1
|
Rana AK, Thakur VK. Advances and new horizons in metabolic engineering of heterotrophic bacteria and cyanobacteria for enhanced lactic acid production. BIORESOURCE TECHNOLOGY 2024:131951. [PMID: 39647717 DOI: 10.1016/j.biortech.2024.131951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/21/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Bacteria species such as E.Coli, Lactobacilli, and pediococci play an important role as starter strains in fermentation food or polysaccharides into lactic acid. These bacteria were metabolically engineered using multiple proven genome editing methods to enhance relevant phenotypes. The efficacy of these procedures varies depending on the editing tool used and researchers' ability to pick suitable recombinants, which significantly increased genome engineering throughput. Cyanobacteria produce oxygenic photosynthesis and play an important role in carbon dioxide fixing. The fixed carbon dioxide is then retained as polysaccharides in cells and metabolised into various low carbon molecules such as lactate, succinate, and ethanol. Lactate is used as a building ingredient in various bioplastics, food additives, and medicines. This review covers the recent advances in lactic acid production through metabolic and genetic engineering in bacteria and cyanobacteria.
Collapse
Affiliation(s)
- A K Rana
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, Edinburgh, UK; Department of Chemistry, Sri Sai University, Palampur 176061, India
| | - V K Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Guo J, Van De Ven WT, Skirycz A, Thirumalaikumar VP, Zeng L, Zhang Q, Balcke GU, Tissier A, Dehesh K. An evolutionarily conserved metabolite inhibits biofilm formation in Escherichia coli K-12. Nat Commun 2024; 15:10079. [PMID: 39572562 PMCID: PMC11582573 DOI: 10.1038/s41467-024-54501-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
Methylerythritol cyclodiphosphate (MEcPP) is an intermediate in the biosynthesis of isoprenoids in plant plastids and in bacteria, and acts as a stress signal in plants. Here, we show that MEcPP regulates biofilm formation in Escherichia coli K-12 MG1655. Increased MEcPP levels, triggered by genetic manipulation or oxidative stress, inhibit biofilm development and production of fimbriae. Deletion of fimE, encoding a protein known to downregulate production of adhesive fimbriae, restores biofilm formation in cells with elevated MEcPP levels. Limited proteolysis-coupled mass spectrometry (LiP-MS) reveals that MEcPP interacts with the global regulatory protein H-NS, which is known to repress transcription of fimE. MEcPP prevents the binding of H-NS to the fimE promoter. Therefore, our results indicate that MEcPP can regulate biofilm formation by modulating H-NS activity and thus reducing fimbriae production. Further research is needed to test whether MEcPP plays similar regulatory roles in other bacteria.
Collapse
Affiliation(s)
- Jingzhe Guo
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Wilhelmina T Van De Ven
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Aleksandra Skirycz
- Boyce Thompson Institute, Ithaca, NY, USA
- Cornell University, Ithaca, NY, USA
- Michigan State University, East Lansing, MI, USA
| | - Venkatesh P Thirumalaikumar
- Boyce Thompson Institute, Ithaca, NY, USA
- Bindley Bioscience Center, Purdue University; West Lafayette, Indiana, USA
| | - Liping Zeng
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Quanqing Zhang
- Institute for Integrative Genome Biology, Proteomics Core, University of California, Riverside, Riverside, CA, USA
| | - Gerd Ulrich Balcke
- Leibniz Institute of Plant Biochemistry, Department of Cell and Metabolic Biology; Weinberg 3, Halle (Saale), Germany
| | - Alain Tissier
- Leibniz Institute of Plant Biochemistry, Department of Cell and Metabolic Biology; Weinberg 3, Halle (Saale), Germany
| | - Katayoon Dehesh
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
3
|
Misra J, Mettert EL, Kiley PJ. Functional analysis of the methylerythritol phosphate pathway terminal enzymes IspG and IspH from Zymomonas mobilis. Microbiol Spectr 2024; 12:e0425623. [PMID: 38785428 PMCID: PMC11218510 DOI: 10.1128/spectrum.04256-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/05/2024] [Indexed: 05/25/2024] Open
Abstract
Isoprenoids are a diverse family of compounds that are synthesized from two isomeric compounds, isopentenyl diphosphate and dimethylallyl diphosphate. In most bacteria, isoprenoids are produced from the essential methylerythritol phosphate (MEP) pathway. The terminal enzymes of the MEP pathway IspG and IspH are [4Fe-4S] cluster proteins, and in Zymomonas mobilis, the substrates of IspG and IspH accumulate in cells in response to O2, suggesting possible lability of their [4Fe-4S] clusters. Here, we show using complementation assays in Escherichia coli that even under anaerobic conditions, Z. mobilis IspG and IspH are not as functional as their E. coli counterparts, requiring higher levels of expression to rescue viability. A deficit of the sulfur utilization factor (SUF) Fe-S cluster biogenesis pathway did not explain the reduced function of Z. mobilis IspG and IspH since no improvement in viability was observed in E. coli expressing the Z. mobilis SUF pathway or having increased expression of the E. coli SUF pathway. Complementation of single and double mutants with various combinations of Z. mobilis and E. coli IspG and IspH indicated that optimal growth required the pairing of IspG and IspH from the same species. Furthermore, Z. mobilis IspH conferred an O2-sensitive growth defect to E. coli that could be partially rescued by co-expression of Z. mobilis IspG. In vitro analysis showed O2 sensitivity of the [4Fe-4S] cluster of both Z. mobilis IspG and IspH. Altogether, our data indicate an important role of the cognate protein IspG in Z. mobilis IspH function under both aerobic and anaerobic conditions. IMPORTANCE Isoprenoids are one of the largest classes of natural products, exhibiting diversity in structure and function. They also include compounds that are essential for cellular life across the biological world. In bacteria, isoprenoids are derived from two precursors, isopentenyl diphosphate and dimethylallyl diphosphate, synthesized primarily by the methylerythritol phosphate pathway. The aerotolerant Z. mobilis has the potential for methylerythritol phosphate pathway engineering by diverting some of the glucose that is typically efficiently converted into ethanol to produce isoprenoid precursors to make bioproducts and biofuels. Our data revealed the surprising finding that Z. mobilis IspG and IspH need to be co-optimized to improve flux via the methyl erythritol phosphate pathway in part to evade the oxygen sensitivity of IspH.
Collapse
Affiliation(s)
- Jyotsna Misra
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Erin L. Mettert
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Patricia J. Kiley
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Xiao Y, Tan X, He Q, Yang S. Systematic metabolic engineering of Zymomonas mobilis for β-farnesene production. Front Bioeng Biotechnol 2024; 12:1392556. [PMID: 38827034 PMCID: PMC11140730 DOI: 10.3389/fbioe.2024.1392556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/24/2024] [Indexed: 06/04/2024] Open
Abstract
Zymomonas mobilis is an ethanologenic bacterium that can produce hopanoids using farnesyl pyrophosphate (FPP), which can be used as the precursor by β-farnesene synthase for β-farnesene production. To explore the possibility and bottlenecks of developing Z. mobilis for β-farnesene production, five heterologous β-farnesene synthases were selected and screened, and AaBFS from Artemisia annua had the highest β-farnesene titer. Recombinant strains with AaBFS driven by the strong constitutive promoter Pgap (Pgap-AaBFS) doubled its β-farnesene production to 25.73 ± 0.31 mg/L compared to the recombinant strain with AaBFS driven by Ptet (Ptet-AaBFS), which can be further improved by overexpressing the Pgap-AaBFS construct using the strategies of multiple plasmids (41.00 ± 0.40 mg/L) or genomic multi-locus integration (48.33 ± 3.40 mg/L). The effect of cofactor NADPH balancing on β-farnesene production was also investigated, which can be improved only in zwf-overexpressing strains but not in ppnK-overexpressing strains, indicating that cofactor balancing is important and sophisticated. Furthermore, the β-farnesene titer was improved to 73.30 ± 0.71 mg/L by overexpressing dxs, ispG, and ispH. Finally, the β-farnesene production was increased to 159.70 ± 7.21 mg/L by fermentation optimization, including the C/N ratio, flask working volume, and medium/dodecane ratio, which was nearly 13-fold improved from the parental strain. This work thus not only generated a recombinant β-farnesene production Z. mobilis strain but also unraveled the bottlenecks to engineer Z. mobilis for farnesene production, which will help guide the future rational design and construction of cell factories for terpenoid production in non-model industrial microorganisms.
Collapse
Affiliation(s)
| | | | - Qiaoning He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
5
|
Rivera Vazquez J, Trujillo E, Williams J, She F, Getahun F, Callaghan MM, Coon JJ, Amador-Noguez D. Lipid membrane remodeling and metabolic response during isobutanol and ethanol exposure in Zymomonas mobilis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:14. [PMID: 38281959 PMCID: PMC10823705 DOI: 10.1186/s13068-023-02450-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/16/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Recent engineering efforts have targeted the ethanologenic bacterium Zymomonas mobilis for isobutanol production. However, significant hurdles remain due this organism's vulnerability to isobutanol toxicity, adversely affecting its growth and productivity. The limited understanding of the physiological impacts of isobutanol on Z. mobilis constrains our ability to overcome these production barriers. RESULTS We utilized a systems-level approach comprising LC-MS/MS-based lipidomics, metabolomics, and shotgun proteomics, to investigate how exposure to ethanol and isobutanol impact the lipid membrane composition and overall physiology of Z. mobilis. Our analysis revealed significant and distinct alterations in membrane phospholipid and fatty acid composition resulting from ethanol and isobutanol exposure. Notably, ethanol exposure increased membrane cyclopropane fatty acid content and expression of cyclopropane fatty acid (CFA) synthase. Surprisingly, isobutanol decreased cyclopropane fatty acid content despite robust upregulation of CFA synthase. Overexpression of the native Z. mobilis' CFA synthase increased cyclopropane fatty acid content in all phospholipid classes and was associated with a significant improvement in growth rates in the presence of added ethanol and isobutanol. Heterologous expression of CFA synthase from Clostridium acetobutylicum resulted in a near complete replacement of unsaturated fatty acids with cyclopropane fatty acids, affecting all lipid classes. However, this did not translate to improved growth rates under isobutanol exposure. Correlating with its greater susceptibility to isobutanol, Z. mobilis exhibited more pronounced alterations in its proteome, metabolome, and overall cell morphology-including cell swelling and formation of intracellular protein aggregates -when exposed to isobutanol compared to ethanol. Isobutanol triggered a broad stress response marked by the upregulation of heat shock proteins, efflux transporters, DNA repair systems, and the downregulation of cell motility proteins. Isobutanol also elicited widespread dysregulation of Z. mobilis' primary metabolism evidenced by increased levels of nucleotide degradation intermediates and the depletion of biosynthetic and glycolytic intermediates. CONCLUSIONS This study provides a comprehensive, systems-level evaluation of the impact of ethanol and isobutanol exposure on the lipid membrane composition and overall physiology of Z. mobilis. These findings will guide engineering of Z. mobilis towards the creation of isobutanol-tolerant strains that can serve as robust platforms for the industrial production of isobutanol from lignocellulosic sugars.
Collapse
Affiliation(s)
- Julio Rivera Vazquez
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Edna Trujillo
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Genome Center of Wisconsin, Madison, WI, USA
| | - Jonathan Williams
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Fukang She
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Fitsum Getahun
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Melanie M Callaghan
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua J Coon
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Morgridge Institute for Research, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Daniel Amador-Noguez
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
6
|
Felczak MM, Bernard MP, TerAvest MA. Respiration is essential for aerobic growth of Zymomonas mobilis ZM4. mBio 2023; 14:e0204323. [PMID: 37909744 PMCID: PMC10746213 DOI: 10.1128/mbio.02043-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE A key to producing next-generation biofuels is to engineer microbes that efficiently convert non-food materials into drop-in fuels, and to engineer microbes effectively, we must understand their metabolism thoroughly. Zymomonas mobilis is a bacterium that is a promising candidate biofuel producer, but its metabolism remains poorly understood, especially its metabolism when exposed to oxygen. Although Z. mobilis respires with oxygen, its aerobic growth is poor, and disruption of genes related to respiration counterintuitively improves aerobic growth. This unusual result has sparked decades of research and debate regarding the function of respiration in Z. mobilis. Here, we used a new set of mutants to determine that respiration is essential for aerobic growth and likely protects the cells from damage caused by oxygen. We conclude that the respiratory pathway of Z. mobilis should not be deleted from chassis strains for industrial production because this would yield a strain that is intolerant of oxygen, which is more difficult to manage in industrial settings.
Collapse
Affiliation(s)
- Magdalena M. Felczak
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Matthew P. Bernard
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Michaela A. TerAvest
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
7
|
Enright AL, Banta AB, Ward RD, Rivera Vazquez J, Felczak MM, Wolfe MB, TerAvest MA, Amador-Noguez D, Peters JM. The genetics of aerotolerant growth in an alphaproteobacterium with a naturally reduced genome. mBio 2023; 14:e0148723. [PMID: 37905909 PMCID: PMC10746277 DOI: 10.1128/mbio.01487-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE The inherent complexity of biological systems is a major barrier to our understanding of cellular physiology. Bacteria with markedly fewer genes than their close relatives, or reduced genome bacteria, are promising biological models with less complexity. Reduced genome bacteria can also have superior properties for industrial use, provided the reduction does not overly restrict strain robustness. Naturally reduced genome bacteria, such as the alphaproteobacterium Zymomonas mobilis, have fewer genes but remain environmentally robust. In this study, we show that Z. mobilis is a simplified genetic model for Alphaproteobacteria, a class with important impacts on the environment, human health, and industry. We also identify genes that are only required in the absence of atmospheric oxygen, uncovering players that maintain and utilize the cellular energy state. Our findings have broad implications for the genetics of Alphaproteobacteria and industrial use of Z. mobilis to create biofuels and bioproducts.
Collapse
Affiliation(s)
- Amy L. Enright
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amy B. Banta
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ryan D. Ward
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Julio Rivera Vazquez
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Magdalena M. Felczak
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Michael B. Wolfe
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michaela A. TerAvest
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Daniel Amador-Noguez
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason M. Peters
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Wu Y, Yuan Q, Yang Y, Liu D, Yang S, Ma H. Construction and application of high-quality genome-scale metabolic model of Zymomonas mobilis to guide rational design of microbial cell factories. Synth Syst Biotechnol 2023; 8:498-508. [PMID: 37554249 PMCID: PMC10404502 DOI: 10.1016/j.synbio.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 08/10/2023] Open
Abstract
High-quality genome-scale metabolic models (GEMs) could play critical roles on rational design of microbial cell factories in the classical Design-Build-Test-Learn cycle of synthetic biology studies. Despite of the constant establishment and update of GEMs for model microorganisms such as Escherichia coli and Saccharomyces cerevisiae, high-quality GEMs for non-model industrial microorganisms are still scarce. Zymomonas mobilis subsp. mobilis ZM4 is a non-model ethanologenic microorganism with many excellent industrial characteristics that has been developing as microbial cell factories for biochemical production. Although five GEMs of Z. mobilis have been constructed, these models are either generating ATP incorrectly, or lacking information of plasmid genes, or not providing standard format file. In this study, a high-quality GEM iZM516 of Z. mobilis ZM4 was constructed. The information from the improved genome annotation, literature, datasets of Biolog Phenotype Microarray studies, and recently updated Gene-Protein-Reaction information was combined for the curation of iZM516. Finally, 516 genes, 1389 reactions, 1437 metabolites, and 3 cell compartments are included in iZM516, which also had the highest MEMOTE score of 91% among all published GEMs of Z. mobilis. Cell growth was then predicted by iZM516, which had 79.4% agreement with the experimental results of the substrate utilization. In addition, the potential endogenous succinate synthesis pathway of Z. mobilis ZM4 was proposed through simulation and analysis using iZM516. Furthermore, metabolic engineering strategies to produce succinate and 1,4-butanediol (1,4-BDO) were designed and then simulated under anaerobic condition using iZM516. The results indicated that 1.68 mol/mol succinate and 1.07 mol/mol 1,4-BDO can be achieved through combinational metabolic engineering strategies, which was comparable to that of the model species E. coli. Our study thus not only established a high-quality GEM iZM516 to help understand and design microbial cell factories for economic biochemical production using Z. mobilis as the chassis, but also provided guidance on building accurate GEMs for other non-model industrial microorganisms.
Collapse
Affiliation(s)
- Yalun Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, Hubei, China
| | - Qianqian Yuan
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, Hubei, China
- Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, 430062, Hubei, China
- Artificial Intelligence and Knowledge Engineering Lab, School of Computer Science and Information Engineering, Hubei University, Wuhan, 430062, Hubei, China
| | - Defei Liu
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, Hubei, China
| | - Hongwu Ma
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
9
|
Hu M, Bao W, Peng Q, Hu W, Yang X, Xiang Y, Yan X, Li M, Xu P, He Q, Yang S. Metabolic engineering of Zymomonas mobilis for co-production of D-lactic acid and ethanol using waste feedstocks of molasses and corncob residue hydrolysate. Front Bioeng Biotechnol 2023; 11:1135484. [PMID: 36896016 PMCID: PMC9989019 DOI: 10.3389/fbioe.2023.1135484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Lactate is the precursor for polylactide. In this study, a lactate producer of Z. mobilis was constructed by replacing ZMO0038 with LmldhA gene driven by a strong promoter PadhB, replacing ZMO1650 with native pdc gene driven by Ptet, and replacing native pdc with another copy of LmldhA driven by PadhB to divert carbon from ethanol to D-lactate. The resultant strain ZML-pdc-ldh produced 13.8 ± 0.2 g/L lactate and 16.9 ± 0.3 g/L ethanol using 48 g/L glucose. Lactate production of ZML-pdc-ldh was further investigated after fermentation optimization in pH-controlled fermenters. ZML-pdc-ldh produced 24.2 ± 0.6 g/L lactate and 12.9 ± 0.8 g/L ethanol as well as 36.2 ± 1.0 g/L lactate and 40.3 ± 0.3 g/L ethanol, resulting in total carbon conversion rate of 98.3% ± 2.5% and 96.2% ± 0.1% with final product productivity of 1.9 ± 0.0 g/L/h and 2.2 ± 0.0 g/L/h in RMG5 and RMG12, respectively. Moreover, ZML-pdc-ldh produced 32.9 ± 0.1 g/L D-lactate and 27.7 ± 0.2 g/L ethanol as well as 42.8 ± 0.0 g/L D-lactate and 53.1 ± 0.7 g/L ethanol with 97.1% ± 0.0% and 99.1% ± 0.8% carbon conversion rate using 20% molasses or corncob residue hydrolysate, respectively. Our study thus demonstrated that it is effective for lactate production by fermentation condition optimization and metabolic engineering to strengthen heterologous ldh expression while reducing the native ethanol production pathway. The capability of recombinant lactate-producer of Z. mobilis for efficient waste feedstock conversion makes it a promising biorefinery platform for carbon-neutral biochemical production.
Collapse
Affiliation(s)
- Mimi Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, China
| | - Weiwei Bao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, China
| | - Qiqun Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, China
| | - Wei Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xinyu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, China
| | - Yan Xiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, China
| | - Xiongying Yan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, China
| | - Mian Li
- Zhejiang Huakang Pharmaceutical Co., Ltd., Kaihua County, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qiaoning He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
10
|
Yan X, Wang X, Yang Y, Wang Z, Zhang H, Li Y, He Q, Li M, Yang S. Cysteine supplementation enhanced inhibitor tolerance of Zymomonas mobilis for economic lignocellulosic bioethanol production. BIORESOURCE TECHNOLOGY 2022; 349:126878. [PMID: 35189331 DOI: 10.1016/j.biortech.2022.126878] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 05/26/2023]
Abstract
Inhibitors in lignocellulosic hydrolysates are toxic to Zymomonas mobilis and reduce its bioethanol production. This study revealed cysteine supplementation enhanced furfural tolerance in Z. mobilis with a 2-fold biomass increase. Transcriptomic study illustrated that cysteine biosynthesis pathway was down-regulated while cysteine catabolism was up-regulated with cysteine supplementation. Mutants for genes involved in cysteine metabolism were constructed, and metabolites in cysteine metabolic pathway including methionine, glutathione, NaHS, glutamate, and pyruvate were supplemented into media. Cysteine supplementation boosted glutathione synthesis or H2S release effectively in Z. mobilis leading to the reduced accumulation of reactive oxygen species (ROS) induced by furfural, while pyruvate and glutamate produced in the H2S generation pathway promoted cell growth by serving as the carbon or nitrogen source. Finally, cysteine supplementation was confirmed to enhance Z. mobilis tolerance against ethanol, acetate, and corncob hydrolysate with an enhanced ethanol productivity from 0.38 to 0.55 g-1∙L-1∙h-1.
Collapse
Affiliation(s)
- Xiongying Yan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xia Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhen Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Haoyu Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Qiaoning He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Mian Li
- Zhejiang Huakang Pharmaceutical Co., Ltd., Kaihua County, Zhejiang, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
11
|
Zymomonas mobilis ZM4 Utilizes an NADP +-Dependent Acetaldehyde Dehydrogenase To Produce Acetate. J Bacteriol 2022; 204:e0056321. [PMID: 35258321 PMCID: PMC9017298 DOI: 10.1128/jb.00563-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zymomonas mobilis is a promising bacterial host for biofuel production, but further improvement has been hindered because some aspects of its metabolism remain poorly understood. For example, one of the main by-products generated by Z. mobilis is acetate, but the pathway for acetate production is unknown. Acetaldehyde oxidation has been proposed as the major source of acetate, and an acetaldehyde dehydrogenase was previously isolated from Z. mobilis via activity guided fractionation, but the corresponding gene has never been identified. We determined that the locus ZMO1754 (also known as ZMO_RS07890) encodes an NADP+-dependent acetaldehyde dehydrogenase that is responsible for acetate production by Z. mobilis. Deletion of this gene from the chromosome resulted in a growth defect in oxic conditions, suggesting that acetaldehyde detoxification is an important role of acetaldehyde dehydrogenase. The deletion strain also exhibited a near complete abolition of acetate production, both in typical laboratory conditions and during lignocellulosic hydrolysate fermentation. Our results show that ZMO1754 encodes the major acetate-forming acetaldehyde dehydrogenase in Z. mobilis, and we therefore rename the gene aldB based on functional similarity to the Escherichia coli acetaldehyde dehydrogenase. IMPORTANCE Biofuel production from nonfood crops is an important strategy for reducing carbon emissions from the transportation industry, but it has not yet become commercially viable. An important avenue to improve biofuel production is to enhance the characteristics of fermentation organisms by decreasing by-product formation via genetic engineering. Here, we identified and deleted a metabolic pathway and associated gene that lead to acetate formation in Zymomonas mobilis. Acetate is one of the major by-products generated during ethanol production by Z. mobilis, so this information may be used in the future to develop better strains for commercial biofuel production.
Collapse
|
12
|
Trujillo EA, Hebert AS, Rivera Vazquez JC, Brademan DR, Tatli M, Amador-Noguez D, Meyer JG, Coon JJ. Rapid Targeted Quantitation of Protein Overexpression with Direct Infusion Shotgun Proteome Analysis (DISPA-PRM). Anal Chem 2022; 94:1965-1973. [PMID: 35044165 PMCID: PMC9007395 DOI: 10.1021/acs.analchem.1c03243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
While much effort has been placed on comprehensive quantitative proteome analysis, certain applications demand the measurement of only a few target proteins from complex systems. Traditional approaches to targeted proteomics rely on nanoliquid chromatography (nLC) and targeted mass spectrometry (MS) methods, e.g., parallel reaction monitoring (PRM). However, the time requirement for nLC can limit the throughput of targeted proteomics. To achieve rapid and high-throughput targeted methods, here we show that nLC separations can be eliminated and replaced with direct infusion shotgun proteome analysis (DISPA) using high-field asymmetric waveform ion mobility spectrometry (FAIMS) with PRM. We demonstrate the application of DISPA-PRM for rapid targeted quantification of bacterial enzymes utilized in the production of biofuels by monitoring temporal expression in 72 metabolically engineered bacterial cultures in less than 2.5 h, with a measured dynamic range >1200-fold. We conclude that DISPA-PRM presents a valuable innovative tool with results comparable to nLC-MS/MS, enabling fast and rapid detection of targeted proteins in complex mixtures.
Collapse
Affiliation(s)
- Edna A. Trujillo
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Alexander S. Hebert
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706
| | - Julio C. Rivera Vazquez
- Bacteriology, University of Wisconsin-Madison, Madison, WI 53706,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706
| | | | - Mehmet Tatli
- Bacteriology, University of Wisconsin-Madison, Madison, WI 53706,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706
| | - Daniel Amador-Noguez
- Bacteriology, University of Wisconsin-Madison, Madison, WI 53706,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706
| | - Jesse G. Meyer
- Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706,Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706,Morgridge Institute for Research, Madison, WI 53706
| |
Collapse
|
13
|
Martien JI, Trujillo EA, Jacobson TB, Tatli M, Hebert AS, Stevenson DM, Coon JJ, Amador-Noguez D. Metabolic Remodeling during Nitrogen Fixation in Zymomonas mobilis. mSystems 2021; 6:e0098721. [PMID: 34783580 PMCID: PMC8594446 DOI: 10.1128/msystems.00987-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022] Open
Abstract
Zymomonas mobilis is an ethanologenic bacterium currently being developed for production of advanced biofuels. Recent studies have shown that Z. mobilis can fix dinitrogen gas (N2) as a sole nitrogen source. During N2 fixation, Z. mobilis exhibits increased biomass-specific rates of ethanol production. In order to better understand the physiology of Z. mobilis during N2 fixation and during changes in ammonium (NH4+) availability, we performed liquid chromatography-mass spectrometry (LC-MS)-based targeted metabolomics and shotgun proteomics under three regimes of nitrogen availability: continuous N2 fixation, gradual NH4+ depletion, and acute NH4+ addition to N2-fixing cells. We report dynamic changes in abundance of proteins and metabolites related to nitrogen fixation, motility, ammonium assimilation, amino acid biosynthesis, nucleotide biosynthesis, isoprenoid biosynthesis, and Entner-Doudoroff (ED) glycolysis, providing insight into the regulatory mechanisms that control these processes in Z. mobilis. Our analysis identified potential physiological mechanisms that may contribute to increased specific ethanol production during N2 fixation, including decreased activity of biosynthetic pathways, increased protein abundance of alcohol dehydrogenase (ADHI), and increased thermodynamic favorability of the ED pathway. Of particular relevance to advanced biofuel production, we found that intermediates in the methylerythritol phosphate (MEP) pathway for isoprenoid biosynthesis were depleted during N2 fixation, coinciding with decreased protein abundance of deoxyxylulose 5-phosphate synthase (DXS), the first enzyme in the pathway. This implies that DXS protein abundance serves as a native control point in regulating MEP pathway activity in Z. mobilis. The results of this study will inform metabolic engineering to further develop Z. mobilis as a platform organism for biofuel production. IMPORTANCE Biofuels and bioproducts have the potential to serve as environmentally sustainable replacements for petroleum-derived fuels and commodity molecules. Advanced fuels such as higher alcohols and isoprenoids are more suitable gasoline replacements than bioethanol. Developing microbial systems to generate advanced biofuels requires metabolic engineering to reroute carbon away from ethanol and other native products and toward desired pathways, such as the MEP pathway for isoprenoid biosynthesis. However, rational engineering of microbial metabolism relies on understanding metabolic control points, in terms of both enzyme activity and thermodynamic favorability. In Z. mobilis, the factors that control glycolytic rates, ethanol production, and isoprenoid production are still not fully understood. In this study, we performed metabolomic, proteomic, and thermodynamic analysis of Z. mobilis during N2 fixation. This analysis identified key changes in metabolite levels, enzyme abundance, and glycolytic thermodynamic favorability that occurred during changes in NH4+ availability, helping to inform future efforts in metabolic engineering.
Collapse
Affiliation(s)
- Julia I. Martien
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Edna A. Trujillo
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Tyler B. Jacobson
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Mehmet Tatli
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Alexander S. Hebert
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - David M. Stevenson
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Joshua J. Coon
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Daniel Amador-Noguez
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
14
|
Nisar A, Gongye X, Huang Y, Khan S, Chen M, Wu B, He M. Genome-Wide Analyses of Proteome and Acetylome in Zymomonas mobilis Under N 2-Fixing Condition. Front Microbiol 2021; 12:740555. [PMID: 34803957 PMCID: PMC8600466 DOI: 10.3389/fmicb.2021.740555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022] Open
Abstract
Zymomonas mobilis, a promising candidate for industrial biofuel production, is capable of nitrogen fixation naturally without hindering ethanol production. However, little is known about the regulation of nitrogen fixation in Z. mobilis. We herein conducted a high throughput analysis of proteome and protein acetylation in Z. mobilis under N2-fixing conditions and established its first acetylome. The upregulated proteins mainly belong to processes of nitrogen fixation, motility, chemotaxis, flagellar assembly, energy production, transportation, and oxidation–reduction. Whereas, downregulated proteins are mainly related to energy-consuming and biosynthetic processes. Our acetylome analyses revealed 197 uniquely acetylated proteins, belonging to major pathways such as nitrogen fixation, central carbon metabolism, ammonia assimilation pathway, protein biosynthesis, and amino acid metabolism. Further, we observed acetylation in glycolytic enzymes of central carbon metabolism, the nitrogenase complex, the master regulator NifA, and the enzyme in GS/GOGAT cycle. These findings suggest that protein acetylation may play an important role in regulating various aspects of N2-metabolism in Z. mobilis. This study provides new knowledge of specific proteins and their associated cellular processes and pathways that may be regulated by protein acetylation in Z. mobilis.
Collapse
Affiliation(s)
- Ayesha Nisar
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China.,Graduate School of Chinese Academy of Agricultural Science, Beijing, China
| | - Xiangxu Gongye
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Yuhuan Huang
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China.,Graduate School of Chinese Academy of Agricultural Science, Beijing, China
| | - Sawar Khan
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Mao Chen
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China.,Graduate School of Chinese Academy of Agricultural Science, Beijing, China
| | - Bo Wu
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Mingxiong He
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| |
Collapse
|
15
|
Abstract
Steroids are one of three major lipid components of the eukaryotic cellular membrane, along with glycerophospolipids and sphingolipids. Steroids have critical roles in eukaryotic endocytosis and thus may have been structural prerequisites for the endocytic acquisition of mitochondria during eukaryogenesis. The evolutionary history of the eukaryotic cellular membrane is poorly understood and, as such, has limited our understanding of eukaryogenesis. We address the evolution of steroid biosynthesis by combining ancestral sequence reconstruction and phylogenetic analyses of steroid biosynthesis genes. Our results indicate that steroid biosynthesis evolved within bacteria in response to the rise of oxygen and was later horizontally transferred to eukaryotes. Membrane properties of early eukaryotes are inferred to have been different than that of modern eukaryotes. Steroids are components of the eukaryotic cellular membrane and have indispensable roles in the process of eukaryotic endocytosis by regulating membrane fluidity and permeability. In particular, steroids may have been a structural prerequisite for the acquisition of mitochondria via endocytosis during eukaryogenesis. While eukaryotes are inferred to have evolved from an archaeal lineage, there is little similarity between the eukaryotic and archaeal cellular membranes. As such, the evolution of eukaryotic cellular membranes has limited our understanding of eukaryogenesis. Despite evolving from archaea, the eukaryotic cellular membrane is essentially a fatty acid bacterial-type membrane, which implies a substantial bacterial contribution to the evolution of the eukaryotic cellular membrane. Here, we address the evolution of steroid biosynthesis in eukaryotes by combining ancestral sequence reconstruction and comprehensive phylogenetic analyses of steroid biosynthesis genes. Contrary to the traditional assumption that eukaryotic steroid biosynthesis evolved within eukaryotes, most steroid biosynthesis genes are inferred to be derived from bacteria. In particular, aerobic deltaproteobacteria (myxobacteria) seem to have mediated the transfer of key genes for steroid biosynthesis to eukaryotes. Analyses of resurrected steroid biosynthesis enzymes suggest that the steroid biosynthesis pathway in early eukaryotes may have been similar to the pathway seen in modern plants and algae. These resurrected proteins also experimentally demonstrate that molecular oxygen was required to establish the modern eukaryotic cellular membrane during eukaryogenesis. Our study provides unique insight into relationships between early eukaryotes and other bacteria in addition to the well-known endosymbiosis with alphaproteobacteria.
Collapse
|
16
|
Acetaldehyde Stimulation of the Growth of Zymomonas mobilis Subjected to Ethanol and Other Environmental Stresses: Effect of Other Metabolic Electron Acceptors and Evidence for a Mechanism. FERMENTATION 2021. [DOI: 10.3390/fermentation7020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ethanol-stressed cultures of Z. mobilis showed greatly reduced lag times in growth when supplemented with small amounts of acetaldehyde. This effect could be mimicked by other metabolic electron acceptors, including propionaldehyde and oxygen, indicating a redox-based mechanism. Added propionaldehyde was rapidly and stoichiometrically converted to 1-propanol, suggesting that added acetaldehyde is also reduced during early growth. Acetaldehyde addition measurably accelerated glycolysis in nongrowing cells and also slightly stimulated cultures subjected to temperature change, osmotic shock and salt and acetate stress. Acetaldehyde’s stimulatory effect appears to be due to its ability to accelerate glycolysis via its effect on the cellular redox balance. Acetaldehyde reduction opposes the drain on NAD+ concentrations caused by oxidation of the added ethanol, accounting for the particularly strong effect on ethanol-stressed cells. This study provides evidence for our earlier proposed redox-based mechanism for acetaldehyde’s ability to reduce the lag phase of environmentally stressed cultures and suggests that the effect may have applications in industrial fermentations, especially those inhibited by ethanol and toxic compounds present in, for instance, lignocellulosic hydrolysates.
Collapse
|
17
|
Hu M, Chen X, Huang J, Du J, Li M, Yang S. Revitalizing the ethanologenic bacterium Zymomonas mobilis for sugar reduction in high-sugar-content fruits and commercial products. BIORESOUR BIOPROCESS 2021; 8:119. [PMID: 34873566 PMCID: PMC8637514 DOI: 10.1186/s40643-021-00467-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/17/2021] [Indexed: 12/31/2022] Open
Abstract
The excessive consumption of sugars can cause health issues. Different strategies have been developed to reduce sugars in the diets. However, sugars in fruits and commercial products may be difficult to reduce, limiting their usage among certain populations of people. Zymomonas mobilis is a generally recognized as safe (GRAS) probiotic bacterium with the capability to produce levan-type prebiotics, and thrives in high-sugar environments with unique characteristics to be developed for lignocellulosic biofuel and biochemical production. In this study, the sugar reduction capabilities of Z. mobilis ZM4 were examined using two fruits of pear and persimmon and three high-sugar-content commercial products of two pear pastes (PPs) and one Chinese traditional wine (CTW). Our results demonstrated that Z. mobilis ZM4 can utilize sugars in fruits with about 20 g/L ethanol and less than 5 g/L sorbitol produced within 22 h using pears, and about 45 g/L ethanol and 30 g/L sorbitol produced within 34 h using persimmons. When PPs made from pears were used, Z. mobilis can utilize nearly all glucose (ca. 60 g/L) and most fructose (110 g/L) within 100 h with 40 ~ 60 g/L ethanol and more than 20 g/L sorbitol produced resulting in a final sorbitol concentration above 80 g/L. In the high-sugar-content alcoholic Chinese traditional wine, which contains mostly glucose and ethanol, Z. mobilis can reduce nearly all sugars with about 30 g/L ethanol produced, resulting in a final ethanol above 90 g/L. The ethanol yield and percentage yield of Z. mobilis in 50 ~ 60% CTW were 0.44 ~ 0.50 g/g and 86 ~ 97%, respectively, which are close to its theoretical yields-especially in 60% CTW. Although the ethanol yield and percentage yield in PPs were lower than those in CTW, they were similar to those in fruits of pears and persimmons with an ethanol yield around 0.30 ~ 0.37 g/g and ethanol percentage yield around 60 ~ 72%, which could be due to the formation of sorbitol and/or levan in the presence of both glucose and fructose. Our study also compared the fermentation performance of the classical ethanologenic yeast Saccharomyces cerevisiae BY4743 to Z. mobilis, with results suggesting that Z. mobilis ZM4 had better performance than that of yeast S. cerevisiae BY4743 given a higher sugar conversion rate and ethanol yield for sugar reduction. This work thus laid a foundation for utilizing the advantages of Z. mobilis in the food industry to reduce sugar concentrations or potentially produce alcoholic prebiotic beverages. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s40643-021-00467-2.
Collapse
Affiliation(s)
- Mimi Hu
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Xiangyu Chen
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Ju Huang
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Jun Du
- China Biotech Fermentation Industry Association, Beijing, 100833 China
| | - Mian Li
- Zhejiang Huakang Pharmaceutical Co., Ltd., Kaihua County, Zhejiang, China
| | - Shihui Yang
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| |
Collapse
|
18
|
Ong WK, Courtney DK, Pan S, Andrade RB, Kiley PJ, Pfleger BF, Reed JL. Model-driven analysis of mutant fitness experiments improves genome-scale metabolic models of Zymomonas mobilis ZM4. PLoS Comput Biol 2020; 16:e1008137. [PMID: 32804944 PMCID: PMC7451989 DOI: 10.1371/journal.pcbi.1008137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/27/2020] [Accepted: 07/09/2020] [Indexed: 11/18/2022] Open
Abstract
Genome-scale metabolic models have been utilized extensively in the study and engineering of the organisms they describe. Here we present the analysis of a published dataset from pooled transposon mutant fitness experiments as an approach for improving the accuracy and gene-reaction associations of a metabolic model for Zymomonas mobilis ZM4, an industrially relevant ethanologenic organism with extremely high glycolytic flux and low biomass yield. Gene essentiality predictions made by the draft model were compared to data from individual pooled mutant experiments to identify areas of the model requiring deeper validation. Subsequent experiments showed that some of the discrepancies between the model and dataset were caused by polar effects, mis-mapped barcodes, or mutants carrying both wild-type and transposon disrupted gene copies-highlighting potential limitations inherent to data from individual mutants in these high-throughput datasets. Therefore, we analyzed correlations in fitness scores across all 492 experiments in the dataset in the context of functionally related metabolic reaction modules identified within the model via flux coupling analysis. These correlations were used to identify candidate genes for a reaction in histidine biosynthesis lacking an annotated gene and highlight metabolic modules with poorly correlated gene fitness scores. Additional genes for reactions involved in biotin, ubiquinone, and pyridoxine biosynthesis in Z. mobilis were identified and confirmed using mutant complementation experiments. These discovered genes, were incorporated into the final model, iZM4_478, which contains 747 metabolic and transport reactions (of which 612 have gene-protein-reaction associations), 478 genes, and 616 unique metabolites, making it one of the most complete models of Z. mobilis ZM4 to date. The methods of analysis that we applied here with the Z. mobilis transposon mutant dataset, could easily be utilized to improve future genome-scale metabolic reconstructions for organisms where these, or similar, high-throughput datasets are available.
Collapse
Affiliation(s)
- Wai Kit Ong
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- DOE Great Lakes Bioenergy Research Center, Univ. of Wisconsin-Madison – Madison, Madison, Wisconsin, United States of America
| | - Dylan K. Courtney
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- DOE Great Lakes Bioenergy Research Center, Univ. of Wisconsin-Madison – Madison, Madison, Wisconsin, United States of America
| | - Shu Pan
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- DOE Great Lakes Bioenergy Research Center, Univ. of Wisconsin-Madison – Madison, Madison, Wisconsin, United States of America
| | - Ramon Bonela Andrade
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Patricia J. Kiley
- DOE Great Lakes Bioenergy Research Center, Univ. of Wisconsin-Madison – Madison, Madison, Wisconsin, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Brian F. Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- DOE Great Lakes Bioenergy Research Center, Univ. of Wisconsin-Madison – Madison, Madison, Wisconsin, United States of America
| | - Jennifer L. Reed
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- DOE Great Lakes Bioenergy Research Center, Univ. of Wisconsin-Madison – Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
19
|
Genome-Scale Transcription-Translation Mapping Reveals Features of Zymomonas mobilis Transcription Units and Promoters. mSystems 2020; 5:5/4/e00250-20. [PMID: 32694125 PMCID: PMC7566282 DOI: 10.1128/msystems.00250-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Efforts to rationally engineer synthetic pathways in Zymomonas mobilis are impeded by a lack of knowledge and tools for predictable and quantitative programming of gene regulation at the transcriptional, posttranscriptional, and posttranslational levels. With the detailed functional characterization of the Z. mobilis genome presented in this work, we provide crucial knowledge for the development of synthetic genetic parts tailored to Z. mobilis. This information is vital as researchers continue to develop Z. mobilis for synthetic biology applications. Our methods and statistical analyses also provide ways to rapidly advance the understanding of poorly characterized bacteria via empirical data that enable the experimental validation of sequence-based prediction for genome characterization and annotation. Zymomonas mobilis is an ethanologenic alphaproteobacterium with promise for the industrial conversion of renewable plant biomass into fuels and chemical bioproducts. Limited functional annotation of the Z. mobilis genome is a current barrier to both fundamental studies of Z. mobilis and its development as a synthetic biology chassis. To gain insight, we collected sample-matched multiomics data, including RNA sequencing (RNA-seq), transcription start site (TSS) sequencing (TSS-seq), termination sequencing (term-seq), ribosome profiling, and label-free shotgun proteomic mass spectrometry, across different growth conditions and used these data to improve annotation and assign functional sites in the Z. mobilis genome. Proteomics and ribosome profiling informed revisions of protein-coding genes, which included 44 start codon changes and 42 added proteins. We developed statistical methods for annotating transcript 5′ and 3′ ends, enabling the identification of 3,940 TSSs and their corresponding promoters and 2,091 transcription termination sites, which were distinguished from RNA processing sites by the lack of an adjacent RNA 5′ end. Our results revealed that Z. mobilis σA −35 and −10 promoter elements closely resemble canonical Escherichia coli −35 and −10 elements, with one notable exception: the Z. mobilis −10 element lacks the highly conserved −7 thymine observed in E. coli and other previously characterized σA promoters. The σA promoters of another alphaproteobacterium, Caulobacter crescentus, similarly lack the conservation of −7 thymine in their −10 elements. Our results anchor the development of Z. mobilis as a platform for synthetic biology and establish strategies for empirical genome annotation that can complement purely computational methods. IMPORTANCE Efforts to rationally engineer synthetic pathways in Zymomonas mobilis are impeded by a lack of knowledge and tools for predictable and quantitative programming of gene regulation at the transcriptional, posttranscriptional, and posttranslational levels. With the detailed functional characterization of the Z. mobilis genome presented in this work, we provide crucial knowledge for the development of synthetic genetic parts tailored to Z. mobilis. This information is vital as researchers continue to develop Z. mobilis for synthetic biology applications. Our methods and statistical analyses also provide ways to rapidly advance the understanding of poorly characterized bacteria via empirical data that enable the experimental validation of sequence-based prediction for genome characterization and annotation.
Collapse
|
20
|
Metabolic Profiling of Glucose-Fed Metabolically Active Resting Zymomonas mobilis Strains. Metabolites 2020; 10:metabo10030081. [PMID: 32110884 PMCID: PMC7142471 DOI: 10.3390/metabo10030081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 11/17/2022] Open
Abstract
Zymomonas mobilis is the most efficient bacterial ethanol producer and its physiology is potentially applicable to industrial-scale bioethanol production. However, compared to other industrially important microorganisms, the Z. mobilis metabolome and adaptation to various nutritional and genetic perturbations have been poorly characterized. For rational metabolic engineering, it is essential to understand how central metabolism and intracellular redox balance are maintained in Z. mobilis under various conditions. In this study, we applied quantitative mass spectrometry-based metabolomics to explore how glucose-fed non-growing Z. mobilis Zm6 cells metabolically adapt to change of oxygen availability. Mutants partially impaired in ethanol synthesis (Zm6 adhB) or oxidative stress response (Zm6 cat) were also examined. Distinct patterns of adaptation of central metabolite pools due to the change in cultivation condition and between the mutants and Zm6 reference strain were observed. Decreased NADH/NAD ratio under aerobic incubation corresponded to higher concentrations of the phosphorylated glycolytic intermediates, in accordance with predictions of the kinetic model of Entner–Doudoroff pathway. The effects on the metabolite pools of aerobic to anaerobic transition were similar in the mutants, yet less pronounced. The present data on metabolic plasticity of non-growing Z. mobilis cells will facilitate the further metabolic engineering of the respective strains and their application as biocatalysts.
Collapse
|
21
|
The Nonmevalonate Pathway of Isoprenoid Biosynthesis Supports Anaerobic Growth of Listeria monocytogenes. Infect Immun 2020; 88:IAI.00788-19. [PMID: 31792073 DOI: 10.1128/iai.00788-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/21/2019] [Indexed: 11/20/2022] Open
Abstract
Isoprenoids are an essential and diverse class of molecules, present in all forms of life, that are synthesized from an essential common precursor derived from either the mevalonate pathway or the nonmevalonate pathway. Most bacteria have one pathway or the other, but the Gram-positive, facultative intracellular pathogen Listeria monocytogenes is unusual because it carries all the genes for both pathways. While the mevalonate pathway has previously been reported to be essential, here we demonstrate that the nonmevalonate pathway can support growth of strains 10403S and EGD-e, but only anaerobically. L. monocytogenes lacking the gene hmgR, encoding the rate-limiting enzyme of the mevalonate pathway, had a doubling time of 4 h under anaerobic conditions, in contrast to the 45 min doubling time of the wild type. In contrast, deleting hmgR in two clinical isolates resulted in mutants that grew significantly faster, doubling in approximately 2 h anaerobically, although they still failed to grow under aerobic conditions without mevalonate. The difference in anaerobic growth rate was traced to three amino acid changes in the nonmevalonate pathway enzyme GcpE, and these changes were sufficient to increase the growth rate of 10403S to the rate observed in the clinical isolates. Despite an increased growth rate, virulence was still dependent on the mevalonate pathway in 10403S strains expressing the more active GcpE allele.
Collapse
|
22
|
Zymomonas mobilis metabolism: Novel tools and targets for its rational engineering. Adv Microb Physiol 2020; 77:37-88. [PMID: 34756211 DOI: 10.1016/bs.ampbs.2020.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Zymomonas mobilis is an α-proteobacterium that interests the biofuel industry due to its perfect ethanol fermentation yields. From its first description as a bacterial isolate in fermented alcoholic beverages to date, Z. mobilis has been rigorously studied in directions basic and applied. The Z. mobilis powerful Entner-Doudoroff glycolytic pathway has been the center of rigorous biochemical studies and, aside from ethanol, it has attracted interest in terms of high-added-value chemical manufacturing. Energetic balances and the effects of respiration have been explored in fundamental directions as also in applications pursuing strain enhancement and the utilization of alternative carbon sources. Metabolic modeling has addressed the optimization of the biochemical circuitry at various conditions of growth and/or substrate utilization; it has been also critical in predicting desirable end-product yields via flux redirection. Lastly, stress tolerance has received particular attention, since it directly determines biocatalytical performance at challenging bioreactor conditions. At a genetic level, advances in the genetic engineering of the organism have brought forth beneficial manipulations in the Z. mobilis gene pool, e.g., knock-outs, knock-ins and gene stacking, aiming to broaden the metabolic repertoire and increase robustness. Recent omic and expressional studies shed light on the genomic content of the most applied strains and reveal landscapes of activity manifested at ambient or reactor-based conditions. Studies such as those reviewed in this work, contribute to the understanding of the biology of Z. mobilis, enable insightful strain development, and pave the way for the transformation of Z. mobilis into a consummate organism for biomass conversion.
Collapse
|
23
|
Kalnenieks U, Balodite E, Rutkis R. Metabolic Engineering of Bacterial Respiration: High vs. Low P/O and the Case of Zymomonas mobilis. Front Bioeng Biotechnol 2019; 7:327. [PMID: 31781557 PMCID: PMC6861446 DOI: 10.3389/fbioe.2019.00327] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/28/2019] [Indexed: 11/13/2022] Open
Abstract
Respiratory chain plays a pivotal role in the energy and redox balance of aerobic bacteria. By engineering respiration, it is possible to alter the efficiency of energy generation and intracellular redox state, and thus affect the key bioprocess parameters: cell yield, productivity and stress resistance. Here we summarize the current metabolic engineering and synthetic biology approaches to bacterial respiratory metabolism, with a special focus on the respiratory chain of the ethanologenic bacterium Zymomonas mobilis. Electron transport in Z. mobilis can serve as a model system of bacterial respiration with low oxidative phosphorylation efficiency. Its application for redox balancing and relevance for improvement of stress tolerance are analyzed.
Collapse
Affiliation(s)
- Uldis Kalnenieks
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | | | | |
Collapse
|
24
|
Lal PB, Wells FM, Lyu Y, Ghosh IN, Landick R, Kiley PJ. A Markerless Method for Genome Engineering in Zymomonas mobilis ZM4. Front Microbiol 2019; 10:2216. [PMID: 31681183 PMCID: PMC6797605 DOI: 10.3389/fmicb.2019.02216] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/10/2019] [Indexed: 01/12/2023] Open
Abstract
Metabolic engineering of the biofuel-producing Zymomonas mobilis is necessary if we are to unlock the metabolic potential present in this non-model microbe. Manipulation of such organisms can be challenging because of the limited genetic tools for iterative genome modification. Here, we have developed an efficient method for generating markerless genomic deletions or additions in Z. mobilis. This is a two-step process that involves homologous recombination of an engineered suicide plasmid bearing Z. mobilis targeting sequences and a subsequent recombination event that leads to loss of the suicide plasmid and a genome modification. A key feature of this strategy is that GFP expressed from the suicide plasmid allows easy identification of cells that have lost the plasmid by using a fluorescence activated cell sorter. Using this method, we demonstrated deletion of the gene encoding lactate dehydrogenase (ldh) and the operon for cellulose synthase (bcsABC). In addition, by modifying the plasmid design, we demonstrated targeted insertion of the crtIBE operon encoding a neurosporene biosynthetic pathway into the Z. mobilis genome without addition of any antibiotic resistance genes. We propose this approach will provide an efficient and flexible platform for improved genetic engineering of Z. mobilis.
Collapse
Affiliation(s)
- Piyush Behari Lal
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States.,Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Fritz M Wells
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States.,Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Yucai Lyu
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States.,College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Indro N Ghosh
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Robert Landick
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States.,Cell and Molecular Biology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Patricia J Kiley
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States.,Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States.,Cell and Molecular Biology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
25
|
Tatli M, Hebert AS, Coon JJ, Amador-Noguez D. Genome Wide Phosphoproteome Analysis of Zymomonas mobilis Under Anaerobic, Aerobic, and N 2-Fixing Conditions. Front Microbiol 2019; 10:1986. [PMID: 31551951 PMCID: PMC6737584 DOI: 10.3389/fmicb.2019.01986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/13/2019] [Indexed: 11/29/2022] Open
Abstract
Protein phosphorylation is a post-translational modification with widespread regulatory roles in both eukaryotes and prokaryotes. Using mass spectrometry, we performed a genome wide investigation of protein phosphorylation in the non-model organism and biofuel producer Zymomonas mobilis under anaerobic, aerobic, and N2-fixing conditions. Our phosphoproteome analysis revealed 125 unique phosphorylated proteins, belonging to major pathways such as glycolysis, TCA cycle, electron transport, nitrogen metabolism, and protein synthesis. Quantitative analysis revealed significant and widespread changes in protein phosphorylation across growth conditions. For example, we observed increased phosphorylation of nearly all glycolytic enzymes and a large fraction of ribosomal proteins during aerobic and N2-fixing conditions. We also observed substantial changes in the phosphorylation status of enzymes and regulatory proteins involved in nitrogen fixation and ammonia assimilation during N2-fixing conditions, including nitrogenase, the Rnf electron transport complex, the transcription factor NifA, GS-GOGAT cycle enzymes, and the PII regulatory protein. This suggested that protein phosphorylation may play an important role at regulating all aspects of nitrogen metabolism in Z. mobilis. This study provides new knowledge regarding the specific pathways and cellular processes that may be regulated by protein phosphorylation in this important industrial organism and provides a useful road map for future experiments that investigate the physiological role of specific phosphorylation events in Z. mobilis.
Collapse
Affiliation(s)
- Mehmet Tatli
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Alexander S Hebert
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States.,Genome Center of Wisconsin, Madison, WI, United States
| | - Joshua J Coon
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States.,Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States.,Morgridge Institute for Research, Madison, WI, United States
| | - Daniel Amador-Noguez
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|