1
|
Zhou W, Li Y, Wu Y, Hu W, Li W, Deng A, Han Y, Zhu G, Yang Z. Temperate bacteriophage SapYZUs7 alters Staphylococcus aureus fitness balance by regulating expression of phage resistance, virulence and antimicrobial resistance gene. Microbiol Res 2024; 292:128040. [PMID: 39733717 DOI: 10.1016/j.micres.2024.128040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/04/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Temperate bacteriophages are crucial for maintaining the pathogenicity and fitness of S. aureus, which also show promise as a biocontrol agent for S. aureus. However, the fitness benefit and cost of lysogeny by S. aureus temperate phages and their underlying mechanisms remain unexplored. In this study, phage resistance, virulence, antimicrobial resistance (AMR), transcriptome, and metabolome of phage SapYZUs7 lysogenic and non-lysogenic S. aureus strains were compared. Whole-genome analysis revealed that SapYZUs7 harbouring smaII associated with a single-protein MazF-like antiphage system could be integrated into the genome of S. aureus isolates. Notably, lysogenic S. aureus exhibited higher phage resistance, a lower growth rate, and inhibited metabolic activity compared to the parental strains, indicating interference of phage reproduction by smaII. Moreover, prophages carrying smaII are widely distributed across S. aureus and harboured other virulence factor (VF) and AMR genes. Besides, the SapYZUs7-integration increased phagocytosis resistance but decreased adhesion, biofilm formation, and AMR. The combined use of SapYZUs7 and antibiotics exhibited a better bactericidal effect than SapYZUs7 or the antibiotics alone. Consistently, integrated omics analysis suggested that SapYZUs7-lysogeny downregulated multiple VF and AMR genes. Our analysis suggests that SmaII drives mutualistic phage-host interactions through lysogenic conversion. The fitness cost of SapYZUs7-integration is the downregulated expression of VF and AMR genes, serving as an alternative candidate as a biocontrol agent for methicillin-resistant S. aureus and multidrug-resistant S. aureus.
Collapse
Affiliation(s)
- Wenyuan Zhou
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yajie Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yuhong Wu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Weicheng Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Wenjuan Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Aiping Deng
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yeling Han
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| |
Collapse
|
2
|
Ku H, Kelk D, Bauer DC, Sidhu JPS. Plasmid hybrids as vectors for antibiotic resistance in environmental Escherichia coli. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 959:178157. [PMID: 39729844 DOI: 10.1016/j.scitotenv.2024.178157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/28/2024] [Accepted: 12/15/2024] [Indexed: 12/29/2024]
Abstract
This study investigated the potential role of phages in the dissemination of antimicrobial resistance genes (ARGs) and virulence factor genes (VFGs) in Escherichia coli (E. coli). A comprehensive in silico analysis of 18,410 phage sequences retrieved from the National Center for Biotechnology Information database (NCBI) revealed distinct carriage patterns for ARGs and VFGs between lytic, temperate, and chronic phage types. Notably, 57 temperate phages carried ARGs, particularly associated with multidrug and aminoglycoside resistance. Temperate phages (8.97 %, 635/7081) and chronic phages (8.09 %, 14/173) exhibited a significantly higher prevalence of VFGs (Chi-Square, p ≤ 0.05), particularly associated with exotoxin-related genes, compared to lytic phages (0.05 %, 6/11,156). This underscores the role phages play as reservoirs and potential vectors for the dissemination of ARGs and VFGs in bacteria. Our environmental E. coli isolates (n = 60) were found to carry 179 intact prophages containing polymyxin, macrolide, tetracycline, and multidrug resistance genes as well as various VFGs. This study documents the presence of phage-plasmids (P-Ps) in environmental E. coli isolates, offering new insights into horizontal gene transfer (HGT) mechanisms. Notably, the blaCTX-M-15 gene, associated with beta-lactam resistance, was identified in two P-Ps, suggesting a potentially novel route for the dissemination of beta-lactam resistance. The diverse replicon types observed in P-Ps suggest a broader integration capacity compared to traditional plasmids, potentially enabling the blaCTX-M-15 gene dissemination across diverse bacterial species. This study provides valuable insights into the multifaceted role of phages in shaping the antimicrobial resistance landscape. Further research is necessary to fully understand the intricate mechanisms underlying phage-mediated ARG and VFG dissemination.
Collapse
Affiliation(s)
- H Ku
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - D Kelk
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - D C Bauer
- CSIRO Health & Biosecurity, Waite Campus, Waite Road, Urrbrae, SA 5064, Australia
| | - J P S Sidhu
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| |
Collapse
|
3
|
Zhang L, Xu Q, Tan FC, Deng Y, Hakki M, Shelburne SA, Kirienko NV. Role of R5 Pyocin in the Predominance of High-Risk Pseudomonas aeruginosa Isolates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.616987. [PMID: 39416193 PMCID: PMC11483031 DOI: 10.1101/2024.10.07.616987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Infections with antimicrobial resistant pathogens, such as Pseudomonas aeruginosa, are a frequent occurrence in healthcare settings. Human P. aeruginosa infections are predominantly caused by a small number of sequence types (ST), such as ST235, ST111, and ST175. Although ST111 is recognized as one of the most prevalent high-risk P. aeruginosa clones worldwide and frequently exhibits multidrug-resistant or extensively drug-resistant phenotypes, the basis for this dominance remains unclear. In this study, we used a genome-wide transposon insertion library screen to discover that the competitive advantage of ST111 strains over certain non-ST111 strains is through production of R pyocins. We confirmed this finding by showing that competitive dominance was lost by ST111 mutants with R pyocin gene deletions. Further investigation showed that sensitivity to ST111 R pyocin (specifically R5 pyocin) is caused by deficiency in the O-antigen ligase waaL, which leaves lipopolysaccharide (LPS) bereft of O antigen, enabling pyocins to bind the LPS core. In contrast, sensitivity of waaL mutants to R1 or R2 pyocins depended on additional genomic changes. In addition, we found the PA14 mutants in lipopolysaccharide biosynthesis (waaL, wbpL, wbpM) that cause high susceptibility to R pyocins also exhibit poor swimming motility. Analysis of 5,135 typed P. aeruginosa strains revealed that several international, high-risk sequence types (including ST235, ST111, and ST175) are enriched for R5 pyocin production, indicating a correlation between these phenotypes and suggesting a novel approach for evaluating risk from emerging prevalent P. aeruginosa strains. Overall, our study sheds light on the mechanisms underlying the dominance of ST111 strains and highlighting the role of waaL in extending spectrum of R pyocin susceptibility.
Collapse
Affiliation(s)
- Liyang Zhang
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Qi Xu
- Department of BioSciences, Rice University, Houston, TX, United States
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Filemon C Tan
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Yanhan Deng
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Morgan Hakki
- Division of Infectious Diseases, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Samuel A. Shelburne
- Departments of Infectious Diseases and Genomic Medicine, MD Anderson Cancer Center, Houston TX
| | | |
Collapse
|
4
|
Vladimirova ME, Roumiantseva ML, Saksaganskaia AS, Muntyan VS, Gaponov SP, Mengoni A. Hot Spots of Site-Specific Integration into the Sinorhizobium meliloti Chromosome. Int J Mol Sci 2024; 25:10421. [PMID: 39408745 PMCID: PMC11476347 DOI: 10.3390/ijms251910421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
The diversity of phage-related sequences (PRSs) and their site-specific integration into the genomes of nonpathogenic, agriculturally valuable, nitrogen-fixing root nodule bacteria, such as Sinorhizobium meliloti, were evaluated in this study. A total of 314 PRSs, ranging in size from 3.24 kb to 88.98 kb, were identified in the genomes of 27 S. meliloti strains. The amount of genetic information foreign to S. meliloti accumulated in all identified PRSs was 6.30 Mb. However, more than 53% of this information was contained in prophages (Phs) and genomic islands (GIs) integrated into genes encoding tRNAs (tRNA genes) located on the chromosomes of the rhizobial strains studied. It was found that phiLM21-like Phs were predominantly abundant in the genomes of S. meliloti strains of distant geographical origin, whereas RR1-A- and 16-3-like Phs were much less common. In addition, GIs predominantly contained fragments of phages infecting bacteria of distant taxa, while rhizobiophage-like sequences were unique. A site-specific integration analysis revealed that not all tRNA genes in S. meliloti are integration sites, but among those in which integration occurred, there were "hot spots" of integration into which either Phs or GIs were predominantly inserted. For the first time, it is shown that at these integration "hot spots", not only is the homology of attP and attB strictly preserved, but integrases in PRSs similar to those of phages infecting the Proteobacteria genera Azospirillum or Pseudomonas are also present. The data presented greatly expand the understanding of the fate of phage-related sequences in host bacterial genomes and also raise new questions about the role of phages in bacterial-phage coevolution.
Collapse
Affiliation(s)
- Maria E. Vladimirova
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia; (M.E.V.); (A.S.S.); (V.S.M.)
| | - Marina L. Roumiantseva
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia; (M.E.V.); (A.S.S.); (V.S.M.)
| | - Alla S. Saksaganskaia
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia; (M.E.V.); (A.S.S.); (V.S.M.)
| | - Victoria S. Muntyan
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia; (M.E.V.); (A.S.S.); (V.S.M.)
| | | | - Alessio Mengoni
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
5
|
Simão FA, Almeida MM, Rosa HS, Marques EA, Leão RS. Genetic determinants of antimicrobial resistance in polymyxin B resistant Pseudomonas aeruginosa isolated from airways of patients with cystic fibrosis. Braz J Microbiol 2024; 55:1415-1425. [PMID: 38619733 PMCID: PMC11153443 DOI: 10.1007/s42770-024-01311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/21/2024] [Indexed: 04/16/2024] Open
Abstract
Pseudomonas aeruginosa is the main pathogen associated with pulmonary exacerbation in patients with cystic fibrosis (CF). CF is a multisystemic genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator gene, which mainly affects pulmonary function. P. aeruginosa isolated from individuals with CF in Brazil is not commonly associated with multidrug resistance (MDR), especially when compared to global occurrence, where the presence of epidemic clones, capable of expressing resistance to several drugs, is often reported. Due to the recent observations of MDR isolates of P. aeruginosa in our centers, combined with these characteristics, whole-genome sequencing was employed for analyses related to antimicrobial resistance, plasmid identification, search for phages, and characterization of CF clones. All isolates in this study were polymyxin B resistant, exhibiting diverse mutations and reduced susceptibility to carbapenems. Alterations in mexZ can result in the overexpression of the MexXY efflux pump. Mutations in oprD, pmrB, parS, gyrA and parC may confer reduced susceptibility to antimicrobials by affecting permeability, as observed in phenotypic tests. The phage findings led to the assumption of horizontal genetic transfer, implicating dissemination between P. aeruginosa isolates. New sequence types were described, and none of the isolates showed an association with epidemic CF clones. Analysis of the genetic context of P. aeruginosa resistance to polymyxin B allowed us to understand the different mechanisms of resistance to antimicrobials, in addition to subsidizing the understanding of possible relationships with epidemic strains that circulate among individuals with CF observed in other countries.
Collapse
Affiliation(s)
- Felipe A Simão
- Laboratório de Microbiologia da Fibrose Cística, Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mila M Almeida
- Laboratório de Microbiologia da Fibrose Cística, Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heloísa S Rosa
- Laboratório de Microbiologia da Fibrose Cística, Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elizabeth A Marques
- Laboratório de Microbiologia da Fibrose Cística, Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson S Leão
- Laboratório de Microbiologia da Fibrose Cística, Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Yu X, Cheng L, Yi X, Li B, Li X, Liu X, Liu Z, Kong X. Gut phageome: challenges in research and impact on human microbiota. Front Microbiol 2024; 15:1379382. [PMID: 38585689 PMCID: PMC10995246 DOI: 10.3389/fmicb.2024.1379382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
The human gut microbiome plays a critical role in maintaining our health. Fluctuations in the diversity and structure of the gut microbiota have been implicated in the pathogenesis of several metabolic and inflammatory conditions. Dietary patterns, medication, smoking, alcohol consumption, and physical activity can all influence the abundance of different types of microbiota in the gut, which in turn can affect the health of individuals. Intestinal phages are an essential component of the gut microbiome, but most studies predominantly focus on the structure and dynamics of gut bacteria while neglecting the role of phages in shaping the gut microbiome. As bacteria-killing viruses, the distribution of bacteriophages in the intestine, their role in influencing the intestinal microbiota, and their mechanisms of action remain elusive. Herein, we present an overview of the current knowledge of gut phages, their lifestyles, identification, and potential impact on the gut microbiota.
Collapse
Affiliation(s)
- Xiao Yu
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Li Cheng
- Department of Clinical Laboratory and Pathology, Hospital of Shanxi People’s Armed Police, Taiyuan, China
| | - Xin Yi
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Bing Li
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xueqin Li
- Department of Pulmonary and Critical Care Medicine, The General Hospital of Jincheng Coal Industry Group, Jincheng, China
| | - Xiang Liu
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhihong Liu
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaomei Kong
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
7
|
Ni Y, Chu T, Yan S, Wang Y. Forty-nine metagenomic-assembled genomes from an aquatic virome expand Caudoviricetes by 45 potential new families and the newly uncovered Gossevirus of Bamfordvirae. J Gen Virol 2024; 105. [PMID: 38446011 DOI: 10.1099/jgv.0.001967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Twenty complete genomes (29-63 kb) and 29 genomes with an estimated completeness of over 90 % (30-90 kb) were identified for novel dsDNA viruses in the Yangshan Harbor metavirome. These newly discovered viruses contribute to the expansion of viral taxonomy by introducing 46 potential new families. Except for one virus, all others belong to the class Caudoviricetes. The exception is a novel member of the recently characterized viral group known as Gossevirus. Fifteen viruses were predicted to be temperate. The predicted hosts for the viruses appear to be involved in various aspects of the nitrogen cycle, including nitrogen fixation, oxidation and denitrification. Two viruses were identified to have a host of Flavobacterium and Tepidimonas fonticaldi, respectively, by matching CRISPR spacers with viral protospacers. Our findings provide an overview for characterizing and identifying specific viruses from Yangshan Harbor. The Gossevirus-like virus uncovered emphasizes the need for further comprehensive isolation and investigation of polinton-like viruses.
Collapse
Affiliation(s)
- Yimin Ni
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, PR China
| | - Ting Chu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, PR China
| | - Shuling Yan
- Entwicklungsgenetik und Zellbiologie der Tiere, Philipps-Universität Marburg, Marburg, Germany
| | - Yongjie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, PR China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, PR China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai, PR China
| |
Collapse
|
8
|
Böhning J, Tarafder AK, Bharat TA. The role of filamentous matrix molecules in shaping the architecture and emergent properties of bacterial biofilms. Biochem J 2024; 481:245-263. [PMID: 38358118 PMCID: PMC10903470 DOI: 10.1042/bcj20210301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Numerous bacteria naturally occur within spatially organised, multicellular communities called biofilms. Moreover, most bacterial infections proceed with biofilm formation, posing major challenges to human health. Within biofilms, bacterial cells are embedded in a primarily self-produced extracellular matrix, which is a defining feature of all biofilms. The biofilm matrix is a complex, viscous mixture primarily composed of polymeric substances such as polysaccharides, filamentous protein fibres, and extracellular DNA. The structured arrangement of the matrix bestows bacteria with beneficial emergent properties that are not displayed by planktonic cells, conferring protection against physical and chemical stresses, including antibiotic treatment. However, a lack of multi-scale information at the molecular level has prevented a better understanding of this matrix and its properties. Here, we review recent progress on the molecular characterisation of filamentous biofilm matrix components and their three-dimensional spatial organisation within biofilms.
Collapse
Affiliation(s)
- Jan Böhning
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Abul K. Tarafder
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Tanmay A.M. Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| |
Collapse
|
9
|
Dai J, Luo W, Hu F, Li S. In vitro inhibition of Pseudomonas aeruginosa PAO1 biofilm formation by DZ2002 through regulation of extracellular DNA and alginate production. Front Cell Infect Microbiol 2024; 13:1333773. [PMID: 38268790 PMCID: PMC10806038 DOI: 10.3389/fcimb.2023.1333773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction Pseudomonas aeruginosa (P. aeruginosa) is a common pathogen associated with biofilm infections, which can lead to persistent infections. Therefore, there is an urgent need to develop new anti-biofilm drugs. DZ2002 is a reversible inhibitor that targets S-adenosylhomocysteine hydrolase and possesses anti-inflammatory and immune-regulatory activities. However, its anti-biofilm activity has not been reported yet. Methods and results Therefore, we investigated the effect of DZ2002 on P. aeruginosa PAO1 biofilm formation by crystal violet staining (CV), real-time quantitative polymerase chain reaction (RT-qPCR) and confocal laser scanning microscopy (CLSM). The results indicated that although DZ2002 didn't affect the growth of planktonic PAO1, it could significantly inhibit the formation of mature biofilms. During the inhibition of biofilm formation by DZ2002, there was a parallel decrease in the synthesis of alginate and the expression level of alginate genes, along with a weakening of swarming motility. However, these results were unrelated to the expression of lasI, lasR, rhII, rhIR. Additionally, we also found that after treatment with DZ2002, the biofilms and extracellular DNA content of PAO1 were significantly reduced. Molecular docking results further confirmed that DZ2002 had a strong binding affinity with the active site of S-adenosylhomocysteine hydrolase (SahH) of PAO1. Discussion In summary, our results indicated that DZ2002 may interact with SahH in PAO1, inhibiting the formation of mature biofilms by downregulating alginate synthesis, extracellular DNA production and swarming motility. These findings demonstrate the potential value of DZ2002 in treating biofilm infections associated with P. aeruginosa.
Collapse
Affiliation(s)
- Jiaze Dai
- Medical Laboratory Center, Affiliated Hospital of Guangdong Medical University, Zhan Jiang, Guang Dong, China
| | - Wenying Luo
- Medical Laboratory Center, Affiliated Hospital of Guangdong Medical University, Zhan Jiang, Guang Dong, China
| | - Fei Hu
- Medical Laboratory Center, Affiliated Hospital of Guangdong Medical University, Zhan Jiang, Guang Dong, China
| | - Si Li
- General Medicine, Clinical Medicine, Kangda College of Nanjing Medical University, LianYun Gang, Jiang Su, China
| |
Collapse
|
10
|
Steensen K, Séneca J, Bartlau N, Yu XA, Hussain FA, Polz MF. Tailless and filamentous prophages are predominant in marine Vibrio. THE ISME JOURNAL 2024; 18:wrae202. [PMID: 39423289 PMCID: PMC11630473 DOI: 10.1093/ismejo/wrae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Although tailed bacteriophages (phages) of the class Caudoviricetes are thought to constitute the most abundant and ecologically relevant group of phages that can integrate their genome into the host chromosome, it is becoming increasingly clear that other prophages are widespread. Here, we show that prophages derived from filamentous and tailless phages with genome sizes below 16 kb make up the majority of prophages in marine bacteria of the genus Vibrio. To estimate prophage prevalence unaffected by database biases, we combined comparative genomics and chemical induction of 58 diverse Vibrio cyclitrophicus isolates, resulting in 107 well-curated prophages. Complemented with computationally predicted prophages, we obtained 1158 prophages from 931 naturally co-existing strains of the family Vibrionaceae. Prophages resembling tailless and filamentous phages predominated, accounting for 80% of all prophages in V. cyclitrophicus and 60% across the Vibrionaceae. In our experimental model, prophages of all three viral realms actively replicated upon induction indicating their ability to transfer to new hosts. Indeed, prophages were rapidly gained and lost, as suggested by variable prophage content between closely related V. cyclitrophicus. Prophages related to filamentous and tailless phages were integrated into only three genomic locations and restored the function of their integration site. Despite their small size, they contained highly diverse accessory genes that may contribute to host fitness, such as phage defense systems. We propose that, like their well-studied tailed equivalent, tailless and filamentous temperate phages are active and highly abundant drivers of host ecology and evolution in marine Vibrio, which have been largely overlooked.
Collapse
Affiliation(s)
- Kerrin Steensen
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Vienna, Austria
| | - Joana Séneca
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Djerassiplatz 1, 1030 Vienna, Vienna, Austria
| | - Nina Bartlau
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Vienna, Austria
| | - Xiaoqian A Yu
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Vienna, Austria
| | - Fatima A Hussain
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 15 Vassar St., Cambridge MA 02138, United States
| | - Martin F Polz
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Vienna, Austria
| |
Collapse
|
11
|
Ely B, Lenski J, Mohammadi T. Structural and Genomic Diversity of Bacteriophages. Methods Mol Biol 2024; 2738:3-16. [PMID: 37966589 DOI: 10.1007/978-1-0716-3549-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Bacteriophage diversity is a relatively unknown frontier that is rapidly being explored, leading to a wealth of new information. New bacteriophages are being discovered at an astounding rate via both phage isolation studies and metagenomic analyses. In addition, a nucleotide sequence-based viral taxonomic system has been developed to better handle this wealth of new information. As a result of these developments, phage scientists are transitioning from knowing that there must be huge numbers of diverse kinds of phage particles in natural environments to identifying the actual abundance and phage diversity that is present in specific environments. This review documents the beginning of this transition, offering a glimpse into the magnitude of change unfolding in the field. It stands as a testament to the expanding frontiers of phage research, illuminating the remarkable progress made in unraveling the intricate world of bacteriophage diversity and advancing our understanding of these enigmatic viral entities.
Collapse
Affiliation(s)
- Bert Ely
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
| | - Jacob Lenski
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Tannaz Mohammadi
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
12
|
Zhou WY, Wen H, Li YJ, Gao L, Rao SQ, Yang ZQ, Zhu GQ. Acquisition, loss, and replication of functional modules promote the genetic diversity of Salmonella bacteriophages. Microbiol Res 2023; 275:127461. [PMID: 37499310 DOI: 10.1016/j.micres.2023.127461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023]
Abstract
Owing to the threats that Salmonella poses to public health and the abuse of antimicrobials, bacteriophage therapy against Salmonella is experiencing a resurgence. Although several phages have been reported as safe and efficient for controlling Salmonella, the genetic diversity and relatedness among Salmonella phages remain poorly understood. In this study, whole-genome sequences of 91 Salmonella bacteriophages were obtained from the National Center for Biological Information genome database. Phylogenetic analysis, mosaic structure comparisons, gene content analysis, and orthologue group clustering were performed. Phylogenetic analysis revealed four singletons and two major lineages (I-II), including five subdividing clades, of which Salmonella phages belonging to morphologically distinct families were clustered in the same clade. Chimeric structures (n = 31), holin genes (n = 18), lysin genes (n = 66), DNA packaging genes (n = 55), and DNA metabolism genes (n = 24) were present in these phages. Moreover, phages from different subdivided clusters harboured distinct genes associated with host cell lysis, DNA packaging, and DNA metabolism. Notably, phages belonging to morphologically distinct families shared common orthologue groups. Although several functional modules of phages SS1 and SE16 shared > 99% nucleotide sequence identity with phages SI2 and SI23, the major differences between these phages were the absence and replication of functional modules. The data obtained herein revealed the genetic diversity of Salmonella phages at genomic, structural, and gene content levels. The genetic diversity of Salmonella phages is likely owing to the acquisition, loss, and replication of functional modules.
Collapse
Affiliation(s)
- Wen-Yuan Zhou
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hua Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Ya-Jie Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Lu Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Sheng-Qi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Zhen-Quan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| | - Guo-Qiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
13
|
Abstract
Two decades of metagenomic analyses have revealed that in many environments, small (∼5 kb), single-stranded DNA phages of the family Microviridae dominate the virome. Although the emblematic microvirus phiX174 is ubiquitous in the laboratory, most other microviruses, particularly those of the gokushovirus and amoyvirus lineages, have proven to be much more elusive. This puzzling lack of representative isolates has hindered insights into microviral biology. Furthermore, the idiosyncratic size and nature of their genomes have resulted in considerable misjudgments of their actual abundance in nature. Fortunately, recent successes in microvirus isolation and improved metagenomic methodologies can now provide us with more accurate appraisals of their abundance, their hosts, and their interactions. The emerging picture is that phiX174 and its relatives are rather rare and atypical microviruses, and that a tremendous diversity of other microviruses is ready for exploration.
Collapse
Affiliation(s)
- Paul C Kirchberger
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA;
| | - Howard Ochman
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
14
|
Liu Y, Zhao Y, Qian C, Huang Z, Feng L, Chen L, Yao Z, Xu C, Ye J, Zhou T. Study of Combined Effect of Bacteriophage vB3530 and Chlorhexidine on the Inactivation of Pseudomonas aeruginosa. BMC Microbiol 2023; 23:256. [PMID: 37704976 PMCID: PMC10498570 DOI: 10.1186/s12866-023-02976-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/09/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Chlorhexidine (CHG) is a disinfectant commonly used in hospitals. However, it has been reported that the excessive use of CHG can cause resistance in bacteria to this agent and even to other clinical antibiotics. Therefore, new methods are needed to alleviate the development of CHG tolerance and reduce its dosage. This study aimed to explore the synergistic effects of CHG in combination with bacteriophage against CHG-tolerant Pseudomonas aeruginosa (P. aeruginosa) and provide ideas for optimizing disinfection strategies in clinical environments as well as for the efficient use of disinfectants. METHODS The CHG-tolerant P. aeruginosa strains were isolated from the First Affiliated Hospital of Wenzhou Medical University in China. The bacteriophage vB3530 was isolated from the sewage inlet of the hospital, and its genome was sequenced. Time-killing curve was used to determine the antibacterial effects of vB3530 and chlorohexidine gluconate (CHG). The phage sensitivity to 16 CHG-tolerant P. aeruginosa strains and PAO1 strain was detected using plaque assay. The emergence rate of resistant bacterial strains was detected to determine the development of phage-resistant and CHG-tolerant strains. Finally, the disinfection effects of the disinfectant and phage combination on the surface of the medical devices were preliminarily evaluated. RESULTS The results showed that (1) CHG combined with bacteriophage vB3530 significantly inhibited the growth of CHG-resistant P. aeruginosa and reduced the bacterial colony forming units (CFUs) after 24 h. (2) The combination of CHG and bacteriophage inhibited the emergence of phage-resistant and CHG-tolerant strains. (3) The combination of CHG and bacteriophage significantly reduced the bacterial load on the surface of medical devices. CONCLUSIONS In this study, the combination of bacteriophage vB3530 and CHG presented a combined inactivation effect to CHG-tolerant P. aeruginosa and reduced the emergence of strains resistant to CHG and phage. This study demonstrated the potential of bacteriophage as adjuvants to traditional disinfectants. The use of bacteriophage in combination with commercial disinfectants might be a promising method for controlling the spread of bacteria in hospitals.
Collapse
Affiliation(s)
- Yan Liu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yining Zhao
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Changrui Qian
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Zeyu Huang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Luozhu Feng
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Lijiang Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhuocheng Yao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chunquan Xu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jianzhong Ye
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
15
|
Huelgas-Méndez D, Cazares D, Alcaraz LD, Ceapã CD, Cocotl-Yañez M, Shotaro T, Maeda T, Fernández-Presas AM, Tostado-Islas O, González-Vadillo AL, Limones-Martínez A, Hernandez-Cuevas CE, González-García K, Jiménez-García LF, Martínez RL, Santos-López CS, Husain FM, Khan A, Arshad M, Kokila K, Wood TK, García-Contreras R. Exoprotease exploitation and social cheating in a Pseudomonas aeruginosa environmental lysogenic strain with a noncanonical quorum sensing system. FEMS Microbiol Ecol 2023; 99:fiad086. [PMID: 37496200 DOI: 10.1093/femsec/fiad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023] Open
Abstract
Social cheating is the exploitation of public goods that are costly metabolites, like exoproteases. Exoprotease exploitation in Pseudomonas aeruginosa has been studied in reference strains. Experimental evolution with reference strains during continuous growth in casein has demonstrated that nonexoprotease producers that are lasR mutants are selected while they behave as social cheaters. However, noncanonical quorum-sensing systems exist in P. aeruginosa strains, which are diverse. In this work, the exploitation of exoproteases in the environmental strain ID4365 was evaluated; ID4365 has a nonsense mutation that precludes expression of LasR. ID4365 produces exoproteases under the control of RhlR, and harbors an inducible prophage. As expected, rhlR mutants of ID4365 behave as social cheaters, and exoprotease-deficient individuals accumulate upon continuous growth in casein. Moreover, in all continuous cultures, population collapses occur. However, this also sometimes happens before cheaters dominate. Interestingly, during growth in casein, ID4565's native prophage is induced, suggesting that the metabolic costs imposed by social cheating may increase its induction, promoting population collapses. Accordingly, lysogenization of the PAO1 lasR mutant with this prophage accelerated its collapse. These findings highlight the influence of temperate phages in social cheating.
Collapse
Affiliation(s)
- Daniel Huelgas-Méndez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Circuito Escolar 411A, Copilco Universidad, Coyoacán 04360, Mexico City, Mexico
| | - Daniel Cazares
- Department of Biology, University of Oxford, Broad St, Oxford OX1 3AZ, Oxford, United Kingdom
| | - Luis David Alcaraz
- Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, UNAM, Circuito de la Investigación Científica, C.U., 04510, Mexico City, Mexico
| | - Corina Diana Ceapã
- Microbiology Laboratory, Chemistry Institute, Universidad Nacional Autonoma de Mexico, Circuito de la Investigación Científica, C.U., 04510, Mexico City, Mexico
| | - Miguel Cocotl-Yañez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Circuito Escolar 411A, Copilco Universidad, Coyoacán 04360, Mexico City, Mexico
| | - Toya Shotaro
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan
| | - Ana María Fernández-Presas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Circuito Escolar 411A, Copilco Universidad, Coyoacán 04360, Mexico City, Mexico
| | - Oswaldo Tostado-Islas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Circuito Escolar 411A, Copilco Universidad, Coyoacán 04360, Mexico City, Mexico
| | - Ana Lorena González-Vadillo
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Circuito Escolar 411A, Copilco Universidad, Coyoacán 04360, Mexico City, Mexico
| | - Aldo Limones-Martínez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Circuito Escolar 411A, Copilco Universidad, Coyoacán 04360, Mexico City, Mexico
| | - Carlos Eduardo Hernandez-Cuevas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Circuito Escolar 411A, Copilco Universidad, Coyoacán 04360, Mexico City, Mexico
| | - Karen González-García
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Circuito Escolar 411A, Copilco Universidad, Coyoacán 04360, Mexico City, Mexico
| | - Luis Felipe Jiménez-García
- Departamento de Biología Celular, Facultad de Ciencias, UNAM, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica, C.U., 04510, Mexico City, Mexico
| | - Reyna-Lara Martínez
- Departamento de Biología Celular, Facultad de Ciencias, UNAM, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica, C.U., 04510, Mexico City, Mexico
| | - Cristian Sadalis Santos-López
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Circuito Escolar 411A, Copilco Universidad, Coyoacán 04360, Mexico City, Mexico
- Universidad Tec Milenio, Toluca de Lerdo, Calle Guadalupe Victoria 221, Las Jaras, Metepe 52166, Mexico
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, King Saud University, Riyadh 11451, Saudi Arabia
| | - Altaf Khan
- Department of Pharmacology, Central Laboratory, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Arshad
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kota Kokila
- Department of Biology, Ramapo College of New Jersey, 505 Ramapo Valley Rd, Mahwah, NJ 07430, United States
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802-4400, United States
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Circuito Escolar 411A, Copilco Universidad, Coyoacán 04360, Mexico City, Mexico
| |
Collapse
|
16
|
Zhou W, Li Y, Xu X, Rao S, Wen H, Han Y, Deng A, Zhang Z, Yang Z, Zhu G. Whole-genome analysis showed the promotion of genetic diversity and coevolution in Staphylococcus aureus lytic bacteriophages and their hosts mediated by prophages via worldwide recombination events. Front Microbiol 2023; 14:1088125. [PMID: 36970693 PMCID: PMC10036374 DOI: 10.3389/fmicb.2023.1088125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Prophages as a part of Staphylococcus aureus genome contribute to the genetic diversity as well as survival strategies of their host. Some S. aureus prophages also have an imminent risk of host cell lysis and become a lytic phage. Nonetheless, interactions among S. aureus prophages, lytic phages, and their hosts, as well as the genetic diversity of S. aureus prophages, remain unclear. We identified 579 intact and 1,389 incomplete prophages in the genomes of 493 S. aureus isolates obtained from the NCBI database. The structural diversity and gene content of intact and incomplete prophages were investigated and compared with 188 lytic phages. Mosaic structure comparison, ortholog group clustering, phylogenetic analysis, and recombination network analysis were performed to estimate genetic relatedness among S. aureus intact prophages, incomplete prophages, and lytic phages. The intact and incomplete prophages harbored 148 and 522 distinct mosaic structures, respectively. The major difference between lytic phages and prophages was the lack of functional modules and genes. Compared to the lytic phages, both the S. aureus intact and incomplete prophages harbored multiple antimicrobial resistance (AMR) and virulence factor (VF) genes. Several functional modules of lytic phages 3_AJ_2017 and 23MRA shared more than 99% nucleotide sequence identity with S. aureus intact (ST20130943_p1 and UTSW_ MRSA_55_ip3) and incomplete prophages (SA3_LAU_ip3 and MRSA_FKTN_ip4); other modules showed little nucleotide sequence similarity. Ortholog and phylogenetic analyses revealed a common gene pool shared between the prophages and lytic Siphoviridae phages. Moreover, most shared sequences existed within intact (43428/137294, 31.6%) and incomplete prophages (41248/137294, 30.0%). Therefore, the maintenance or loss of functional modules in intact and incomplete prophages is key to balance the costs and benefits of large prophages harboring various AMR and VF genes in the bacterial host. The shared identical functional modules between S. aureus lytic phages and prophages are likely to result in the exchange, acquisition, and loss of functional modules, and therefore contribute to their genetic diversity. Moreover, constant recombination events within prophages globally were responsible for the coevolution of lytic phages and their bacterial hosts.
Collapse
Affiliation(s)
- Wenyuan Zhou
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yajie Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xuechao Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hua Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yeiling Han
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Aiping Deng
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhenwen Zhang
- Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
- *Correspondence: Zhenquan Yang,
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Guoqiang Zhu,
| |
Collapse
|
17
|
Ji Y, Xi H, Zhao Z, Jiang Q, Chen C, Wang X, Li F, Li N, Sun C, Feng X, Lei L, Han W, Gu J. Metagenomics analysis reveals potential pathways and drivers of piglet gut phage-mediated transfer of ARGs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160304. [PMID: 36427721 DOI: 10.1016/j.scitotenv.2022.160304] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
The growing prevalence of antibiotic-resistant pathogens has led to a better understanding of the underlying processes that lead to this expansion. Intensive pig farms are considered one of the hotspots for antibiotic resistance gene (ARG) transmission. Phages, as important mobile carriers of ARGs, are widespread in the animal intestine. However, our understanding of phage-associated ARGs in the pig intestine and their underlying drivers is limited. Here, metagenomic sequencing and analysis of viral DNA and total DNA of different intestinal (ileum, cecum and feces) contents in healthy piglets and piglets with diarrhea were separately conducted. We found that phages in piglet ceca are the main repository for ARGs and mobile genetic element (MGE) genes. Phage-associated MGEs are important factors affecting the maintenance and transfer of ARGs. Interestingly, the colocalization of ARGs and MGE genes in piglet gut phages does not appear to be randomly selected but rather related to a specific phage host (Streptococcus). In addition, in the feces of piglets with diarrhea, the abundance of phages carrying ARGs and MGE genes was significantly increased, as was the diversity of polyvalent phages (phages with broad host ranges), which would facilitate the transfection and wider distribution of ARGs in the bacterial community. Moreover, the predicted host spectrum of polyvalent phages in diarrheal feces tended to be potential enteropathogenic genera, which greatly increased the risk of enteropathogens acquiring ARGs. Notably, we also found ARG-homologous genes in the sequences of piglet intestinal mimiviruses, suggesting that the piglet intestinal mimiviruses are a potential repository of ARGs. In conclusion, this study greatly expands our knowledge of the piglet gut microbiome, revealing the underlying mechanisms of maintenance and dissemination of piglet gut ARGs and providing a reference for the prevention and control of ARG pollution in animal husbandry.
Collapse
Affiliation(s)
- Yalu Ji
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Hengyu Xi
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Zhen Zhao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Qiujie Jiang
- Jilin Animal Disease Control Center, Changchun 130062, People's Republic of China
| | - Chong Chen
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Xinwu Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Fengyang Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Na Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Changjiang Sun
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Xin Feng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Liancheng Lei
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Wenyu Han
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, People's Republic of China.
| | - Jingmin Gu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, People's Republic of China.
| |
Collapse
|
18
|
Xuan G, Kong J, Wang Y, Lin H, Wang J. Characterization of the newly isolated Pseudomonas phage vB_Pae_LC3I3. Virus Res 2023; 323:198978. [PMID: 36288775 PMCID: PMC10194125 DOI: 10.1016/j.virusres.2022.198978] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Here, we report the genome sequence of a double-stranded DNA siphovirus, vB_Pae_LC3I3 infective for P. aeruginosa PA14. Phage vB_Pae_LC3I3 was identified as a linear double-stranded DNA phage of 49,926 bp with 59% G+C content. The vB_Pae_LC3I3 genome contains 78 open reading frames, and the function of 22 ORFs can be predicted. Genome analysis confirmed the lysogenic nature of this phage, which encodes the typical lysogen-related integrase and CI/Cro regulator. One-step growth curve revealed that the latent period of phage vB_Pae_LC3I3 lasted for 30 min. And vB_Pae_LC3I3 showed good temperature stability and pH stability. Based on electron microscopy, phylogenetic, and comparative genomic analyses, this novel Pseudomonas temperate phage represents a novel unassigned siphoviruses cluster. The study of phage vB_Pae_LC3I3 will provide basic information for further research on treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Guanhua Xuan
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jiuna Kong
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yinfeng Wang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hong Lin
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jingxue Wang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China..
| |
Collapse
|
19
|
Zhao Y, Feng L, Zhou B, Zhang X, Yao Z, Wang L, Wang Z, Zhou T, Chen L. A newly isolated bacteriophage vB8388 and its synergistic effect with aminoglycosides against multi-drug resistant Klebsiella oxytoca strain FK-8388. Microb Pathog 2023; 174:105906. [PMID: 36494020 DOI: 10.1016/j.micpath.2022.105906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
The bacteriophage vB8388 can lyse multi-drug resistant Klebsiella oxytoca strain FK-8388 and maintain stability in a wide range of temperatures (from 4 °C to 80 °C) and pHs (3-11). Bioinformatics analysis showed that vB8388 is a linear double-stranded DNA virus that is 39,750 long with 50.65% G + C content and 44 putative open reading frames (ORFs). Phage vB8388 belongs to the family Autographviridae and possesses a non-contractile tail. The latency period of vB8388 was approximately 20 min. The combination of phage vB8388 and gentamicin, amikacin, or tobramycin could effectively inhibit the growth of K. oxytoca strain FK-8388, with a decrease of more than 4 log units within 12 h in vitro. Phage vB8388 showed a strong synergistic effect with gentamicin that could enhance the anti-biofilm effect of vB8388. The phage + gentamicin combination also showed synergy in vivo in the larval infection model of Galleria mellonella. In conclusion, the findings of this study suggest the potential of phage + antibiotic combination therapy to be used as an alternative therapeutic approach for treating infectious diseases caused by multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Yining Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| | - Luozhu Feng
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Beibei Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| | - Xiaodong Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| | - Zhuocheng Yao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Lingbo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| | - Zhongyong Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
20
|
Kupczok A, Bailey ZM, Refardt D, Wendling CC. Co-transfer of functionally interdependent genes contributes to genome mosaicism in lambdoid phages. Microb Genom 2022; 8:mgen000915. [PMID: 36748576 PMCID: PMC9836094 DOI: 10.1099/mgen.0.000915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Lambdoid (or Lambda-like) phages are a group of related temperate phages that can infect Escherichia coli and other gut bacteria. A key characteristic of these phages is their mosaic genome structure, which served as the basis for the 'modular genome hypothesis'. Accordingly, lambdoid phages evolve by transferring genomic regions, each of which constitutes a functional unit. Nevertheless, it is unknown which genes are preferentially transferred together and what drives such co-transfer events. Here we aim to characterize genome modularity by studying co-transfer of genes among 95 distantly related lambdoid (pro-)phages. Based on gene content, we observed that the genomes cluster into 12 groups, which are characterized by a highly similar gene content within the groups and highly divergent gene content across groups. Highly similar proteins can occur in genomes of different groups, indicating that they have been transferred. About 26 % of homologous protein clusters in the four known operons (i.e. the early left, early right, immunity and late operon) engage in gene transfer, which affects all operons to a similar extent. We identified pairs of genes that are frequently co-transferred and observed that these pairs tend to be near one another on the genome. We find that frequently co-transferred genes are involved in related functions and highlight interesting examples involving structural proteins, the cI repressor and Cro regulator, proteins interacting with DNA, and membrane-interacting proteins. We conclude that epistatic effects, where the functioning of one protein depends on the presence of another, play an important role in the evolution of the modular structure of these genomes.
Collapse
Affiliation(s)
- Anne Kupczok
- Bioinformatics Group, Wageningen University & Research, Wageningen, Netherlands,*Correspondence: Anne Kupczok,
| | - Zachary M. Bailey
- ETH Zürich, Institute of Integrative Biology, Universitätstrasse 16, Zürich, Switzerland
| | - Dominik Refardt
- Institute of Natural Resource Sciences, Zürich University of Applied Sciences, Campus Grüental, Wädenswil, Switzerland
| | - Carolin C. Wendling
- ETH Zürich, Institute of Integrative Biology, Universitätstrasse 16, Zürich, Switzerland
| |
Collapse
|
21
|
Morais D, Tanoeiro L, Marques AT, Gonçalves T, Duarte A, Matos APA, Vital JS, Cruz MEM, Carvalheiro MC, Anes E, Vítor JMB, Gaspar MM, Vale FF. Liposomal Delivery of Newly Identified Prophage Lysins in a Pseudomonas aeruginosa Model. Int J Mol Sci 2022; 23:ijms231710143. [PMID: 36077542 PMCID: PMC9456237 DOI: 10.3390/ijms231710143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic bacterium that presents resistance to several antibiotics, thus, representing a major threat to human and animal health. Phage-derived products, namely lysins, or peptidoglycan-hydrolyzing enzymes, can be an effective weapon against antibiotic-resistant bacteria. Whereas in Gram-positive bacteria, lysis from without is facilitated by the exposed peptidoglycan layer, this is not possible in the outer membrane-protected peptidoglycan of Gram-negative bacteria. Here, we suggest the encapsulation of lysins in liposomes as a delivery system against Gram-negative bacteria, using the model of P. aeruginosa. Bioinformatic analysis allowed for the identification of 38 distinct complete prophages within 66 P. aeruginosa genomes (16 of which newly sequenced) and led to the identification of 19 lysins of diverse sequence and function, 5 of which proceeded to wet lab analysis. The four purifiable lysins showed hydrolytic activity against Gram-positive bacterial lawns and, on zymogram assays, constituted of autoclaved P. aeruginosa cells. Additionally, lysins Pa7 and Pa119 combined with an outer membrane permeabilizer showed activity against P. aeruginosa cells. These two lysins were successfully encapsulated in DPPC:DOPE:CHEMS (molar ratio 4:4:2) liposomes with an average encapsulation efficiency of 33.33% and 32.30%, respectively. The application of the encapsulated lysins to the model P. aeruginosa led to a reduction in cell viability and resulted in cell lysis as observed in MTT cell viability assays and electron microscopy. In sum, we report here that prophages may be important sources of new enzybiotics, with prophage lysins showing high diversity and activity. In addition, these enzybiotics following their incorporation in liposomes were able to potentiate their antibacterial effect against the Gram-negative bacteria P. aeruginosa, used as the model.
Collapse
Affiliation(s)
- Diana Morais
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Luís Tanoeiro
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Andreia T. Marques
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Tiago Gonçalves
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Advanced Technologies for Drug Delivery, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Aida Duarte
- Faculty of Pharmacy, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior Egas Moniz, Quinta da Granja, 2829-511 Monte da Caparica, Portugal
| | - António Pedro Alves Matos
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior Egas Moniz, Quinta da Granja, 2829-511 Monte da Caparica, Portugal
| | - Joana S. Vital
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Maria Eugénia Meirinhos Cruz
- Advanced Technologies for Drug Delivery, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Manuela Colla Carvalheiro
- Advanced Technologies for Drug Delivery, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Jorge M. B. Vítor
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Faculty of Pharmacy, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Advanced Technologies for Drug Delivery, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Correspondence: or (M.M.G.); or (F.F.V.)
| | - Filipa F. Vale
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Correspondence: or (M.M.G.); or (F.F.V.)
| |
Collapse
|
22
|
Qian C, Ma J, Liang J, Zhang L, Liang X. Comprehensive deciphering prophages in genus Acetobacter on the ecology, genomic features, toxin–antitoxin system, and linkage with CRISPR-Cas system. Front Microbiol 2022; 13:951030. [PMID: 35983328 PMCID: PMC9379143 DOI: 10.3389/fmicb.2022.951030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Acetobacter is the predominant microbe in vinegar production, particularly in those natural fermentations that are achieved by complex microbial communities. Co-evolution of prophages with Acetobacter, including integration, release, and dissemination, heavily affects the genome stability and production performance of industrial strains. However, little has been discussed yet about prophages in Acetobacter. Here, prophage prediction analysis using 148 available genomes from 34 Acetobacter species was carried out. In addition, the type II toxin–antitoxin systems (TAs) and CRISPR-Cas systems encoded by prophages or the chromosome were analyzed. Totally, 12,000 prophage fragments were found, of which 350 putatively active prophages were identified in 86.5% of the selected genomes. Most of the active prophages (83.4%) belonged to the order Caudovirales dominated by the families Siphoviridae and Myroviridae prophages (71.4%). Notably, Acetobacter strains survived in complex environments that frequently carried multiple prophages compared with that in restricted habits. Acetobacter prophages showed high genome diversity and horizontal gene transfer across different bacterial species by genomic feature characterization, average nucleotide identity (ANI), and gene structure visualization analyses. About 31.14% of prophages carry type II TAS, suggesting its important role in addiction, bacterial defense, and growth-associated bioprocesses to prophages and hosts. Intriguingly, the genes coding for Cse1, Cse2, Cse3, Cse4, and Cas5e involved in type I-E and Csy4 involved in type I-F CRISPR arrays were firstly found in two prophages. Type II-C CRISPR-Cas system existed only in Acetobacter aceti, while the other Acetobacter species harbored the intact or eroded type I CRISPR-Cas systems. Totally, the results of this study provide fundamental clues for future studies on the role of prophages in the cell physiology and environmental behavior of Acetobacter.
Collapse
|