1
|
Matsumoto Y, Kurakado S, Yamada T, Sugita T. Strategy to Identify Virulence-Related Genes of the Pathogenic Fungus Trichosporon asahii Using an Efficient Gene-Targeting System. Microbiol Immunol 2024. [PMID: 39660720 DOI: 10.1111/1348-0421.13192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Trichosporon asahii is a pathogenic fungus that causes severe deep-seated mycosis in immunocompromised patients with neutropenia. Understanding the molecular mechanisms of T. asahii infection will facilitate the development of new therapeutic and preventive strategies. Two main obstacles have prevented the identification of virulence-related genes in T. asahii using molecular genetic techniques: the lack of experimental animal infection models for easy evaluation of T. asahii virulence and the lack of genetic recombination technology for T. asahii. To address these issues, we developed a silkworm infection model to quantitatively evaluate T. asahii virulence and a genetic recombination method to generate gene-deficient T. asahii mutants, enabling the identification of virulence factors of T. asahii. In this review, we propose a strategy for identifying virulence-related factors in T. asahii using a silkworm infection model and an efficient gene-targeting system.
Collapse
Affiliation(s)
- Yasuhiko Matsumoto
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Sanae Kurakado
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Tsuyoshi Yamada
- Teikyo University Institute of Medical Mycology, Teikyo University, Hachioji, Tokyo, Japan
- Asia International Institute of Infectious Disease Control, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| |
Collapse
|
2
|
Pinsky M, Kornitzer D. Genetic Analysis of Candida albicans Filamentation by the Iron Chelator BPS Reveals a Role for a Conserved Kinase-WD40 Protein Pair. J Fungi (Basel) 2024; 10:83. [PMID: 38276029 PMCID: PMC10820326 DOI: 10.3390/jof10010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Candida albicans is a major human pathogenic fungus that is distinguished by its capability to switch from a yeast to a hyphal morphology under different conditions. Here, we analyze the cellular effects of high concentrations of the iron chelator bathophenanthroline disulfonate (BPS). BPS inhibits cellular growth by withholding iron, but when iron chelation is overcome by the addition of hemoglobin as an iron source, the cells resume growth as hyphae. The BPS hyphal induction pathway was characterized by identifying the hyphal-specific transcription factors that it requires and by a forward genetic screen for mutants that fail to form hyphae in BPS using a transposon library generated in a haploid strain. Among the mutants identified are the DYRK1-like kinase Yak1 and Orf19.384, a homolog of the DYRK1-associated protein WDR68/DCAF7. Orf19.384 nuclear localization depends on Yak1, similar to their mammalian counterparts. We identified the hyphal suppressor transcription factor Sfl1 as a candidate target of Yak1-Orf19.384 and show that Sfl1 modification is similarly affected in the yak1 and orf19.384 mutant strains. These results suggest that DYRK1/Yak1 and WDR68/Orf19.384 represent a conserved protein pair that regulates cell differentiation from fungi to animals.
Collapse
Affiliation(s)
| | - Daniel Kornitzer
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion—I.I.T., Haifa 31096, Israel;
| |
Collapse
|
3
|
Lim SJ, Muhd Noor ND, Sabri S, Mohamad Ali MS, Salleh AB, Oslan SN. Bibliometric analysis and thematic review of Candida pathogenesis: Fundamental omics to applications as potential antifungal drugs and vaccines. Med Mycol 2024; 62:myad126. [PMID: 38061839 DOI: 10.1093/mmy/myad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 01/11/2024] Open
Abstract
Invasive candidiasis caused by the pathogenic Candida yeast species has resulted in elevating global mortality. The pathogenicity of Candida spp. is not only originated from its primary invasive yeast-to-hyphal transition; virulence factors (transcription factors, adhesins, invasins, and enzymes), biofilm, antifungal drug resistance, stress tolerance, and metabolic adaptation have also contributed to a greater clinical burden. However, the current research theme in fungal pathogenicity could hardly be delineated with the increasing research output. Therefore, our study analysed the research trends in Candida pathogenesis over the past 37 years via a bibliometric approach against the Scopus and Web of Science databases. Based on the 3993 unique documents retrieved, significant international collaborations among researchers were observed, especially between Germany (Bernhard Hube) and the UK (Julian Naglik), whose focuses are on Candida proteinases, adhesins, and candidalysin. The prominent researchers (Neils Gow, Alistair Brown, and Frank Odds) at the University of Exeter and the University of Aberdeen (second top performing affiliation) UK contribute significantly to the mechanisms of Candida adaptation, tolerance, and stress response. However, the science mapping of co-citation analysis performed herein could not identify a hub representative of subsequent work since the clusters were semi-redundant. The co-word analysis that was otherwise adopted, revealed three research clusters; the cluster-based thematic analyses indicated the severeness of Candida biofilm and antifungal resistance as well as the elevating trend on molecular mechanism elucidation for drug screening and repurposing. Importantly, the in vivo pathogen adaptation and interactions with hosts are crucial for potential vaccine development.
Collapse
Affiliation(s)
- Si Jie Lim
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Matsumoto Y, Sugiyama Y, Nagamachi T, Yoshikawa A, Sugita T. Hog1-mediated stress tolerance in the pathogenic fungus Trichosporon asahii. Sci Rep 2023; 13:13539. [PMID: 37598230 PMCID: PMC10439922 DOI: 10.1038/s41598-023-40825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/17/2023] [Indexed: 08/21/2023] Open
Abstract
Trichosporon asahii is an opportunistic pathogenic fungus that causes severe and sometimes fatal infections in immunocompromised patients. Hog1, a mitogen-activated protein kinase, regulates the stress resistance of some pathogenic fungi, however its role in T. asahii has not been investigated. Here, we demonstrated that the hog1 gene-deficient T. asahii mutant is sensitive to high temperature, cell membrane stress, oxidative stress, and antifungal drugs. Growth of the hog1 gene-deficient T. asahii mutant was delayed at 40 °C. The hog1 gene-deficient T. asahii mutant also exhibited sensitivity to sodium dodecyl sulfate, hydrogen peroxide, menadione, methyl methanesulfonate, UV exposure, and antifungal drugs such as amphotericin B under a glucose-rich condition. Under a glucose-restricted condition, the hog1 gene-deficient mutant exhibited sensitivity to NaCl and KCl. The virulence of the hog1 gene-deficient mutant against silkworms was attenuated. Moreover, the viability of the hog1 gene-deficient mutant decreased in the silkworm hemolymph. These phenotypes were restored by re-introducing the hog1 gene into the gene-deficient mutant. Our findings suggest that Hog1 plays a critical role in regulating cellular stress responses in T. asahii.
Collapse
Affiliation(s)
- Yasuhiko Matsumoto
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan.
| | - Yu Sugiyama
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Tae Nagamachi
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Asami Yoshikawa
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan
| |
Collapse
|
5
|
Li CX, Liu L, Zhang T, Luo XM, Feng JX, Zhao S. Three-Dimensional Genome Map of the Filamentous Fungus Penicillium oxalicum. Microbiol Spectr 2022; 10:e0212121. [PMID: 35499317 PMCID: PMC9241887 DOI: 10.1128/spectrum.02121-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/31/2022] [Indexed: 01/14/2023] Open
Abstract
Higher-order spatial organization of the chromatin in the nucleus plays crucial roles in the maintenance of cell functions and the regulation of gene expression. Three-dimensional (3D) genome sequencing has been used to great effect in mammal and plants, but the availability of 3D genomes of filamentous fungi is severely limited. Here, we performed a chromosome-level genome assembly of Penicillium oxalicum through single-molecule real-time sequencing (Pacific Biosciences) and chromatin interaction mapping (Hi-C), with a scaffold N50 of 4.07 Mb and a contig N50 of 3.81 Mb, and further elucidated the 3D genome architecture of P. oxalicum. High-frequency interchromosomal contacts occurred within the centromeres and telomeres, as well as within individual chromosomes. There were 12,203 cis-interactions and 7,884 trans-interactions detected at a resolution of 1 kb. Moreover, a total of 1,099 topologically associated domains (or globules) were found, ranging in size from 2.0 to 76.0 kb. Interestingly, transcription factor-bound motifs were enriched in the globule boundaries. All the cellulase and xylanase genes were discretely distributed in the 3D model of the P. oxalicum genome as a result of few cis- and trans-interactions. Our results from this study provide a global view of chromatin interactions in the P. oxalicum genome and will act as a resource for studying spatial regulation of gene expression in filamentous fungi. IMPORTANCE The spatial structure of chromatin plays important roles in normal cell functions and the regulation of gene expression. The three-dimensional (3D) architectures of the genomes of many mammals and plants have been elucidated, but corresponding studies on filamentous fungi, which play vital roles as decomposers of organic matter in the soil, are very limited. Penicillium oxalicum is one of the predominant cellulolytic aerobic fungi in subtropical and tropical forest soils and can secrete integrative cellulase and xylanase under integrated regulatory control, degrading plant biomass highly efficiently. In the present study, we employed Hi-C technology to construct the 3D genome model of P. oxalicum strain HP7-1 and to further investigate cellulase and xylanase as well as transcription factor genes in 3D genome. These results provide a resource to achieve a deeper understanding of cell function and the regulation of gene expression in filamentous fungi.
Collapse
Affiliation(s)
- Cheng-Xi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
- Anhui Key Laboratory of Infection and Immunity, Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui, China
| | - Lin Liu
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan, Hubei, China
| | - Ting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
6
|
Das S, Goswami AM, Saha T. An insight into the role of protein kinases as virulent factors, regulating pathogenic attributes in Candida albicans. Microb Pathog 2022; 164:105418. [DOI: 10.1016/j.micpath.2022.105418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/26/2022]
|
7
|
Yaakoub H, Sanchez NS, Ongay-Larios L, Courdavault V, Calenda A, Bouchara JP, Coria R, Papon N. The high osmolarity glycerol (HOG) pathway in fungi †. Crit Rev Microbiol 2021; 48:657-695. [PMID: 34893006 DOI: 10.1080/1040841x.2021.2011834] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While fungi are widely occupying nature, many species are responsible for devastating mycosis in humans. Such niche diversity explains how quick fungal adaptation is necessary to endow the capacity of withstanding fluctuating environments and to cope with host-imposed conditions. Among all the molecular mechanisms evolved by fungi, the most studied one is the activation of the phosphorelay signalling pathways, of which the high osmolarity glycerol (HOG) pathway constitutes one of the key molecular apparatus underpinning fungal adaptation and virulence. In this review, we summarize the seminal knowledge of the HOG pathway with its more recent developments. We specifically described the HOG-mediated stress adaptation, with a particular focus on osmotic and oxidative stress, and point out some lags in our understanding of its involvement in the virulence of pathogenic species including, the medically important fungi Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus, compared to the model yeast Saccharomyces cerevisiae. Finally, we also highlighted some possible applications of the HOG pathway modifications to improve the fungal-based production of natural products in the industry.
Collapse
Affiliation(s)
- Hajar Yaakoub
- Univ Angers, Univ Brest, GEIHP, SFR ICAT, Angers, France
| | - Norma Silvia Sanchez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Laura Ongay-Larios
- Unidad de Biología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Vincent Courdavault
- EA2106 "Biomolécules et Biotechnologies Végétales", Université de Tours, Tours, France
| | | | | | - Roberto Coria
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Nicolas Papon
- Univ Angers, Univ Brest, GEIHP, SFR ICAT, Angers, France
| |
Collapse
|
8
|
Germination of a Field: Women in Candida albicans Research. CURRENT CLINICAL MICROBIOLOGY REPORTS 2021. [DOI: 10.1007/s40588-021-00169-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Farnesol and Tyrosol: Secondary Metabolites with a Crucial quorum-sensing Role in Candida Biofilm Development. Genes (Basel) 2020; 11:genes11040444. [PMID: 32325685 PMCID: PMC7231263 DOI: 10.3390/genes11040444] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 02/08/2023] Open
Abstract
When living in biological and interactive communities, microorganisms use quorum-sensing mechanisms for their communication. According to cell density, bacteria and fungi can produce signaling molecules (e.g., secondary metabolites), which participate, for example, in the regulation of gene expression and coordination of collective behavior in their natural niche. The existence of these secondary metabolites plays a main role in competence, colonization of host tissues and surfaces, morphogenesis, and biofilm development. Therefore, for the design of new antibacterials or antifungals and understanding on how these mechanisms occur, to inhibit the secretion of quorum-sensing (e.g., farnesol and tyrosol) molecules leading the progress of microbial infections seems to be an interesting option. In yeasts, farnesol has a main role in the morphological transition, inhibiting hyphae production in a concentration-dependent manner, while tyrosol has a contrary function, stimulating transition from spherical cells to germ tube form. It is beyond doubt that secretion of both molecules by fungi has not been fully described, but specific meaning for their existence has been found. This brief review summarizes the important function of these two compounds as signaling chemicals participating mainly in Candida morphogenesis and regulatory mechanisms.
Collapse
|