1
|
Herranz M, Buenestado-Serrano S, Martín-Escolano J, Molero-Salinas A, Alonso R, Catalán P, Muñoz P, García de Viedma D, Pérez-Lago L. Alternative molecular and genomic strategies to provide a rapid response to alerts concerning the introduction of new emerging SARS-CoV-2 variants: the Omicron alert. Microbiol Spectr 2023; 11:e0107523. [PMID: 37737624 PMCID: PMC10586716 DOI: 10.1128/spectrum.01075-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/16/2023] [Indexed: 09/23/2023] Open
Abstract
During the COVID-19 pandemic, several SARS-CoV-2 variants of concern (VOCs) of particular relevance emerged. Early detection of VOCs entering a country is essential to control spread. The alert triggered by the first suspected case of the Omicron variant in Spain in a traveler arriving from South Africa in November 2021 provided a unique opportunity to evaluate four different methodological strategies tailored to rapid identification of Omicron. The different approaches were designed to respond to the different technical resources available in different settings. First, we used melting probes in RT-PCR to determine the presence of four Omicron signatures (K417N, E484A, P681H, and absence of L452R): three probes showed deviations in temperature (Tm) values relative to the reference codons (E484K-15.8°C, P681H-5.2°C, and L452R-7.2°C) and one maintained the reference value (K417N). The deviation in Tm of P681H suggested the presence of the characteristic Omicron N679K mutation in the probe hybridization region; these data pointed to the presence of Omicron alleles. Second, the presence of 29 of the 33 characteristic single nucleotide polymorphisms (SNPs) in the Omicron variant S-gene was identified by Sanger sequencing of nine amplicons. The final two strategies involved identification of 47 of the 50 non-synonymous and indel mutations attributed to Omicron by rapid nanopore whole genome sequencing (WGS) and by Illumina WGS technology. These strategies enabled us to pre-assign the first Omicron case in Spain with high certainty 2 h after receipt of RNA and to confirm it genomically 3 h later, so that the Public Health authorities could be rapidly notified. IMPORTANCE The study presents different experimental alternatives to identify new variants of concern (VOCs) of SARS-CoV-2 entering a certain population. Early detection of a new VOC is crucial for surveillance and control of spread. The objective is to provide laboratories with tools adapted to their resource capabilities that offer a sufficient level of resolution to rule out, confirm, or pre-assign the presence of a suspected VOC. The study describes four different techniques that were applied simultaneously to the first suspected Omicron case in Spain, highlighting the level of resolution and response time achieved in each case. These techniques are based on the detection of mutations in the S-gene of the virus that can easily adapt to potential emerging variants. The results of the study allow any laboratory to prepare for new alerts of SARS-CoV-2 VOCs.
Collapse
Affiliation(s)
- Marta Herranz
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Sergio Buenestado-Serrano
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Escuela de Doctorado, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Javier Martín-Escolano
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Andrea Molero-Salinas
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Roberto Alonso
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Pilar Catalán
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Patricia Muñoz
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Departamento de Medicina, Universidad Complutense, Madrid, Spain
| | - Darío García de Viedma
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Laura Pérez-Lago
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Gregorio Marañón Microbiology-ID COVID 19 Study Group
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| |
Collapse
|
2
|
Rodríguez-Grande C, Alcalá L, Estévez A, Sola-Campoy PJ, Buenestado-Serrano S, Martínez-Laperche C, Manuel de la Cueva V, Alonso R, Andrés-Zayas C, Adán-Jiménez J, Losada C, Rico-Luna C, Comas I, González-Candelas F, Catalán P, Muñoz P, Pérez-Lago L, García de Viedma D. Systematic Genomic and Clinical Analysis of Severe Acute Respiratory Syndrome Coronavirus 2 Reinfections and Recurrences Involving the Same Strain. Emerg Infect Dis 2022; 28:85-94. [PMID: 34843661 PMCID: PMC8714233 DOI: 10.3201/eid2801.211952] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Estimates of the burden of severe acute respiratory syndrome coronavirus 2 reinfections are limited by the scarcity of population-level studies incorporating genomic support. We conducted a systematic study of reinfections in Madrid, Spain, supported by genomic viral analysis and host genetic analysis, to cleanse laboratory errors and to discriminate between reinfections and recurrences involving the same strain. Among the 41,195 cases diagnosed (March 2020-March 2021), 93 (0.23%) had 2 positive reverse transcription PCR tests (55-346 days apart). After eliminating cases with specimens not stored, of suboptimal sequence quality, or belonging to different persons, we obtained valid data from 22 cases. Of those, 4 (0.01%) cases were recurrences involving the same strain; case-patients were 39-93 years of age, and 3 were immunosuppressed. Eighteen (0.04%) cases were reinfections; patients were 19-84 years of age, and most had no relevant clinical history. The second episode was more severe in 8 cases.
Collapse
|
3
|
Abrokwa SK, Müller SA, Méndez-Brito A, Hanefeld J, El Bcheraoui C. Recurrent SARS-CoV-2 infections and their potential risk to public health - a systematic review. PLoS One 2021; 16:e0261221. [PMID: 34882750 PMCID: PMC8659325 DOI: 10.1371/journal.pone.0261221] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To inform quarantine and contact-tracing policies concerning re-positive cases-cases testing positive among those recovered. MATERIALS AND METHODS We systematically reviewed and appraised relevant literature from PubMed and Embase for the extent of re-positive cases and their epidemiological characteristics. RESULTS In 90 case reports/series, a total of 276 re-positive cases were found. Among confirmed reinfections, 50% occurred within 90 days from recovery. Four reports related onward transmission. In thirty-five observational studies, rate of re-positives ranged from zero to 50% with no onward transmissions reported. In eight reviews, pooled recurrence rate ranged from 12% to 17.7%. Probability of re-positive increased with several factors. CONCLUSION Recurrence of a positive SARS-CoV-2 test is commonly reported within the first weeks following recovery from a first infection.
Collapse
Affiliation(s)
- Seth Kofi Abrokwa
- Evidence- based Public Health, Centre for International Health Protection, Robert Koch Institute, Berlin, Germany
| | - Sophie Alice Müller
- Centre for International Health Protection, Robert Koch Institute, Berlin, Germany
| | - Alba Méndez-Brito
- Evidence- based Public Health, Centre for International Health Protection, Robert Koch Institute, Berlin, Germany
| | - Johanna Hanefeld
- Centre for International Health Protection, Robert Koch Institute, Berlin, Germany
| | - Charbel El Bcheraoui
- Evidence- based Public Health, Centre for International Health Protection, Robert Koch Institute, Berlin, Germany
| |
Collapse
|