1
|
Choi SR, Kulkarni S, Arnett E, Schlesinger LS, Britigan BE, Narayanasamy P. Efficacy and Possible Mechanism(s) of Action of Gallium Tetraphenylporphyrin Nanoparticles against HIV-TB Coinfection in an In Vitro Granuloma Structure Model. ACS Infect Dis 2024. [PMID: 39499869 DOI: 10.1021/acsinfecdis.4c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Coinfection of Mycobacterium tuberculosis (Mtb) and human immunodeficiency virus-1 (HIV) is a significant public health concern. Treatment is challenging due to prolonged duration of therapy and drug interactions between antiretroviral therapy (ART) and anti-TB drugs. Noniron gallium meso-tetraphenyl porphyrin (GaTP), a heme mimetic, has shown broad antimicrobial activity. Here, we investigated the efficacy of nanoparticle encapsulating GaTP (GaNP) for the treatment of HIV and Mtb coinfection or single infection in in vitro granuloma structures. GaNP significantly reduced viable Mtb within primary human in vitro granuloma structures infected with Mtb H37Rv-lux and significantly reduced levels of HIV in CD4+ T cells infected with the virus axenically. Similarly, GaNP exhibited significant antimicrobial activity against HIV/Mtb-coinfected granuloma structures created in vitro, which contain the primary immune cells seen in human TB granulomas, including CD4+ T cells and macrophages, as assessed by a luciferase assay for Mtb and p24 ELISA for HIV detection. Furthermore, mechanistic studies revealed that GaTP increases the level of reactive oxygen species and inhibits catalase in Mtb. A significant increase in Mtb nitrate reductase activity was also observed when Mtb was incubated with GaTP and sodium nitrate. Overall, increased oxidative stress and nitrite levels induced by GaTP are consistent with the possibility that GaTP inhibits Mtb aerobic respiration, which leads to incomplete O2 reduction and a shift to respiration using exogenous NO3. These cumulative data continue to support the potential for developing the noniron heme analog GaTP and its nanoparticle GaNP as new therapeutic approaches for the treatment of HIV/Mtb coinfection.
Collapse
Affiliation(s)
- Seoung-Ryoung Choi
- Department of Pathology, Microbiology and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Smita Kulkarni
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, Texas 78227, United States
| | - Eusondia Arnett
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, Texas 78227, United States
| | - Larry S Schlesinger
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, Texas 78227, United States
| | - Bradley E Britigan
- Department of Pathology, Microbiology and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Prabagaran Narayanasamy
- Department of Pathology, Microbiology and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
2
|
Mobed A, Alivirdiloo V, Gholami S, Moshari A, Mousavizade A, Naderian R, Ghazi F. Nano-Medicine for Treatment of Tuberculosis, Promising Approaches Against Antimicrobial Resistance. Curr Microbiol 2024; 81:326. [PMID: 39182006 DOI: 10.1007/s00284-024-03853-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Even though the number of effective anti-tuberculosis or anti-mycobacterial agents is increasing, a large number of patients experience severe side effects as a result of these drugs. This hurts the patients' well-being and quality of life. Tumor cells that survive treatment modalities can become chemotherapy resistant at the molecular level. Furthermore, negative effects on normal cells occur concurrently. Strategies that minimize the negative effects on normal cells while efficiently targeting infected cells are required. Nanotherapies, according to recent research, may be one option in this direction. The present study differs from previously published review studies as it concentrates on examining the most recently developed nanoparticles for anti-mycobacterial purposes. Such novel approaches have the potential to reduce harmful side effects and improve patients' health prognoses. Current paper provides a comprehensive analysis of recent advances in nanotherapy systems for the pulmonary delivery of anti-tuberculous drugs. In addition, to low-priced and convenient alternatives for pulmonary delivery, different types of NPs for oral and topical application were also deliberated and summarized in this review.
Collapse
Affiliation(s)
- Ahmad Mobed
- Department of Community Medicine, Faculty of Medicine, Social Determinants of Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Vahid Alivirdiloo
- Medical Doctor Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Sarah Gholami
- Young Researchers and Ellie Club, Babol Branch. Islamic Azad University, Babol, Iran
| | | | | | - Ramtin Naderian
- Student Committee of Medical Education Development, Education Development Center, Semnan University of Medical Science, Semnan, Iran
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Farhood Ghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Kircheva N, Dobrev S, Petkova V, Yocheva L, Angelova S, Dudev T. In Silico Analysis of the Ga 3+/Fe 3+ Competition for Binding the Iron-Scavenging Siderophores of P. aeruginosa-Implementation of Three Gallium-Based Complexes in the "Trojan Horse" Antibacterial Strategy. Biomolecules 2024; 14:487. [PMID: 38672503 PMCID: PMC11048449 DOI: 10.3390/biom14040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
The emergence of multidrug-resistant (MDR) microorganisms combined with the ever-draining antibiotic pipeline poses a disturbing and immensely growing public health challenge that requires a multidisciplinary approach and the application of novel therapies aimed at unconventional targets and/or applying innovative drug formulations. Hence, bacterial iron acquisition systems and bacterial Fe2+/3+-containing enzymes have been identified as a plausible target of great potential. The intriguing "Trojan horse" approach deprives microorganisms from the essential iron. Recently, gallium's potential in medicine as an iron mimicry species has attracted vast attention. Different Ga3+ formulations exhibit diverse effects upon entering the cell and thus supposedly have multiple targets. The aim of the current study is to specifically distinguish characteristics of great significance in regard to the initial gallium-based complex, allowing the alien cation to effectively compete with the native ferric ion for binding the siderophores pyochelin and pyoverdine secreted by the bacterium P. aeruginosa. Therefore, three gallium-based formulations were taken into consideration: the first-generation gallium nitrate, Ga(NO3)3, metabolized to Ga3+-hydrated forms, the second-generation gallium maltolate (tris(3-hydroxy-2-methyl-4-pyronato)gallium), and the experimentally proven Ga carrier in the bloodstream-the protein transferrin. We employed a reliable in silico approach based on DFT computations in order to understand the underlying biochemical processes that govern the Ga3+/Fe3+ rivalry for binding the two bacterial siderophores.
Collapse
Affiliation(s)
- Nikoleta Kircheva
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (S.D.); (V.P.); (S.A.)
| | - Stefan Dobrev
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (S.D.); (V.P.); (S.A.)
| | - Vladislava Petkova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (S.D.); (V.P.); (S.A.)
| | - Lyubima Yocheva
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| | - Silvia Angelova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (S.D.); (V.P.); (S.A.)
- University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| |
Collapse
|
4
|
Moawed FS, Haroun RAH, Abou Zaid ES, Mansour SZ, Badawi AFM, Kandil EI. In vitro and in vivo studies of a newly synthesized copper-cetyl tri-methyl ammonium bromide combined with gallium oxide nanoparticles complex as an antitumor agent against hepatocellular carcinoma. Int J Immunopathol Pharmacol 2023; 37:3946320231180708. [PMID: 37276131 DOI: 10.1177/03946320231180708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023] Open
Abstract
Objective: Hepatocellular carcinoma (HCC) is one of the most leading causes of death worldwide. Previous studies reported that gallium alone and cetyltrimethylammonium bromide (CTAB) have antineoplastic activities; therefore, this study aimed to evaluate the activity of copper-cetyl tri-methyl ammonium bromide with gallium oxide nanoparticles (Cu-CTAB+GaO-NPs) against HCC by using in vitro and in vivo studies. Methods: In vitro study was performed to evaluate the cytotoxic effects of Cu-CTAB+GaO-NPs and GaO-NPs on HepG-2 cell line using crystal violet dye assay. In vivo study was done on diethyl nitrosamine (DEN) induced HCC Wister rats. Rats were randomly divided into eight groups; control, Cu-CTAB, GaO-NPs, Cu-CTAB+GaONPs, DEN, DEN+Cu-CTAB, DEN+GaO-NPs and DEN+Cu-CTAB+GaO-NPs. Histopathological examination of liver and biochemical parameters such as liver function markers, oxidative stress-antioxidants markers, tumor makers, apoptosis makers were studied. Results: Results obtained from in vitro study revealed that Cu-CTAB+GaO-NPs and GaO-NPs affect the cell viability of HepG-2 cancer cell with IC50 0.2 μg/ml and 360 μg/ml, respectively. Cu-CTAB+GaO-NPs exerted an antiproliferative effect in experimental rat models of HCC, as demonstrated both histologically, since it facilitated the tissue recovery of the damaged liver, and biochemically as showed by the reduction of liver function markers (ALT & AST), oxidative stress markers (MDA) and tumor makers (AFP,TGF-β1,α-L-Fucosidase); while antioxidants markers (SOD), apoptosis markers (caspase-3 mRNA) and araginase activity were elevated in DEN+Cu-CTAB, DEN+GaO-NPs and DEN+Cu-CTAB+GaO-NPs groups when compared to DEN group. Conclusion: The present study demonstrated that both Cu-CTAB alone and/or combined with GaO-NPs exerted cytotoxic effects against DEN-induced HCC, which would in turn, speculate a possible therapeutic role of the novel Cu-CTAB+GaO-NPs compound.
Collapse
Affiliation(s)
- Fatma Sm Moawed
- Health Radiation Research Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | | | - Eman S Abou Zaid
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Somya Z Mansour
- Radiation Biology Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | | | - Eman I Kandil
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Gairola A, Benjamin A, Weatherston JD, Cirillo JD, Wu HJ. Recent Developments in Drug Delivery for Treatment of Tuberculosis by Targeting Macrophages. ADVANCED THERAPEUTICS 2022; 5:2100193. [PMID: 36203881 PMCID: PMC9531895 DOI: 10.1002/adtp.202100193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Indexed: 11/10/2022]
Abstract
Tuberculosis (TB) is among the greatest public health and safety concerns in the 21st century, Mycobacterium tuberculosis, which causes TB, infects alveolar macrophages and uses these cells as one of its primary sites of replication. The current TB treatment regimen, which consist of chemotherapy involving a combination of 3-4 antimicrobials for a duration of 6-12 months, is marked with significant side effects, toxicity, and poor compliance. Targeted drug delivery offers a strategy that could overcome many of the problems of current TB treatment by specifically targeting infected macrophages. Recent advances in nanotechnology and material science have opened an avenue to explore drug carriers that actively and passively target macrophages. This approach can increase the drug penetration into macrophages by using ligands on the nanocarrier that interact with specific receptors for macrophages. This review encompasses the recent development of drug carriers specifically targeting macrophages actively and passively. Future directions and challenges associated with development of effective TB treatment is also discussed.
Collapse
Affiliation(s)
- Anirudh Gairola
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Aaron Benjamin
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Joshua D Weatherston
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Hung-Jen Wu
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
6
|
Choi SR, Britigan BE, Narayanasamy P. Synthesis and in vitro analysis of novel gallium tetrakis(4-methoxyphenyl)porphyrin and its long-acting nanoparticle as a potent antimycobacterial agent. Bioorg Med Chem Lett 2022; 62:128645. [PMID: 35219822 DOI: 10.1016/j.bmcl.2022.128645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/24/2022]
Abstract
Bacterial heme uptake pathways offer a novel target for antimicrobial drug discovery. Recently, gallium (Ga) porphyrin complexes were found to be effective against mycobacterial heme uptake pathways. The goal of the current study is to build on this foundation and develop a new Ga(III) porphyrin and its nanoparticles, formulated by a single emulsion-evaporation technique to inhibit the growth of Mycobacterium avium complex (MAC) with enhanced properties. Gallium 5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin chloride (GaMeOTP) was synthesized from 5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin and GaCl3. GaMeOTP showed enhanced antimicrobial activity against MAC104 and some clinical M. avium isolates. The synthesized Ga(III) porphyrin antimicrobial activity resulted in the overproduction of reactive oxygen species. Our study also demonstrated that F127 nanoparticles encapsulating GaMeOTP exhibited a smaller size than GaTP nanoparticles and a better duration of activity in MAC-infected macrophages compared to the free GaMeOTP. The nanoparticles were trafficked to endosomal compartments within MAC-infected macrophages, likely contributing to the antimicrobial activity of the drug.
Collapse
Affiliation(s)
- Seoung-Ryoung Choi
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bradley E Britigan
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Internal Medicine and Research Service, Veterans Affairs Medical Center-Nebraska Western Iowa, Omaha, NE, USA
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
7
|
Chaudhary KR, Puri V, Singh A, Singh C. A review on recent advances in nanomedicines for the treatment of pulmonary tuberculosis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Li G, Li J, Hou Y, Xie S, Xu J, Yang M, Li D, Du Y. Levofloxacin-Loaded Nanosonosensitizer as a Highly Efficient Therapy for Bacillus Calmette-Guérin Infections Based on Bacteria-Specific Labeling and Sonotheranostic Strategy. Int J Nanomedicine 2021; 16:6553-6573. [PMID: 34602818 PMCID: PMC8478796 DOI: 10.2147/ijn.s321631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose The rapid emergence of multidrug-resistant Mycobacterium tuberculosis (MTB) poses a significant challenge to the treatment of tuberculosis (TB). Sonodynamic antibacterial chemotherapy (SACT) combined with sonosensitizer-loaded nanoparticles with targeted therapeutic function is highly expected to eliminate bacteria without fear of drug resistance. This study aimed to investigate the antibacterial effect and underlying mechanism of levofloxacin-loaded nanosonosensitizer with targeted therapeutic function against Bacillus Calmette-Guérin bacteria (BCG, an MTB model). Methods This study developed levofloxacin-loaded PLGA-PEG (poly lactide-co-glycolide-polyethylene glycol) nanoparticles with BM2 aptamer conjugation on its surface using the crosslinking agents EDC and NHS (BM2-LVFX-NPs). The average diameter, zeta potential, morphology, drug-loading properties, and drug release efficiency of the BM2-LVFX-NPs were investigated. In addition, the targeting and toxicity of BM2-LVFX-NPs in the subcutaneous BCG infection model were evaluated. The biosafety, reactive oxygen species (ROS) production, cellular phagocytic effect, and antibacterial effect of BM2-LVFX-NPs in the presence of ultrasound stimulations (42 kHz, 0.67 W/cm2, 5 min) were also systematically evaluated. Results BM2-LVFX-NPs not only specifically recognized BCG bacteria in vitro but also gathered accurately in the lesion tissues. Drugs loaded in BM2-LVFX-NPs with the ultrasound-responsive feature were effectively released compared to the natural state. In addition, BM2-LVFX-NPs exhibited significant SACT efficiency with higher ROS production levels than others, resulting in the effective elimination of bacteria in vitro. Meanwhile, in vivo experiments, compared with other options, BM2-LVFX-NPs also exhibited an excellent therapeutic effect in a rat model with BCG infection after exposure to ultrasound. Conclusion Our work demonstrated that a nanosonosensitizer formulation with LVFX could efficiently translocate therapeutic drugs into the cell and improve the bactericidal effects under ultrasound, which could be a promising strategy for targeted therapy for MTB infections with high biosafety.
Collapse
Affiliation(s)
- Gangjing Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jianhu Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yuru Hou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Shuang Xie
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jieru Xu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Min Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Dairong Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yonghong Du
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| |
Collapse
|
9
|
Choi SR, Talmon GA, Britigan BE, Narayanasamy P. Nanoparticulate β-Cyclodextrin with Gallium Tetraphenylporphyrin Demonstrates in Vitro and in Vivo Antimicrobial Efficacy against Mycobacteroides abscessus and Mycobacterium avium. ACS Infect Dis 2021; 7:2299-2309. [PMID: 34314150 DOI: 10.1021/acsinfecdis.0c00896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The emergence of drug-resistant pathogens causes the greatest challenge for drug development research. Recently, gallium(III)-based compounds have received great attention as novel antimicrobial agents against drug-resistant pathogens. Here, we synthesized a new β-cyclodextrin Ga nanoparticle (CDGaTP) using Ga tetraphenylporphyrin (GaTP, a hemin analogue) and β-cyclodextrin. The newly synthesized nanoparticle was nontoxic and efficient at a single dose, showing sustained drug release for 15 days in vitro. CDGaTP's activity with transferrin or lactoferrin was tested, and synergism in activity was observed against nontuberculosis mycobacteria (NTM), Mycobacterium avium (M. avium), and Mycobacteroides abscessus. Human serum albumin (HSA) decreased the efficacy of both GaTP and CDGaTP in a concentration-dependent manner. The NTMs incubated with GaTP or CDGaTP significantly produced reactive oxygen species (ROS), indicating potential inhibition of antioxidant enzymes, such as catalase. The single-dose CDGaTP displayed a prolonged intracellular inhibitory activity in an in vitro macrophage infection model against both NTMs. In addition, CDGaTP, not GaTP, was effective in a murine lung M. avium infection model when delivered via intranasal administration. These results suggest that CDGaTP provides new opportunities for the development of gallium-porphyrin based antibiotics.
Collapse
Affiliation(s)
- Seoung-Ryoung Choi
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Geoffrey A. Talmon
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Bradley E. Britigan
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department of Internal Medicine and Research Service, Veterans Affairs Medical Center−Nebraska Western Iowa, Omaha, Nebraska 68105, United States
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
10
|
de Albuquerque Wanderley Sales V, Timóteo TRR, da Silva NM, de Melo CG, Ferreira AS, de Oliveira MVG, de Oliveira Silva E, Dos Santos Mendes LM, Rolim LA, Neto PJR. A Systematic Review of the Anti-inflammatory Effects of Gallium Compounds. Curr Med Chem 2021; 28:2062-2076. [PMID: 32484099 DOI: 10.2174/0929867327666200525160556] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/16/2020] [Accepted: 04/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Inflammation is an essential response provided by the immune system, ensuring the survival during microbial infection, tissue injury and other noxious conditions. However, prolonged inflammatory processes are often associated with severe side effects on health. OBJECTIVE This systematic review aimed to provide the evidence in the literature of the preclinical and human anti-inflammatory activity of gallium compounds from 2000 to 2019 focused on elucidating the mechanisms involved in the inflammatory process. METHODS Seven bibliographical databases were consulted (PubMed, Medline, ScienceDirect, Scopus, Springer, Web of Science, and EBSCOhost). The selection of appropriate publications and writing of this systematic review were based on the guidelines mentioned in the PRISMA statement. Moreover, the assessment of the methodological quality of the selected studies was also performed. RESULTS From a total of 3018 studies, 16 studies were included in this paper based on our eligibility criteria, which showed promising and consistent results. CONCLUSION Further research concerning specific inflammatory conditions is required.
Collapse
Affiliation(s)
| | | | - Natália Millena da Silva
- Laboratorio de Tecnologia dos Medicamentos, Federal University of Pernambuco (UFPE), Recife-PE, Brazil
| | - Camila Gomes de Melo
- Laboratorio de Tecnologia dos Medicamentos, Federal University of Pernambuco (UFPE), Recife-PE, Brazil
| | - Aline Silva Ferreira
- Laboratorio de Tecnologia dos Medicamentos, Federal University of Pernambuco (UFPE), Recife-PE, Brazil
| | | | - Emerson de Oliveira Silva
- Laboratorio de Tecnologia dos Medicamentos, Federal University of Pernambuco (UFPE), Recife-PE, Brazil
| | | | - Larissa Araújo Rolim
- Central de Analise de Farmacos, Medicamentos e Alimentos, Federal University of Vale do Sao Francisco (UNIVASF), Petrolina-PE, Brazil
| | - Pedro José Rolim Neto
- Laboratorio de Tecnologia dos Medicamentos, Federal University of Pernambuco (UFPE), Recife-PE, Brazil
| |
Collapse
|
11
|
Khan AA, Manzoor KN, Sultan A, Saeed M, Rafique M, Noushad S, Talib A, Rentschler S, Deigner HP. Pulling the Brakes on Fast and Furious Multiple Drug-Resistant (MDR) Bacteria. Int J Mol Sci 2021; 22:E859. [PMID: 33467089 PMCID: PMC7830236 DOI: 10.3390/ijms22020859] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Life-threatening bacterial infections have been managed by antibiotics for years and have significantly improved the wellbeing and lifetime of humans. However, bacteria have always been one step ahead by inactivating the antimicrobial agent chemically or by producing certain enzymes. The alarming universal occurrence of multidrug-resistant (MDR) bacteria has compelled researchers to find alternative treatments for MDR infections. This is a menace where conventional chemotherapies are no longer promising, but several novel approaches could help. Our current review article discusses the novel approaches that can combat MDR bacteria: starting off with potential nanoparticles (NPs) that efficiently interact with microorganisms causing fatal changes in the morphology and structure of these cells; nanophotothermal therapy using inorganic NPs like AuNPs to destroy pathogenic bacterial cells; bacteriophage therapy against which bacteria develop less resistance; combination drugs that act on dissimilar targets in distinctive pathways; probiotics therapy by the secretion of antibacterial chemicals; blockage of quorum sensing signals stopping bacterial colonization, and vaccination against resistant bacterial strains along with virulence factors. All these techniques show us a promising future in the fight against MDR bacteria, which remains the greatest challenge in public health care.
Collapse
Affiliation(s)
- Abid Ali Khan
- Center for Precision Medicine, Hochschule Furtwangen University, Jakob-Kienzle-Str. 17, 78054 Villingen-Schwenningen, Germany;
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan; (K.N.M.); (A.S.); (M.S.); (M.R.); (S.N.)
| | - Khanzadi Nazneen Manzoor
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan; (K.N.M.); (A.S.); (M.S.); (M.R.); (S.N.)
| | - Aamir Sultan
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan; (K.N.M.); (A.S.); (M.S.); (M.R.); (S.N.)
| | - Maria Saeed
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan; (K.N.M.); (A.S.); (M.S.); (M.R.); (S.N.)
| | - Mahrukh Rafique
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan; (K.N.M.); (A.S.); (M.S.); (M.R.); (S.N.)
| | - Sameen Noushad
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan; (K.N.M.); (A.S.); (M.S.); (M.R.); (S.N.)
| | - Ayesha Talib
- Mechano(bio)chem Department, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, Golm, 14476 Potsdam, Germany;
| | - Simone Rentschler
- Center for Precision Medicine, Hochschule Furtwangen University, Jakob-Kienzle-Str. 17, 78054 Villingen-Schwenningen, Germany;
| | - Hans-Peter Deigner
- Center for Precision Medicine, Hochschule Furtwangen University, Jakob-Kienzle-Str. 17, 78054 Villingen-Schwenningen, Germany;
- Max Planck Institute of Colloids and Interfaces, Leipzig, Schillingallee 68, 18057 Rostock, Germany
- Faculty of Science, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| |
Collapse
|
12
|
Alzahabi KH, Usmani O, Georgiou TK, Ryan MP, Robertson BD, Tetley TD, Porter AE. Approaches to treating tuberculosis by encapsulating metal ions and anti-mycobacterial drugs utilizing nano- and microparticle technologies. Emerg Top Life Sci 2020; 4:581-600. [PMID: 33315067 PMCID: PMC7752053 DOI: 10.1042/etls20190154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 01/19/2023]
Abstract
Tuberculosis (TB) is caused by a bacterial infection that affects a number of human organs, primarily the lungs, but also the liver, spleen, and spine, causing key symptoms of fever, fatigue, and persistent cough, and if not treated properly, can be fatal. Every year, 10 million individuals become ill with active TB resulting with a mortality approximating 1.5 million. Current treatment guidelines recommend oral administration of a combination of first-line anti-TB drugs for at least 6 months. While efficacious under optimum conditions, 'Directly Observed Therapy Short-course' (DOTS) is not without problems. The long treatment time and poor pharmacokinetics, alongside drug side effects lead to poor patient compliance and has accelerated the emergence of multi-drug resistant (MDR) organisms. All this, combined with the limited number of newly discovered TB drugs to treat MDR-TB and shorten standard therapy time, has highlighted the need for new targeted drug delivery systems. In this respect, there has been recent focus on micro- and nano-particle technologies to prepare organic or/and metal particles loaded with TB drugs to enhance their efficacy by targeted delivery via the inhaled route. In this review, we provide a brief overview of the current epidemiology of TB, and risk factors for progression of latent stage tuberculosis (LTBI) to the active TB. We identify current TB treatment regimens, newly discovered TB drugs, and identify studies that have used micro- or nano-particles technologies to design a reliable inhalation drug delivery system to treat TB more effectively.
Collapse
Affiliation(s)
- Khaled H Alzahabi
- National Heart and Lung Institute, Imperial College London, London, U.K
| | - Omar Usmani
- National Heart and Lung Institute, Imperial College London, London, U.K
| | - Theoni K Georgiou
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London, U.K
| | - Mary P Ryan
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London, U.K
| | - Brian D Robertson
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, U.K
| | - Teresa D Tetley
- National Heart and Lung Institute, Imperial College London, London, U.K
| | - Alexandra E Porter
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London, U.K
| |
Collapse
|
13
|
Choi SR, Switzer B, Britigan BE, Narayanasamy P. Gallium Porphyrin and Gallium Nitrate Synergistically Inhibit Mycobacterial Species by Targeting Different Aspects of Iron/Heme Metabolism. ACS Infect Dis 2020; 6:2582-2591. [PMID: 32845117 DOI: 10.1021/acsinfecdis.0c00113] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is an urgent need for new effective and safe antibiotics active against pathogenic mycobacterial species. Gallium (Ga) nitrate (Ga(NO3)3) and Ga porphyrin (GaPP) have each been shown to inhibit the growth of a variety of mycobacterial species. The Ga(III) ion derived from Ga(NO3)3 has the potential to disrupt the mycobacterial Fe(III) uptake mechanisms and utilization, including replacing iron (Fe) in the active site of enzymes, resulting in the disruption of function. Similarly, noniron metalloporphyrins such as heme mimetics, which can be transported across the bacterial membrane via heme-uptake pathways, would potentially block the acquisition of iron-containing heme and bind to heme-utilizing proteins, making them nonfunctional. Given that they likely act on different aspects of mycobacterial Fe metabolism, the efficacy of combining Ga(NO3)3 and GaPP was studied in vitro against Mycobacterium avium, Mycobacterium abscessus, and Mycobacterium tuberculosis (M. tb). The combination was then assessed in vivo in a murine pulmonary infection model of M. abscessus. We observed that Ga(NO3)3 in combination with GaPP exhibited synergistic inhibitory activity against the growth of M. avium, M. tb, and M. abscessus, being most active against M. abscessus. Activity assays indicated that Ga(NO3)3 and GaPP inhibited both catalase and aconitase at high concentrations. However, the combination showed a synergistic effect on the aconitase activity of M. abscessus. The Ga(NO3)3/GaPP combination via intranasal administration showed significant antimicrobial activity in mice infected with M. abscessus. M. abscessus CFU from the lungs of the Ga(NO3)3/GaPP-treated mice was significantly less compared to that of nontreated or single Ga(III)-treated mice. These findings suggest that combinations of different Ga(III) compounds can synergistically target multiple iron/heme-utilizing mycobacterial enzymes. The results support the potential of combination Ga therapy for development against mycobacterial pathogens.
Collapse
Affiliation(s)
| | | | - Bradley E. Britigan
- Department of Internal Medicine and Research Service, Veterans Affairs Medical Center−Nebraska Western Iowa, Omaha, Nebraska 68105, United States
| | | |
Collapse
|
14
|
Multi-functionalized nanocarriers targeting bacterial reservoirs to overcome challenges of multi drug-resistance. ACTA ACUST UNITED AC 2020; 28:319-332. [PMID: 32193748 DOI: 10.1007/s40199-020-00337-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Infectious diseases associated with intracellular bacteria such as Staphylococcus aureus, Salmonella typhimurium and Mycobacterium tuberculosis are important public health concern. Emergence of multi and extensively drug-resistant bacterial strains have made it even more obstinate to offset such infections. Bacteria residing within intracellular compartments provide additional barriers to effective treatment. METHOD Information provided in this review has been collected by accessing various electronic databases including Google scholar, Web of science, Scopus, and Nature index. Search was performed using keywords nanoparticles, intracellular targeting, multidrug resistance, Staphylococcus aureus; Salmonella typhimurium; Mycobacterium tuberculosis. Information gathered was categorized into three major sections as 'Intracellular targeting of Staphylococcus aureus, Intracellular targeting of Salmonella typhimurium and Intracellular targeting of Mycobacterium tuberculosis' using variety of nanocarrier systems. RESULTS Conventional management for infectious diseases typically comprises of long-term treatment with a combination of antibiotics, which may lead to side effects and decreased patient compliance. A wide range of multi-functionalized nanocarrier systems have been studied for delivery of drugs within cellular compartments where bacteria including Staphylococcus aureus, Salmonella typhimurium and Mycobacterium tuberculosis reside. Such carrier systems along with targeted delivery have been utilized for sustained and controlled delivery of drugs. These strategies have been found useful in overcoming the drawbacks of conventional treatments including multi-drug resistance. CONCLUSION Development of multi-functional nanocargoes encapsulating antibiotics that are proficient in targeting and releasing drug into infected reservoirs seems to be a promising strategy to circumvent the challenge of multidrug resistance. Graphical abstract.
Collapse
|
15
|
Nguyen CH, Field JA, Sierra-Alvarez R. Microbial toxicity of gallium- and indium-based oxide and arsenide nanoparticles. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 55:168-178. [PMID: 31607225 DOI: 10.1080/10934529.2019.1676065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
III-V semiconductor materials such as gallium arsenide (GaAs) and indium arsenide (InAs) are increasingly used in the fabrication of electronic devices. There is a growing concern about the potential release of these materials into the environment leading to effects on public and environmental health. The waste effluents from the chemical mechanical planarization process could impact microorganisms in biological wastewater treatment systems. Currently, there is only limited information about the inhibition of gallium- and indium-based nanoparticles (NPs) on microorganisms. This study evaluated the acute toxicity of GaAs, InAs, gallium oxide (Ga2O3), and indium oxide (In2O3) particulates using two microbial inhibition assays targeting methanogenic archaea and the marine bacterium, Aliivibrio fischeri. GaAs and InAs NPs were acutely toxic towards these microorganisms; Ga2O3 and In2O3 NPs were not. The toxic effect was mainly due to the release of soluble arsenic species and it increased with decreasing particle size and with increasing time due to the progressive corrosion of the NPs in the aqueous bioassay medium. Collectively, the results indicate that the toxicity exerted by the arsenide NPs under environmental conditions will vary depending on intrinsic properties of the material such as particle size as well as on the dissolution time and aqueous chemistry.
Collapse
Affiliation(s)
- Chi H Nguyen
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona, USA
| | - Jim A Field
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona, USA
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|