
Collapse
Affiliation(s)
- Yi Lu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Fa Xiang
- WestChina-Frontier PharmaTech Co., Ltd, Chengdu, China
| | - Liuyi Xu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Hongliang Tian
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Qi Tao
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Kaixiang Jia
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Hang Yin
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Chao Ye
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
- Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China.
| | - Lianci Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
4
|
Myszor IT, Gudmundsson GH. Modulation of innate immunity in airway epithelium for host-directed therapy. Front Immunol 2023; 14:1197908. [PMID: 37251385 PMCID: PMC10213533 DOI: 10.3389/fimmu.2023.1197908] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Innate immunity of the mucosal surfaces provides the first-line defense from invading pathogens and pollutants conferring protection from the external environment. Innate immune system of the airway epithelium consists of several components including the mucus layer, mucociliary clearance of beating cilia, production of host defense peptides, epithelial barrier integrity provided by tight and adherens junctions, pathogen recognition receptors, receptors for chemokines and cytokines, production of reactive oxygen species, and autophagy. Therefore, multiple components interplay with each other for efficient protection from pathogens that still can subvert host innate immune defenses. Hence, the modulation of innate immune responses with different inducers to boost host endogenous front-line defenses in the lung epithelium to fend off pathogens and to enhance epithelial innate immune responses in the immunocompromised individuals is of interest for host-directed therapy. Herein, we reviewed possibilities of modulation innate immune responses in the airway epithelium for host-directed therapy presenting an alternative approach to standard antibiotics.
Collapse
Affiliation(s)
- Iwona T. Myszor
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Gudmundur Hrafn Gudmundsson
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Duarte-Mata DI, Salinas-Carmona MC. Antimicrobial peptides´ immune modulation role in intracellular bacterial infection. Front Immunol 2023; 14:1119574. [PMID: 37056758 PMCID: PMC10086130 DOI: 10.3389/fimmu.2023.1119574] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Intracellular bacteria cause a wide range of diseases, and their intracellular lifestyle makes infections difficult to resolve. Furthermore, standard therapy antibiotics are often unable to eliminate the infection because they have poor cellular uptake and do not reach the concentrations needed to kill bacteria. In this context, antimicrobial peptides (AMPs) are a promising therapeutic approach. AMPs are short cationic peptides. They are essential components of the innate immune response and important candidates for therapy due to their bactericidal properties and ability to modulate host immune responses. AMPs control infections through their diverse immunomodulatory effects stimulating and/or boosting immune responses. This review focuses on AMPs described to treat intracellular bacterial infections and the known immune mechanisms they influence.
Collapse
|
6
|
Lai Z, Chen H, Yuan X, Tian J, Dong N, Feng X, Shan A. Designing double-site lipidated peptide amphiphiles as potent antimicrobial biomaterials to combat multidrug-resistant bacteria. Front Microbiol 2022; 13:1074359. [PMID: 36569056 PMCID: PMC9780499 DOI: 10.3389/fmicb.2022.1074359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Rapidly evolving antimicrobial resistance and extremely slow development of new antibiotics have resulted in multidrug-resistant bacterial infections that present a serious threat to human health. Antimicrobial peptides (AMPs) provide promising substitutes, but more research is needed to address several of their present limitations, such as insufficient antimicrobial potency, high toxicity, and low stability. Here, we designed a series of novel double-site lipidated peptide amphiphiles based on a heptad repeat parent pentadecapeptide. The double-site lipidated peptide amphiphiles showed a broad spectrum of antimicrobial activities. Especially the double-site lipidated peptide amphiphile WL-C6 exhibited high potency to inhibit multidrug-resistant bacteria without significant toxicity toward mammalian cells. Furthermore, even at physiological salt ion concentrations, WL-C6 still exhibited outstanding antibacterial properties, and a sizeable fraction of it maintained its molecular integrity after being incubated with different proteases. Additionally, we captured the entire process of WL-C6 killing bacteria and showed that the rapid bacterial membrane disruption is the reason of bacterial death. Overall, WL-C6 shows great promise as a substitute for conventional antibiotics to combat the growing threat of multidrug-resistant bacterial infections.
Collapse
|
7
|
Liang X, Dai N, Sheng K, Lu H, Wang J, Chen L, Wang Y. Gut bacterial extracellular vesicles: important players in regulating intestinal microenvironment. Gut Microbes 2022; 14:2134689. [PMID: 36242585 PMCID: PMC9578468 DOI: 10.1080/19490976.2022.2134689] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Intestinal microenvironment dysbiosis is one of the major causes of diseases, such as obesity, diabetes, inflammatory bowel disease, and colon cancer. Microbiota-based strategies have excellent clinical potential in the treatment of repetitive and refractory diseases; however, the underlying regulatory mechanisms remain elusive. Identification of the internal regulatory mechanism of the gut microbiome and the interaction mechanisms involving bacteria-host is essential to achieve precise control of the gut microbiome and obtain effective clinical data. Gut bacteria-derived extracellular vesicles (GBEVs) are lipid bilayer nanoparticles secreted by the gut microbiota and are considered key players in bacteria-bacteria and bacteria-host communication. This review focusses on the role of GBEVs in gut microbiota interactions and bacteria-host communication, and the potential clinical applications of GBEVs.
Collapse
Affiliation(s)
- Xiao Liang
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Nini Dai
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Hengqian Lu
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Jingmin Wang
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Liping Chen
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China,Institute of Physical Science and Information Technology, Anhui University, Hefei, China,CONTACT Yongzhong Wang School of Life Sciences, Anhui University, Hefei, China
| |
Collapse
|
8
|
Wang X, Hong X, Chen F, Wang KJ. A truncated peptide Spgillcin177–189 derived from mud crab Scylla paramamosain exerting multiple antibacterial activities. Front Cell Infect Microbiol 2022; 12:928220. [PMID: 36061863 PMCID: PMC9435603 DOI: 10.3389/fcimb.2022.928220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) may be the most promising substitute for antibiotics due to their effective bactericidal activity and multiple antimicrobial modes against pathogenic bacteria. In this study, a new functional gene named Spgillcin was identified in Scylla paramamosain, which encoded 216 amino acids of mature peptide. In vivo, Spgillcin was dominantly expressed in the gills of male and female crabs, offering the highest expression level among all tested organs or tissues. The expression pattern of Spgillcin was significantly altered when challenged by Staphylococcus aureus, indicating a positive immune response. In vitro, a functional truncated peptide Spgillcin177–189 derived from the amino acid sequence of Spgillcin was synthesized and showed a broad-spectrum and potent antibacterial activity against several bacterial strains, including the clinical isolates of multidrug-resistant (MDR) strains, with a range of minimum inhibitory concentrations from 1.5 to 48 μM. Spgillcin177–189 also showed rapid bactericidal kinetics for S. aureus and Pseudomonas aeruginosa but did not display any cytotoxicity to mammalian cells and maintained its antimicrobial activity in different conditions. Mechanistic studies indicated that Spgillcin177–189 was mainly involved in the disruption of cell membrane integrity where the membrane components lipoteichoic acid and lipopolysaccharide could significantly inhibit the antimicrobial activity in a dose-dependent manner. In addition, Spgillcin177–189 could change the membrane permeability and cause the accumulation of intracellular reactive oxygen species. No resistance was generated to Spgillcin177–189 when the clinical isolates of methicillin-resistant S. aureus and MDR P. aeruginosa were treated with Spgillcin177–189 and then subjected to a long term of continuous culturing for 50 days. In addition, Spgillcin177–189 exerted a strong anti-biofilm activity by inhibiting biofilm formation and was also effective at killing extracellular S. aureus in the cultural supernatant of RAW 264.7 cells. Taken together, Spgillcin177–189 has strong potential as a substitute for antibiotics in future aquaculture and medical applications.
Collapse
Affiliation(s)
- Xiaofei Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xiao Hong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- *Correspondence: Ke-Jian Wang,
| |
Collapse
|
9
|
Lu Y, Tian H, Chen R, Liu Q, Jia K, Hu DL, Chen H, Ye C, Peng L, Fang R. Synergistic Antimicrobial Effect of Antimicrobial Peptides CATH-1, CATH-3, and PMAP-36 With Erythromycin Against Bacterial Pathogens. Front Microbiol 2022; 13:953720. [PMID: 35910608 PMCID: PMC9335283 DOI: 10.3389/fmicb.2022.953720] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/16/2022] [Indexed: 12/01/2022] Open
Abstract
With the increasing bacterial resistance to traditional antibiotics, there is an urgent need for the development of alternative drugs or adjuvants of antibiotics to enhance antibacterial efficiency. The combination of antimicrobial peptides (AMPs) and traditional antibiotics is a potential alternative to enhance antibacterial efficiency. In this study, we investigated the synergistic bactericidal effect of AMPs, including chicken (CATH-1,−2,−3, and -B1), mice (CRAMP), and porcine (PMAP-36 and PR-39) in combination with conventional antibiotics containing ampicillin, tetracycline, gentamicin, and erythromycin against Staphylococcus aureus, Salmonella enteritidis, and Escherichia coli. The results showed that the minimum bactericidal concentration (MBC) of CATH-1,−3 and PMAP-36 was lower than 10 μM, indicating that these three AMPs had good bacterial activity against S. aureus, S. enteritidis, and E. coli. Then, the synergistic antibacterial activity of AMPs and antibiotics combination was determined by the fractional bactericidal concentration index (FBCI). The results showed that the FBCI of AMPs (CATH-1,−3 and PMAP-36) and erythromycin was lower than 0.5 against bacterial pathogens, demonstrating that they had a synergistic bactericidal effect. Furthermore, the time-killing kinetics of AMPs (CATH-1,−3 and PMAP-36) in combination with erythromycin showed that they had a continuous killing effect on bacteria within 3 h. Notably, the combination showed lower hemolytic activity and cytotoxicity to mammal cells compared to erythromycin and peptide alone treatment. In addition, the antibacterial mechanism of CATH-1 and erythromycin combination against E. coli was studied. The results of the scanning electron microscope showed that CATH-1 enhanced the antibacterial activity of erythromycin by increasing the permeability of bacterial cell membrane. Moreover, the results of bacterial migration movement showed that the combination of CATH-1 and erythromycin significantly inhibits the migration of E. coli. Finally, drug resistance analysis was performed and the results showed that CATH-1 delayed the emergence of E. coli resistance to erythromycin. In conclusion, the combination of CATH-1 and erythromycin has synergistic antibacterial activity and reduces the emergence of bacterial drug resistance. Our study provides valuable information to develop AMPs as potential substitutes or adjuvants for traditional antibiotics.
Collapse
Affiliation(s)
- Yi Lu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Hongliang Tian
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Runqiu Chen
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Qian Liu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Kaixiang Jia
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Dong-Liang Hu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Aomori, Japan
| | - Hongwei Chen
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Chao Ye
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Lianci Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
- Lianci Peng
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing, China
- *Correspondence: Rendong Fang
| |
Collapse
|
10
|
Peng L, Lu Y, Tian H, Jia K, Tao Q, Li G, Wan C, Ye C, Veldhuizen EJA, Chen H, Fang R. Chicken cathelicidin-2 promotes IL-1β secretion via the NLRP3 inflammasome pathway and serine proteases activity in LPS-primed murine neutrophils. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 131:104377. [PMID: 35189160 DOI: 10.1016/j.dci.2022.104377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Cathelicidins have antimicrobial and immunomodulatory activities. Previous studies have shown that chicken cathelicidin-2 (CATH-2) exerts strong anti-inflammatory activity through LPS neutralization. However, it is still unclear whether other intracellular signaling pathways are involved in CATH-2 immunomodulation. Therefore, the CATH-2-meadiated immune response was investigated in LPS-primed neutrophils. Firstly, inflammatory cytokines release was determined in LPS-primed neutrophils. The results showed that CATH-2 significantly promoted secretion of IL-1β and IL-1α while IL-6 and TNF-α were not affected. IL-1β is the key indicator of inflammasome activation. Next, NLRP3 inflammasome signaling pathway was explored using neutrophils of Nlrp3-/-, Asc-/- and Casp1-/- mice and the results showed that the CATH-2-enhanced IL-1β release was completely abrogated, indicating it is NLRP3-dependent. Moreover, CATH-2 significantly induced activation of caspase-1 and gasdermin D (GSDMD) but did not affect LPS-induced mRNA expression of IL-1β and NLRP3, demonstrating that CATH-2 serves as the second signal activating the NLRP3 inflammasome. Furthermore, CATH-2-mediated IL-1β secretion and caspase-1 activation is dependent on potassium efflux but independent of P2X7R. In addition, other signaling pathways including JNK, ERK and SyK were investigated using different inhibitors and the results showed that these signaling pathway inhibitors partially attenuated CATH-2-enhanced IL-1β secretion, especially the JNK inhibitor. Finally, the role of serine protease in CATH-2-mediated NLRP3 inflammasome activation was investigated in neutrophils and the results showed that serine protease activity is involved in CATH-2-enhanced IL-1β secretion and caspase-1 activation. In conclusion, after LPS priming in neutrophils, CATH-2 can be an agonist of the NLRP3 inflammasome. Our study increases the understanding on immunomodulatory effects of chicken cathelicidins and provides new insight on chicken cathelicidins-mediated immune response.
Collapse
Affiliation(s)
- Lianci Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Yi Lu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Hongliang Tian
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Kaixiang Jia
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Qi Tao
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Gang Li
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Chao Wan
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Chao Ye
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Edwin J A Veldhuizen
- Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Hongwei Chen
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China; Immunology Research Center, Institute of Medical Research, Southwest University, Chongqing, 402460, China.
| |
Collapse
|
11
|
Lai Z, Yuan X, Chen H, Zhu Y, Dong N, Shan A. Strategies employed in the design of antimicrobial peptides with enhanced proteolytic stability. Biotechnol Adv 2022; 59:107962. [PMID: 35452776 DOI: 10.1016/j.biotechadv.2022.107962] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/14/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022]
Abstract
Due to the alarming developing rate of multidrug-resistant bacterial pathogens, the development and modification of antimicrobial peptides (AMPs) are unprecedentedly active. Despite the fact that considerable efforts have been expended on the discovery and design strategies of AMPs, the clinical translation of peptide antibiotics remains inadequate. A large number of articles and reviews credited the limited success of AMPs to their poor stability in the biological environment, particularly their poor proteolytic stability. In the past forty years, various design strategies have been used to improve the proteolytic stability of AMPs, such as sequence modification, cyclization, peptidomimetics, and nanotechnology. Herein, we focus our discussion on the progress made in improving the proteolytic stability of AMPs and the principle, successes, and limitations of various anti-proteolytic design strategies. It is of prospective significance to extend current insights into the degradation-related inactivation of AMPs and also alleviate/overcome the problem.
Collapse
Affiliation(s)
- Zhenheng Lai
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Xiaojie Yuan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Hongyu Chen
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Yunhui Zhu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Na Dong
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
12
|
Group B Streptococcus-Induced Macropinocytosis Contributes to Bacterial Invasion of Brain Endothelial Cells. Pathogens 2022; 11:pathogens11040474. [PMID: 35456149 PMCID: PMC9028350 DOI: 10.3390/pathogens11040474] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 01/25/2023] Open
Abstract
Bacterial meningitis is defined as serious inflammation of the central nervous system (CNS) in which bacteria infect the blood–brain barrier (BBB), a network of highly specialized brain endothelial cells (BECs). Dysfunction of the BBB is a hallmark of bacterial meningitis. Group B Streptococcus (GBS) is one of the leading organisms that cause bacterial meningitis, especially in neonates. Macropinocytosis is an actin-dependent form of endocytosis that is also tightly regulated at the BBB. Previous studies have shown that inhibition of actin-dependent processes decreases bacterial invasion, suggesting that pathogens can utilize macropinocytotic pathways for invasion. The purpose of this project is to study the factors that lead to dysfunction of the BBB. We demonstrate that infection with GBS increases rates of endocytosis in BECs. We identified a potential pathway, PLC-PKC-Nox2, in BECs that contributes to macropinocytosis regulation. Here we demonstrate that downstream inhibition of PLC, PKC, or Nox2 significantly blocks GBS invasion of BECs. Additionally, we show that pharmacological activation of PKC can turn on macropinocytosis and increase bacterial invasion of nonpathogenic yet genetically similar Lactococcus lactis. Our results suggest that GBS activates BEC signaling pathways that increase rates of macropinocytosis and subsequently the invasion of GBS.
Collapse
|
13
|
van Harten RM, Tjeerdsma-van Bokhoven JL, de Greeff A, Balhuizen MD, van Dijk A, Veldhuizen EJ, Haagsman HP, Scheenstra MR. d-enantiomers of CATH-2 enhance the response of macrophages against Streptococcus suis serotype 2. J Adv Res 2022; 36:101-112. [PMID: 35127168 PMCID: PMC8799869 DOI: 10.1016/j.jare.2021.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 11/30/2022] Open
Abstract
D-CATH-2 has strong antimicrobial activities towards multiple S.suis strains. D-CATH-2 ameliorates macrophage function. DCATH-2 binds LTA. DCATH-2 has prophylactic effect against S. suis infection in vivo.
Introduction Due to the increase of antibiotic resistant bacterial strains, there is an urgent need for development of alternatives to antibiotics. Cathelicidins can be such an alternative to antibiotics having both a direct antimicrobial capacity as well as an immunomodulatory function. Previously, the full d-enantiomer of chicken cathelicidin-2 (d-CATH-2) has shown to prophylactically protect chickens against infection 7 days post hatch when administered in ovo three days before hatch. Objectives To further evaluate d-CATH-2 in mammals as a candidate for an alternative to antibiotics. In this study, the prophylactic capacity of d-CATH-2 and two truncated derivatives, d-C(1–21) and d-C(4–21), was determined in mammalian cells. Methods Antibacterial assays; immune cell differentiation and modulation; cytotoxicity, isothermal titration calorimetry; in vivo prophylactic capacity of peptides in an S. suis infection model. Results d-CATH-2 and its derivatives were shown to have a strong direct antibacterial capacity against four different S. suis serotype 2 strains (P1/7, S735, D282, and OV625) in bacterial medium and even stronger in cell culture medium. In addition, d-CATH-2 and its derivatives ameliorated the efficiency of mouse bone marrow-derived macrophages (BMDM) and skewed mouse bone marrow-derived dendritic cells (BMDC) towards cells with a more macrophage-like phenotype. The peptides directly bind lipoteichoic acid (LTA) and inhibit LTA-induced activation of macrophages. In addition, S. suis killed by the peptide was unable to further activate mouse macrophages, which indicates that S. suis was eliminated by the previously reported silent killing mechanism. Administration of d-C(1–21) at 24 h or 7 days before infection resulted in a small prophylactic protection with reduced disease severity and reduced mortality of the treated mice. Conclusion d-enantiomers of CATH-2 show promise as anti-infectives against pathogenic S. suis for application in mammals.
Collapse
Affiliation(s)
- Roel M. van Harten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - Astrid de Greeff
- Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, 8221 RA Lelystad, the Netherlands
| | - Melanie D. Balhuizen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, the Netherlands
| | - Albert van Dijk
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, the Netherlands
| | - Edwin J.A. Veldhuizen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, the Netherlands
- Corresponding author.
| | - Henk P. Haagsman
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, the Netherlands
| | - Maaike R. Scheenstra
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
14
|
Antimicrobial nanomedicine for ocular bacterial and fungal infection. Drug Deliv Transl Res 2021; 11:1352-1375. [PMID: 33840082 DOI: 10.1007/s13346-021-00966-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
Ocular infection induced by bacteria and fungi is a major cause of visual impairment and blindness. Topical administration of antibiotics remains the first-line treatment, as effective eradication of pathogens is the core of the anti-infection strategy. Whereas, eye drops lack efficiency and have relatively low bioavailability. Intraocular injection may cause concurrent ocular damage and secondary infection. In addition, antibiotic-based management can be limited by the low sensitivity to multidrug-resistant bacteria. Nanomedicine is proposed as a prospective, effective, and noninvasive platform to mediate ocular delivery and combat pathogen or even resistant strains. Nanomedicine can not only carry antimicrobial agents to fight against pathogens but also directly active microbicidal capability, killing pathogens. More importantly, by modification, nanomedicine can achieve enhanced residence time and release time on the cornea, and easy penetration through corneal tissues into anterior and posterior segments of the eye, thus improving the therapeutic effect for ocular infection. In this review, several categories of antimicrobial nanomedicine are systematically discussed, where the efficiency and possibility of further embellishment and improvement to adapt to clinical use are also investigated. All in all, novel antimicrobial nanomedicine provides potent and prospective ways to manage severe and refractory ocular infections.
Collapse
|
15
|
Fisher JF, Mobashery S. β-Lactams against the Fortress of the Gram-Positive Staphylococcus aureus Bacterium. Chem Rev 2021; 121:3412-3463. [PMID: 33373523 PMCID: PMC8653850 DOI: 10.1021/acs.chemrev.0c01010] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biological diversity of the unicellular bacteria-whether assessed by shape, food, metabolism, or ecological niche-surely rivals (if not exceeds) that of the multicellular eukaryotes. The relationship between bacteria whose ecological niche is the eukaryote, and the eukaryote, is often symbiosis or stasis. Some bacteria, however, seek advantage in this relationship. One of the most successful-to the disadvantage of the eukaryote-is the small (less than 1 μm diameter) and nearly spherical Staphylococcus aureus bacterium. For decades, successful clinical control of its infection has been accomplished using β-lactam antibiotics such as the penicillins and the cephalosporins. Over these same decades S. aureus has perfected resistance mechanisms against these antibiotics, which are then countered by new generations of β-lactam structure. This review addresses the current breadth of biochemical and microbiological efforts to preserve the future of the β-lactam antibiotics through a better understanding of how S. aureus protects the enzyme targets of the β-lactams, the penicillin-binding proteins. The penicillin-binding proteins are essential enzyme catalysts for the biosynthesis of the cell wall, and understanding how this cell wall is integrated into the protective cell envelope of the bacterium may identify new antibacterials and new adjuvants that preserve the efficacy of the β-lactams.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| |
Collapse
|
16
|
Wang T, Zou C, Wen N, Liu X, Meng Z, Feng S, Zheng Z, Meng Q, Wang C. The effect of structural modification of antimicrobial peptides on their antimicrobial activity, hemolytic activity, and plasma stability. J Pept Sci 2021; 27:e3306. [PMID: 33554385 DOI: 10.1002/psc.3306] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/28/2022]
Abstract
In this article, a series of modifications were made on an antimicrobial peptide F2,5,12 W, including altering the amino acid sequence, introducing cysteine and other typical amino acids, developing peptide dimers via disulfide bonds, and conjugating with mPEG, in order to enhance the antimicrobial activity, plasma stability, and reduce the hemolytic activity of peptides. The results showed that mPEG conjugation could significantly improve the plasma stability and reduce the hemolytic activity of peptides, while the antimicrobial activity decreased meanwhile. However, altering the sequence of the peptide without changing its amino acid composition had little impact on its antimicrobial activity and plasma stability. The introduction of cysteine enhanced the plasma stability of peptides conspicuously, but at the same time, the increased hydrophobicity of peptides increased their hemolysis. The antimicrobial mechanism and cytotoxicity of the peptides with relatively high antimicrobial activity were also studied. In general, this study provided some ideas for the rational design and structure optimization of antimicrobial peptides.
Collapse
Affiliation(s)
- Taoran Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Cunbin Zou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Na Wen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xingdong Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Siliang Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhibing Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Chenhong Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
17
|
Balhuizen MD, Veldhuizen EJA, Haagsman HP. Outer Membrane Vesicle Induction and Isolation for Vaccine Development. Front Microbiol 2021; 12:629090. [PMID: 33613498 PMCID: PMC7889600 DOI: 10.3389/fmicb.2021.629090] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Gram-negative bacteria release vesicular structures from their outer membrane, so called outer membrane vesicles (OMVs). OMVs have a variety of functions such as waste disposal, communication, and antigen or toxin delivery. These vesicles are the promising structures for vaccine development since OMVs carry many surface antigens that are identical to the bacterial surface. However, isolation is often difficult and results in low yields. Several methods to enhance OMV yield exist, but these do affect the resulting OMVs. In this review, our current knowledge about OMVs will be presented. Different methods to induce OMVs will be reviewed and their advantages and disadvantages will be discussed. The effects of the induction and isolation methods used in several immunological studies on OMVs will be compared. Finally, the challenges for OMV-based vaccine development will be examined and one example of a successful OMV-based vaccine will be presented.
Collapse
Affiliation(s)
| | - Edwin J. A. Veldhuizen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | |
Collapse
|
18
|
Tall YA, Al-Rawashdeh B, Abualhaijaa A, Almaaytah A, Masadeh M, Alzoubi KH. Functional Characterization of a Novel Hybrid Peptide with High Potency against Gram-negative Bacteria. Curr Pharm Des 2020; 26:376-385. [PMID: 32003660 DOI: 10.2174/1381612826666200128090700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 01/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Multi-drug resistant infections are a growing worldwide health concern. There is an urgent need to produce alternative antimicrobial agents. OBJECTIVE The study aimed to design a new hybrid antimicrobial peptide, and to evaluate its antimicrobial activity alone and in combination with traditional antibiotics. METHODS Herein, we designed a novel hybrid peptide (BMR-1) using the primary sequences of the parent peptides Frog Esculentin-1a and Monkey Rhesus cathelicidin (RL-37). The positive net charge was increased, and other physicochemical parameters were optimized. The antimicrobial activities of BMR-1 were tested against control and multi-drug resistant gram-negative bacteria. RESULTS BMR-1 adopted a bactericidal behavior with MIC values of 25-30 µM. These values reduced by over 75% upon combination with conventional antibiotics (levofloxacin, chloramphenicol, ampicillin, and rifampicin). The combination showed strong synergistic activities in most cases and particularly against multi-drug resistance P. aeruginosa and E. coli. BMR-1 showed similar potency against all tested strains regardless of their resistant mechanisms. BMR-1 exhibited no hemolytic effect on human red blood cells with the effective MIC values against the tested strains. CONCLUSION BMR-1 hybrid peptide is a promising candidate to treat resistant infectious diseases caused by gramnegative bacteria.
Collapse
Affiliation(s)
- Yara Al Tall
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Baha'a Al-Rawashdeh
- Department of Toxicology and Forensic Science, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ahmad Abualhaijaa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ammar Almaaytah
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.,Department of Pharmacy, Faculty of Pharmacy, Middle East University, Amman, Jordan
| | - Majed Masadeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
19
|
Novel Functions and Signaling Specificity for the GraS Sensor Kinase of Staphylococcus aureus in Response to Acidic pH. J Bacteriol 2020; 202:JB.00219-20. [PMID: 32868405 DOI: 10.1128/jb.00219-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/26/2020] [Indexed: 01/30/2023] Open
Abstract
Although the GraS sensor kinase of Staphylococcus aureus is known for the sensing of and resistance to cationic antimicrobial peptides (CAMPs), we recently established that it also signals in response to acidic pH, which is encountered on human skin concurrently with CAMPs, antimicrobial unsaturated free fatty acids (uFFA), and calcium. We therefore evaluated how these environmental signals would affect GraS function and resistance to antimicrobial uFFA. Growth at pH 5.5 promoted increased resistance of S. aureus USA300 to linoleic and arachidonic acids but not palmitoleic or sapienic acid. However, enhanced resistance to these C16:1 uFFA was achieved by supplementing acidic medium with 0.5 mM calcium or subinhibitory CAMPs. Enhanced resistance to uFFA at acidic pH was dependent on GraS and GraS-dependent expression of the lysyl-phosphatidylglycerol synthase enzyme MprF, through a mechanism that did not require the lysyl-transferase function of MprF. In addition to enhanced resistance to antimicrobial uFFA, acidic pH also promoted increased production of secreted proteases in a GraS-dependent manner. During growth at pH 5.5, downstream phenotypes of signaling through GraS, including resistance to uFFA, MprF-dependent addition of positive charge to the cell surface, and increased production of secreted proteases, all occurred independently of acidic amino acids in the extracytoplasmic sensor loop of GraS that were previously found to be required for sensing of CAMPs. Cumulatively, our data indicate that signaling through GraS at acidic pH occurs through a mechanism that is distinct from that described for CAMPs, leading to increased resistance to antimicrobial uFFA and production of secreted proteases.IMPORTANCE Staphylococcus aureus asymptomatically colonizes 30% of humans but is also a leading cause of infectious morbidity and mortality. Since infections are typically initiated by the same strain associated with asymptomatic colonization of the nose or skin, it is important to understand how the microbe can endure exposure to harsh conditions that successfully restrict the growth of other bacteria, including a combination of acidic pH, antimicrobial peptides, and antimicrobial fatty acids. The significance of our research is in showing that acidic pH combined with antimicrobial peptide or environmental calcium can signal through a single membrane sensor protein to promote traits that may aid in survival, including modification of cell surface properties, increased resistance to antimicrobial fatty acids, and enhanced production of secreted proteases.
Collapse
|
20
|
Scheenstra MR, van Harten RM, Veldhuizen EJA, Haagsman HP, Coorens M. Cathelicidins Modulate TLR-Activation and Inflammation. Front Immunol 2020; 11:1137. [PMID: 32582207 PMCID: PMC7296178 DOI: 10.3389/fimmu.2020.01137] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/11/2020] [Indexed: 12/30/2022] Open
Abstract
Cathelicidins are short cationic peptides that are part of the innate immune system. At first, these peptides were studied mostly for their direct antimicrobial killing capacity, but nowadays they are more and more appreciated for their immunomodulatory functions. In this review, we will provide a comprehensive overview of the various effects cathelicidins have on the detection of damage- and microbe-associated molecular patterns, with a special focus on their effects on Toll-like receptor (TLR) activation. We review the available literature based on TLR ligand types, which can roughly be divided into lipidic ligands, such as LPS and lipoproteins, and nucleic-acid ligands, such as RNA and DNA. For both ligand types, we describe how direct cathelicidin-ligand interactions influence TLR activation, by for instance altering ligand stability, cellular uptake and receptor interaction. In addition, we will review the more indirect mechanisms by which cathelicidins affect downstream TLR-signaling. To place all this information in a broader context, we discuss how these cathelicidin-mediated effects can have an impact on how the host responds to infectious organisms as well as how these effects play a role in the exacerbation of inflammation in auto-immune diseases. Finally, we discuss how these immunomodulatory activities can be exploited in vaccine development and cancer therapies.
Collapse
Affiliation(s)
- Maaike R Scheenstra
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| | - Roel M van Harten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| | - Edwin J A Veldhuizen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| | - Henk P Haagsman
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| | - Maarten Coorens
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Laboratory, Stockholm, Sweden
| |
Collapse
|
21
|
Munusamy S, Conde R, Bertrand B, Munoz-Garay C. Biophysical approaches for exploring lipopeptide-lipid interactions. Biochimie 2020; 170:173-202. [PMID: 31978418 PMCID: PMC7116911 DOI: 10.1016/j.biochi.2020.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
In recent years, lipopeptides (LPs) have attracted a lot of attention in the pharmaceutical industry due to their broad-spectrum of antimicrobial activity against a variety of pathogens and their unique mode of action. This class of compounds has enormous potential for application as an alternative to conventional antibiotics and for pest control. Understanding how LPs work from a structural and biophysical standpoint through investigating their interaction with cell membranes is crucial for the rational design of these biomolecules. Various analytical techniques have been developed for studying intramolecular interactions with high resolution. However, these tools have been barely exploited in lipopeptide-lipid interactions studies. These biophysical approaches would give precise insight on these interactions. Here, we reviewed these state-of-the-art analytical techniques. Knowledge at this level is indispensable for understanding LPs activity and particularly their potential specificity, which is relevant information for safe application. Additionally, the principle of each analytical technique is presented and the information acquired is discussed. The key challenges, such as the selection of the membrane model are also been briefly reviewed.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Renaud Conde
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Brandt Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Carlos Munoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico.
| |
Collapse
|
22
|
Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov 2020; 19:311-332. [DOI: 10.1038/s41573-019-0058-8] [Citation(s) in RCA: 425] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2019] [Indexed: 12/18/2022]
|
23
|
van Hoek ML, Prickett MD, Settlage RE, Kang L, Michalak P, Vliet KA, Bishop BM. The Komodo dragon (Varanus komodoensis) genome and identification of innate immunity genes and clusters. BMC Genomics 2019; 20:684. [PMID: 31470795 PMCID: PMC6716921 DOI: 10.1186/s12864-019-6029-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 08/12/2019] [Indexed: 12/23/2022] Open
Abstract
Background We report the sequencing, assembly and analysis of the genome of the Komodo dragon (Varanus komodoensis), the largest extant lizard, with a focus on antimicrobial host-defense peptides. The Komodo dragon diet includes carrion, and a complex milieu of bacteria, including potentially pathogenic strains, has been detected in the saliva of wild dragons. They appear to be unaffected, suggesting that dragons have robust defenses against infection. While little information is available regarding the molecular biology of reptile immunity, it is believed that innate immunity, which employs antimicrobial host-defense peptides including defensins and cathelicidins, plays a more prominent role in reptile immunity than it does in mammals. . Results High molecular weight genomic DNA was extracted from Komodo dragon blood cells. Subsequent sequencing and assembly of the genome from the collected DNA yielded a genome size of 1.6 Gb with 45x coverage, and the identification of 17,213 predicted genes. Through further analyses of the genome, we identified genes and gene-clusters corresponding to antimicrobial host-defense peptide genes. Multiple β-defensin-related gene clusters were identified, as well as a cluster of potential Komodo dragon ovodefensin genes located in close proximity to a cluster of Komodo dragon β-defensin genes. In addition to these defensins, multiple cathelicidin-like genes were also identified in the genome. Overall, 66 β-defensin genes, six ovodefensin genes and three cathelicidin genes were identified in the Komodo dragon genome. Conclusions Genes with important roles in host-defense and innate immunity were identified in this newly sequenced Komodo dragon genome, suggesting that these organisms have a robust innate immune system. Specifically, multiple Komodo antimicrobial peptide genes were identified. Importantly, many of the antimicrobial peptide genes were found in gene clusters. We found that these innate immunity genes are conserved among reptiles, and the organization is similar to that seen in other avian and reptilian species. Having the genome of this important squamate will allow researchers to learn more about reptilian gene families and will be a valuable resource for researchers studying the evolution and biology of the endangered Komodo dragon. Electronic supplementary material The online version of this article (10.1186/s12864-019-6029-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Monique L van Hoek
- School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - M Dennis Prickett
- Dipartimento di Scienze della Vita-Edif. C11, Università di Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Robert E Settlage
- Advanced Research Computing, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Lin Kang
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
| | - Pawel Michalak
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA.,Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24060, USA.,Institute of Evolution, University of Haifa, 3498838, Haifa, Israel
| | - Kent A Vliet
- Department of Biology, University of Florida, Gainesville, Florida, FL, 32611, USA
| | - Barney M Bishop
- Department of Chemistry, George Mason University, Manassas, VA, 20110, USA.
| |
Collapse
|
24
|
Inhibition and Eradication of Pseudomonas aeruginosa Biofilms by Host Defence Peptides. Sci Rep 2018; 8:10446. [PMID: 29993029 PMCID: PMC6041282 DOI: 10.1038/s41598-018-28842-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/29/2018] [Indexed: 01/07/2023] Open
Abstract
P. aeruginosa is a notorious biofilm producer that causes a wide variety of acute and chronic infections. In this study the in vitro anti-biofilm activity of 13 Host Defence Peptides from different species was tested against P. aeruginosa biofilms. Most HDPs were able to prevent biofilm attachment, due to their antimicrobial effect on planktonic bacteria in the starting inoculum. Activity of HDPs against pre-formed biofilms was also observed, although mainly at short incubation times. Several HDPs were able to kill bacteria in the biofilm (colony counting of biofilm associated bacteria) but only CRAMP eradicated the whole biofilm (crystal violet staining). These results were quantitatively confirmed by confocal microscopy studies using a live/dead stain of the biofilms. Furthermore, for chicken CATH-2 (one of the more potent HDPs) it was shown that the peptide could indeed penetrate the biofilm structures and kill bacteria within the biofilm. These studies highlight the potency but also the limitations of HDPs as new potential anti-biofilm agents.
Collapse
|