1
|
Yadav M, Chaudhary PP, Ratley G, D’Souza B, Kaur M, Ganesan S, Kabat J, Myles IA. TRPA1 Influences Staphylococcus aureus Skin Infection in Mice and Associates with HIF-1a and MAPK Pathway Modulation. Int J Mol Sci 2024; 25:9933. [PMID: 39337422 PMCID: PMC11432213 DOI: 10.3390/ijms25189933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are a major public health burden. Emerging antibiotic resistance has heightened the need for new treatment approaches for MRSA infection such as developing novel antimicrobial agents and enhancing the host's defense response. The thermo-ion channels Transient Receptor Potential (TRP-) A1 and V1 have been identified as modulators of S. aureus quorum sensing in cell culture models. However, their effects on in vivo infection control are unknown. In this study, we investigated the therapeutic effect of natural TRP ion channel inhibitors on MRSA skin infection in mice. While deletion of TRPV1 did not affect lesion size or inflammatory markers, TRPA1-/- mice demonstrated significantly reduced infection severity and abscess size. Treatment with natural inhibitors of TRPA1 with or without blockade of TRPV1 also reduced abscess size. Tissue transcriptomic data coupled with immunohistochemistry revealed that TRPA1 inhibition impacted heat shock protein expression (HSP), modulated the HIF-1a and MAPK pathways, and reduced IL4 expression. Additionally, metabolomics data showed an impact on purine and glycosaminoglycan pathways. Multi-omic integration of transcriptomic and metabolic data revealed that diacylglycerol metabolism was the likely bridge between metabolic and immunological impacts. Our findings suggest that TRPA1 antagonism could provide a promising and cost-effective therapeutic approach for reducing the severity of MRSA infection, and presents a novel underlying molecular mechanism.
Collapse
Affiliation(s)
- Manoj Yadav
- Epithelial Therapeutic Unit, National Institute of Allergy, and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA; (P.P.C.); (G.R.); (B.D.); (M.K.); (I.A.M.)
| | - Prem Prashant Chaudhary
- Epithelial Therapeutic Unit, National Institute of Allergy, and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA; (P.P.C.); (G.R.); (B.D.); (M.K.); (I.A.M.)
| | - Grace Ratley
- Epithelial Therapeutic Unit, National Institute of Allergy, and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA; (P.P.C.); (G.R.); (B.D.); (M.K.); (I.A.M.)
| | - Brandon D’Souza
- Epithelial Therapeutic Unit, National Institute of Allergy, and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA; (P.P.C.); (G.R.); (B.D.); (M.K.); (I.A.M.)
| | - Mahaldeep Kaur
- Epithelial Therapeutic Unit, National Institute of Allergy, and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA; (P.P.C.); (G.R.); (B.D.); (M.K.); (I.A.M.)
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (S.G.); (J.K.)
| | - Juraj Kabat
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (S.G.); (J.K.)
| | - Ian A. Myles
- Epithelial Therapeutic Unit, National Institute of Allergy, and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA; (P.P.C.); (G.R.); (B.D.); (M.K.); (I.A.M.)
| |
Collapse
|
2
|
Cao Y, Chen F, Zhu S, Zhu D, Qi H. Staphylococcus aureus infection initiates hypoxia-mediated STIP1 homology and U-box containing protein 1 upregulation to trigger osteomyelitis. Toxicon 2024; 248:108049. [PMID: 39059559 DOI: 10.1016/j.toxicon.2024.108049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Although little is known about the regulatory mechanisms underlying the pathogenesis of osteomyelitis caused by Staphylococcus aureus (S. aureus), hypoxia-inducible factor-1α (HIF-1α) and STIP1 homology and U-box containing protein 1 (STUB1) have been found to be up-regulated in both S. aureus infected MC3T3-E1 cells and in patients with osteomyelitis. HIF-1α directly targets STUB1 to induce its expression. In MC3T3-E1 cells infected with S. aureus, silencing HIF-1α and STUB1 and administering the hypoxia inhibitor IDF-11774 consistently increased the expression of OSX and RUNX2, as well as the levels of alizarin Red S and alkaline phosphatase activity. In a mouse model of osteomyelitis, S. aureus infection elevated HIF-1α expression and serum STUB1 levels. Interleukin (IL)-6, IL-1β, and C-reactive protein levels in serum were reduced after treatment with the hypoxia inhibitor IDF-11774. Following an infection with S. aureus, hypoxia was activated to cause STUB1 overexpression by directly targeting HIF-1α, ultimately causing osteomyelitis symptoms such as osteogenesis and mineralization defected and increased inflammation. This study presents a novel signaling cascade in the pathogenesis of osteomyelitis involving hypoxia/HIF-1α/STUB1. This signaling cascade may be a target for therapeutic interventions.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Pediatric Surgery, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Feng Chen
- Department of Pediatric, Luodian Hospital, Shanghai, China
| | - Suyue Zhu
- Department of Pediatric, Suqian Hospital Affiliated to Xuzhou Medical University, Suqian, China
| | - Dongsheng Zhu
- Department of Pediatric Surgery, The First People's Hospital of Lianyungang, Lianyungang, China.
| | - Han Qi
- Department of Surgery, The Second People's Hospital of Lianyungang, Lianyungang, China.
| |
Collapse
|
3
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
4
|
Mariano LC, Grenho L, Fernandes MH, de Sousa Gomes P. Integrative tissue, cellular and molecular responsiveness of an innovative ex vivo model of the Staphylococcus aureus-mediated bone infection. FASEB J 2023; 37:e23166. [PMID: 37650876 DOI: 10.1096/fj.202300287rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/21/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
Osteomyelitis is a pathological condition of the bone, frequently associated with the presence of infectious agents - namely Staphylococcus aureus - that induce inflammation and tissue destruction. Recent advances in the understanding of its pathophysiology and the identification of innovative therapeutic approaches were gathered from experimental in vitro and in vivo systems. However, cell culture models offer limited representativeness of the cellular functionality and the cell-cell and cell-matrix interactions, further failing to mimic the three-dimensional tissue organization; and animal models allow for limited mechanistic assessment given the complex nature of systemic and paracrine regulatory systems and are endorsed with ethical constraints. Accordingly, this study aims at the establishment and assessment of a new ex vivo bone infection model, upon the organotypic culture of embryonic chicken femurs colonized with S. aureus, highlighting the model responsiveness at the molecular, cellular, and tissue levels. Upon infection with distinct bacterial inoculums, data reported an initial exponential bacterial growth, followed by diminished metabolic activity. At the tissue level, evidence of S. aureus-mediated tissue destruction was attained and demonstrated through distinct methodologies, conjoined with decreased osteoblastic/osteogenic and increased osteoclastic/osteoclastogenic functionalities-representative of the osteomyelitis clinical course. Overall, the establishment and characterization of an innovative bone tissue infection model that is simple, reproducible, easily manipulated, cost-effective, and simulates many features of human osteomyelitis, further allowing the maintenance of the bone tissue's three-dimensional morphology and cellular arrangement, was achieved. Model responsiveness was further demonstrated, showcasing the capability to improve the research pipeline in bone tissue infection-related research.
Collapse
Affiliation(s)
- Lorena Castro Mariano
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Porto, Portugal
| | - Liliana Grenho
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Porto, Portugal
| | - Maria Helena Fernandes
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Porto, Portugal
| | - Pedro de Sousa Gomes
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Porto, Portugal
| |
Collapse
|
5
|
Bhosle VK, Sun C, Patel S, Ho TWW, Westman J, Ammendolia DA, Langari FM, Fine N, Toepfner N, Li Z, Sharma M, Glogauer J, Capurro MI, Jones NL, Maynes JT, Lee WL, Glogauer M, Grinstein S, Robinson LA. The chemorepellent, SLIT2, bolsters innate immunity against Staphylococcus aureus. eLife 2023; 12:e87392. [PMID: 37773612 PMCID: PMC10541174 DOI: 10.7554/elife.87392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/10/2023] [Indexed: 10/01/2023] Open
Abstract
Neutrophils are essential for host defense against Staphylococcus aureus (S. aureus). The neuro-repellent, SLIT2, potently inhibits neutrophil chemotaxis, and might, therefore, be expected to impair antibacterial responses. We report here that, unexpectedly, neutrophils exposed to the N-terminal SLIT2 (N-SLIT2) fragment kill extracellular S. aureus more efficiently. N-SLIT2 amplifies reactive oxygen species production in response to the bacteria by activating p38 mitogen-activated protein kinase that in turn phosphorylates NCF1, an essential subunit of the NADPH oxidase complex. N-SLIT2 also enhances the exocytosis of neutrophil secondary granules. In a murine model of S. aureus skin and soft tissue infection (SSTI), local SLIT2 levels fall initially but increase subsequently, peaking at 3 days after infection. Of note, the neutralization of endogenous SLIT2 worsens SSTI. Temporal fluctuations in local SLIT2 levels may promote neutrophil recruitment and retention at the infection site and hasten bacterial clearance by augmenting neutrophil oxidative burst and degranulation. Collectively, these actions of SLIT2 coordinate innate immune responses to limit susceptibility to S. aureus.
Collapse
Affiliation(s)
- Vikrant K Bhosle
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Chunxiang Sun
- Faculty of Dentistry, University of TorontoTorontoCanada
| | - Sajedabanu Patel
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Tse Wing Winnie Ho
- The Keenan Research Centre for Biomedical Science, Unity Health TorontoTorontoCanada
- Department of Laboratory Medicine & Pathobiology, Medical Sciences Building, University of TorontoTorontoCanada
| | - Johannes Westman
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Dustin A Ammendolia
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Molecular Genetics, Medical Sciences Building, University of TorontoTorontoCanada
| | - Fatemeh Mirshafiei Langari
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, Medical Sciences Building, University of TorontoTorontoCanada
| | - Noah Fine
- Faculty of Dentistry, University of TorontoTorontoCanada
| | - Nicole Toepfner
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Zhubing Li
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Manraj Sharma
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Judah Glogauer
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
- Faculty of Dentistry, University of TorontoTorontoCanada
| | - Mariana I Capurro
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Nicola L Jones
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick ChildrenTorontoCanada
- Department of Physiology, Medical Sciences Building, University of TorontoTorontoCanada
- Department of Paediatrics, Temerty Faculty of Medicine, University of TorontoTorontoCanada
| | - Jason T Maynes
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Anesthesia and Pain Medicine, The Hospital for Sick ChildrenTorontoCanada
- Department of Anesthesiology & Pain Medicine, Temerty Faculty of Medicine, University of TorontoTorontoCanada
| | - Warren L Lee
- The Keenan Research Centre for Biomedical Science, Unity Health TorontoTorontoCanada
- Department of Laboratory Medicine & Pathobiology, Medical Sciences Building, University of TorontoTorontoCanada
- Department of Biochemistry, Medical Sciences Building, University of TorontoTorontoCanada
- Department of Medicine and Interdepartmental Division of Critical Care Medicine, Temerty Faculty of Medicine, University of TorontoTorontoCanada
| | - Michael Glogauer
- Faculty of Dentistry, University of TorontoTorontoCanada
- Department of Dental Oncology and Maxillofacial Prosthetics, University Health Network, Princess Margaret Cancer CentreTorontoCanada
- Centre for Advanced Dental Research and Care, Mount Sinai HospitalTorontoCanada
| | - Sergio Grinstein
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
- The Keenan Research Centre for Biomedical Science, Unity Health TorontoTorontoCanada
- Department of Biochemistry, Medical Sciences Building, University of TorontoTorontoCanada
| | - Lisa A Robinson
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Paediatrics, Temerty Faculty of Medicine, University of TorontoTorontoCanada
- Institute of Medical Science, University of Toronto, Medical Sciences Building, University of TorontoTorontoCanada
- Division of Nephrology, The Hospital for Sick ChildrenTorontoCanada
| |
Collapse
|
6
|
Mendelsohn DH, Niedermair T, Walter N, Alt V, Rupp M, Brochhausen C. Ultrastructural Evidence of Mitochondrial Dysfunction in Osteomyelitis Patients. Int J Mol Sci 2023; 24:5709. [PMID: 36982790 PMCID: PMC10053973 DOI: 10.3390/ijms24065709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Osteomyelitis is a difficult-to-treat disease with high chronification rates. First studies suggest increases in mitochondrial fission and mitochondrial dysfunction as possible contributors to the accumulation of intracellular reactive oxygen species and thereby to the cell death of infected bone cells. The aim of the present study is to analyze the ultrastructural impact of bacterial infection on osteocytic and osteoblastic mitochondria. Human infected bone tissue samples were visualized via light microscopy and transmission electron microscopy. Osteoblasts, osteocytes and their mitochondria were analyzed histomorphometrically and compared with the control group of noninfectious human bone tissue samples. The results depicted swollen hydropic mitochondria including depleted cristae and a decrease in matrix density in the infected samples. Furthermore, perinuclear clustering of mitochondria could also be observed regularly. Additionally, increases in relative mitochondrial area and number were found as a correlate for increased mitochondrial fission. In conclusion, mitochondrial morphology is altered during osteomyelitis in a comparable way to mitochondria from hypoxic tissues. This gives new perspectives on the treatment strategies since the manipulation of mitochondrial dynamics may improve bone cell survival as a potential new target for the therapy of osteomyelitis.
Collapse
Affiliation(s)
- Daniel H. Mendelsohn
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University Regensburg, University Hospital Regensburg, 93053 Regensburg, Germany
- Department of Trauma Surgery, University Medical Centre Regensburg, 93053 Regensburg, Germany
| | - Tanja Niedermair
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University Regensburg, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Nike Walter
- Department of Trauma Surgery, University Medical Centre Regensburg, 93053 Regensburg, Germany
| | - Volker Alt
- Department of Trauma Surgery, University Medical Centre Regensburg, 93053 Regensburg, Germany
| | - Markus Rupp
- Department of Trauma Surgery, University Medical Centre Regensburg, 93053 Regensburg, Germany
| | - Christoph Brochhausen
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University Regensburg, University Hospital Regensburg, 93053 Regensburg, Germany
- Institute of Pathology, University Medical Centre Mannheim, 68167 Mannheim, Germany
| |
Collapse
|
7
|
Hong Z, Tie Q, Zhang L. Targeted inhibition of the GRK2/HIF-1α pathway is an effective strategy to alleviate synovial hypoxia and inflammation. Int Immunopharmacol 2022; 113:109271. [PMID: 36461590 DOI: 10.1016/j.intimp.2022.109271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022]
Abstract
G-protein coupled receptor (GPCR) kinases (GRKs) and hypoxia-inducible factor-1α (HIF-1α) play key roles in rheumatoid arthritis (RA). Several studies have demonstrated that HIF-1α expression is positively regulated by GRK2, suggesting its posttranscriptional effects on HIF-1α. In this study, we review the role of HIF-1α and GRK2 in RA pathophysiology, focusing on their proinflammatory roles in immune cells and fibroblast-like synoviocytes (FLS).We then introduce several drugs that inhibit GRK2 and HIF-1α, and briefly outline their molecular mechanisms. We conclude by presenting gaps in knowledge and our prospects for the pharmacological potential of targeting these proteins and the relevant downstream signaling pathways.Future research is warranted and paramount for untangling these novel and promising roles for GRK2 and HIF-1α in RA.
Collapse
Affiliation(s)
- Zhongyang Hong
- Department of Pharmacy, Affiliated the Jianhu People's Hospital, Yancheng 224700, China.
| | - Qingsong Tie
- Department of Pharmacy, Affiliated the Jianhu People's Hospital, Yancheng 224700, China.
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
8
|
Abstract
Bacteria engulfed by phagocytic cells must resist oxidation damage and adapt to cellular hypoxia, but the mechanisms involved in this process are not completely elucidated. Recent work by Kim et al. in the Journal of Biological Chemistry investigated how the intracellular pathogen Salmonella enterica activates gene expression required to counteract oxidative damage. The authors show that this bacterium utilizes host oxidative molecules to activate regulatory proteins that enhance the production of effector molecules, counteracting the host weapon NADPH oxidase and inducing a protective response.
Collapse
|