1
|
Rohwer RR, Kirkpatrick M, Garcia SL, Kellom M, McMahon KD, Baker BJ. Two decades of bacterial ecology and evolution in a freshwater lake. Nat Microbiol 2025; 10:246-257. [PMID: 39753668 DOI: 10.1038/s41564-024-01888-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 11/14/2024] [Indexed: 01/12/2025]
Abstract
Ecology and evolution are considered distinct processes that interact on contemporary time scales in microbiomes. Here, to observe these processes in a natural system, we collected a two-decade, 471-metagenome time series from Lake Mendota (Wisconsin, USA). We assembled 2,855 species-representative genomes and found that genomic change was common and frequent. By tracking strain composition via single nucleotide variants, we identified cyclical seasonal patterns in 80% and decadal shifts in 20% of species. In the dominant freshwater family Nanopelagicaceae, environmental extremes coincided with shifts in strain composition and positive selection of amino acid and nucleic acid metabolism genes. These genes identify organic nitrogen compounds as potential drivers of freshwater responses to global change. Seasonal and long-term strain dynamics could be regarded as ecological processes or, equivalently, as evolutionary change. Rather than as distinct interacting processes, we propose a conceptualization of ecology and evolution as a continuum to better describe change in microbial communities.
Collapse
Affiliation(s)
- Robin R Rohwer
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA.
| | - Mark Kirkpatrick
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Sarahi L Garcia
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Science for Life Laboratory, Department of Ecology, Environment, and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Matthew Kellom
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Katherine D McMahon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - Brett J Baker
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA.
- Department of Marine Science, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
2
|
Fang Y, Meng L, Xia J, Gotoh Y, Hayashi T, Nagasaki K, Endo H, Okazaki Y, Ogata H. Genome-resolved year-round dynamics reveal a broad range of giant virus microdiversity. mSystems 2024:e0116824. [PMID: 39714212 DOI: 10.1128/msystems.01168-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/03/2024] [Indexed: 12/24/2024] Open
Abstract
Giant viruses are crucial for marine ecosystem dynamics because they regulate microeukaryotic community structure, accelerate carbon and nutrient cycles, and drive the evolution of their hosts through co-evolutionary processes. Previously reported long-term observations revealed that these viruses display seasonal fluctuations in abundance. However, the underlying genetic mechanisms driving such dynamics of these viruses remain largely unknown. In this study, we investigated the dynamics of giant viruses using time-series metagenomes from eutrophic coastal seawater samples collected over 20 months. A newly developed computational pipeline generated 1,065 high-quality genomes covering six major giant virus lineages. These genomic data revealed year-round recovery of the viral community structure at the study site and distinct dynamics of viral populations that were classified as persistent (n = 9), seasonal (n = 389), sporadic (n = 318), or others. By profiling the intra-species nucleotide-resolved microdiversity through read mapping, we also identified year-round recovery dynamics at subpopulation level for viruses classified as persistent or seasonal. Our results further indicated that giant viruses with broader niche breadth tended to exhibit higher levels of microdiversity. We argue that greater microdiversity of viruses likely enhances adaptability and thus survival under the virus-host arms race during prolonged interactions with their hosts.IMPORTANCERecent genome-resolved metagenomic surveys have uncovered the vast genomic diversity of giant viruses, which play significant roles in aquatic ecosystems by acting as bloom terminators and influencing biogeochemical cycles. However, the relationship between the ecological dynamics of giant viruses and underlying genetic structures of viral populations remains unresolved. In this study, we performed deep metagenomic sequencing of seawater samples collected across a time-series from a coastal area in Japan. The results revealed a significant positive correlation between microdiversity and temporal persistence of giant virus populations, suggesting that population structure is a crucial factor for adaptation and survival in the interactions with their hosts.
Collapse
Affiliation(s)
- Yue Fang
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Lingjie Meng
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Jun Xia
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keizo Nagasaki
- Faculty of Science and Technology, Kochi University, Kochi, Japan
| | - Hisashi Endo
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Yusuke Okazaki
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Uji, Japan
| |
Collapse
|
3
|
Rohwer RR, Kirkpatrick M, Garcia SL, Kellom M, McMahon KD, Baker BJ. Bacterial ecology and evolution converge on seasonal and decadal scales. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579087. [PMID: 38370794 PMCID: PMC10871203 DOI: 10.1101/2024.02.06.579087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Ecology and evolution are often viewed as distinct processes, which interact on contemporary time scales in microbiomes. To observe these processes in a natural system, we collected a two-decade, 471-sample freshwater lake time series, creating the longest metagenome dataset to date. Among 2,855 species-representative genomes, diverse species and strains followed cyclical seasonal patterns, and one in five species experienced decadal shifts in strain composition. The most globally abundant freshwater bacterium had constant species-level abundance, but environmental extremes appeared to trigger a shift in strain composition and positive selection of amino acid and nucleic acid metabolism genes. These genes identify organic nitrogen compounds as potential drivers of freshwater responses to global change. Seasonal and long-term strain dynamics could be regarded as ecological processes or equivalently as evolutionary change. Rather than as distinct processes that interact, we propose a conceptualization where ecology and evolution converge along a continuum to better describe change in diverse microbial communities.
Collapse
Affiliation(s)
- Robin R. Rohwer
- The University of Texas at Austin, Department of Integrative Biology, 2415 Speedway #C0930, Austin, TX 78712, USA
| | - Mark Kirkpatrick
- The University of Texas at Austin, Department of Integrative Biology, 2415 Speedway #C0930, Austin, TX 78712, USA
| | - Sarahi L. Garcia
- Carl von Ossietzky Universität Oldenburg, Institute for Chemistry and Biology of the Marine Environment (ICBM), 26129 Oldenburg, Germany
- Stockholm University, Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, 106 91 Stockholm, Sweden
| | - Matthew Kellom
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Katherine D. McMahon
- University of Wisconsin-Madison, Department of Bacteriology, 1550 Linden Drive, Madison, WI, 53706, USA
- University of Wisconsin-Madison, Department of Civil and Environmental Engineering, 1550 Linden Drive, Madison, WI, 53706, USA
| | - Brett J. Baker
- The University of Texas at Austin, Department of Integrative Biology, 2415 Speedway #C0930, Austin, TX 78712, USA
- The University of Texas at Austin, Department of Marine Science, Port Aransas, Austin, TX 78373, USA
| |
Collapse
|
4
|
Wei X, Tsai MS, Liang L, Jiang L, Hung CJ, Jelliffe-Pawlowski L, Rand L, Snyder M, Jiang C. Vaginal microbiomes show ethnic evolutionary dynamics and positive selection of Lactobacillus adhesins driven by a long-term niche-specific process. Cell Rep 2024; 43:114078. [PMID: 38598334 DOI: 10.1016/j.celrep.2024.114078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/01/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
The vaginal microbiome's composition varies among ethnicities. However, the evolutionary landscape of the vaginal microbiome in the multi-ethnic context remains understudied. We perform a systematic evolutionary analysis of 351 vaginal microbiome samples from 35 multi-ethnic pregnant women, in addition to two validation cohorts, totaling 462 samples from 90 women. Microbiome alpha diversity and community state dynamics show strong ethnic signatures. Lactobacillaceae have a higher ratio of non-synonymous to synonymous polymorphism and lower nucleotide diversity than non-Lactobacillaceae in all ethnicities, with a large repertoire of positively selected genes, including the mucin-binding and cell wall anchor genes. These evolutionary dynamics are driven by the long-term evolutionary process unique to the human vaginal niche. Finally, we propose an evolutionary model reflecting the environmental niches of microbes. Our study reveals the extensive ethnic signatures in vaginal microbial ecology and evolution, highlighting the importance of studying the host-microbiome ecosystem from an evolutionary perspective.
Collapse
Affiliation(s)
- Xin Wei
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Ming-Shian Tsai
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Liang Liang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Liuyiqi Jiang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China
| | - Chia-Jui Hung
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biomedical Informatics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura Jelliffe-Pawlowski
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Larry Rand
- Department of Obstetrics, Gynecology & Reproductive Sciences, School of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Chao Jiang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
5
|
Banchi E, Corre E, Del Negro P, Celussi M, Malfatti F. Genome-resolved metagenomics of Venice Lagoon surface sediment bacteria reveals high biosynthetic potential and metabolic plasticity as successful strategies in an impacted environment. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:126-142. [PMID: 38433960 PMCID: PMC10902248 DOI: 10.1007/s42995-023-00192-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/05/2023] [Indexed: 03/05/2024]
Abstract
Bacteria living in sediments play essential roles in marine ecosystems and deeper insights into the ecology and biogeochemistry of these largely unexplored organisms can be obtained from 'omics' approaches. Here, we characterized metagenome-assembled-genomes (MAGs) from the surface sediment microbes of the Venice Lagoon (northern Adriatic Sea) in distinct sub-basins exposed to various natural and anthropogenic pressures. MAGs were explored for biodiversity, major marine metabolic processes, anthropogenic activity-related functions, adaptations at the microscale, and biosynthetic gene clusters. Starting from 126 MAGs, a non-redundant dataset of 58 was compiled, the majority of which (35) belonged to (Alpha- and Gamma-) Proteobacteria. Within the broad microbial metabolic repertoire (including C, N, and S metabolisms) the potential to live without oxygen emerged as one of the most important features. Mixotrophy was also found as a successful lifestyle. Cluster analysis showed that different MAGs encoded the same metabolic patterns (e.g., C fixation, sulfate oxidation) thus suggesting metabolic redundancy. Antibiotic and toxic compounds resistance genes were coupled, a condition that could promote the spreading of these genetic traits. MAGs showed a high biosynthetic potential related to antimicrobial and biotechnological classes and to organism defense and interactions as well as adaptive strategies for micronutrient uptake and cellular detoxification. Our results highlighted that bacteria living in an impacted environment, such as the surface sediments of the Venice Lagoon, may benefit from metabolic plasticity as well as from the synthesis of a wide array of secondary metabolites, promoting ecosystem resilience and stability toward environmental pressures. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00192-z.
Collapse
Affiliation(s)
- Elisa Banchi
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
| | - Erwan Corre
- FR2424, Station Biologique de Roscoff, Plateforme ABiMS (Analysis and Bioinformatics for Marine Science), Sorbonne Université CNRS, 29680 Roscoff, France
| | - Paola Del Negro
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
| | - Mauro Celussi
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
| | - Francesca Malfatti
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
6
|
Layoun P, López-Pérez M, Haro-Moreno JM, Haber M, Thrash JC, Henson MW, Kavagutti VS, Ghai R, Salcher MM. Flexible genomic island conservation across freshwater and marine Methylophilaceae. THE ISME JOURNAL 2024; 18:wrad036. [PMID: 38365254 PMCID: PMC10872708 DOI: 10.1093/ismejo/wrad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 02/18/2024]
Abstract
The evolutionary trajectory of Methylophilaceae includes habitat transitions from freshwater sediments to freshwater and marine pelagial that resulted in genome reduction (genome-streamlining) of the pelagic taxa. However, the extent of genetic similarities in the genomic structure and microdiversity of the two genome-streamlined pelagic lineages (freshwater "Ca. Methylopumilus" and the marine OM43 lineage) has so far never been compared. Here, we analyzed complete genomes of 91 "Ca. Methylopumilus" strains isolated from 14 lakes in Central Europe and 12 coastal marine OM43 strains. The two lineages showed a remarkable niche differentiation with clear species-specific differences in habitat preference and seasonal distribution. On the other hand, we observed a synteny preservation in their genomes by having similar locations and types of flexible genomic islands (fGIs). Three main fGIs were identified: a replacement fGI acting as phage defense, an additive fGI harboring metabolic and resistance-related functions, and a tycheposon containing nitrogen-, thiamine-, and heme-related functions. The fGIs differed in relative abundances in metagenomic datasets suggesting different levels of variability ranging from strain-specific to population-level adaptations. Moreover, variations in one gene seemed to be responsible for different growth at low substrate concentrations and a potential biogeographic separation within one species. Our study provides a first insight into genomic microdiversity of closely related taxa within the family Methylophilaceae and revealed remarkably similar dynamics involving mobile genetic elements and recombination between freshwater and marine family members.
Collapse
Affiliation(s)
- Paul Layoun
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Mario López-Pérez
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain
| | - Jose M Haro-Moreno
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain
| | - Markus Haber
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, 37005 Ceske Budejovice, Czech Republic
| | - J Cameron Thrash
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Michael W Henson
- Department of Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Vinicius Silva Kavagutti
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, 37005 Ceske Budejovice, Czech Republic
| | - Michaela M Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, 37005 Ceske Budejovice, Czech Republic
| |
Collapse
|
7
|
Nishikawa Y, Wagatsuma R, Tsukada Y, Chia-ling L, Chijiiwa R, Hosokawa M, Takeyama H. Large-scale single-virus genomics uncovers hidden diversity of river water viruses and diversified gene profiles. THE ISME JOURNAL 2024; 18:wrae124. [PMID: 38976038 PMCID: PMC11283719 DOI: 10.1093/ismejo/wrae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/18/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Environmental viruses (primarily bacteriophages) are widely recognized as playing an important role in ecosystem homeostasis through the infection of host cells. However, the majority of environmental viruses are still unknown as their mosaic structure and frequent mutations in their sequences hinder genome construction in current metagenomics. To enable the large-scale acquisition of environmental viral genomes, we developed a new single-viral genome sequencing platform with microfluidic-generated gel beads. Amplification of individual DNA viral genomes in mass-produced gel beads allows high-throughput genome sequencing compared to conventional single-virus genomics. The sequencing analysis of river water samples yielded 1431 diverse viral single-amplified genomes, whereas viral metagenomics recovered 100 viral metagenome-assembled genomes at the comparable sequence depth. The 99.5% of viral single-amplified genomes were determined novel at the species level, most of which could not be recovered by a metagenomic assembly. The large-scale acquisition of diverse viral genomes identified protein clusters commonly detected in different viral strains, allowing the gene transfer to be tracked. Moreover, comparative genomics within the same viral species revealed that the profiles of various methyltransferase subtypes were diverse, suggesting an enhanced escape from host bacterial internal defense mechanisms. Our use of gel bead-based single-virus genomics will contribute to exploring the nature of viruses by accelerating the accumulation of draft genomes of environmental DNA viruses.
Collapse
Affiliation(s)
- Yohei Nishikawa
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST-Waseda University, 3-4-1 Okubo, Tokyo 169-0082, Japan
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda Tsurumaki-cho, Tokyo 162–0041, Japan
| | - Ryota Wagatsuma
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST-Waseda University, 3-4-1 Okubo, Tokyo 169-0082, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yuko Tsukada
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Lin Chia-ling
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Rieka Chijiiwa
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda Tsurumaki-cho, Tokyo 162–0041, Japan
| | - Masahito Hosokawa
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST-Waseda University, 3-4-1 Okubo, Tokyo 169-0082, Japan
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda Tsurumaki-cho, Tokyo 162–0041, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Haruko Takeyama
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST-Waseda University, 3-4-1 Okubo, Tokyo 169-0082, Japan
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda Tsurumaki-cho, Tokyo 162–0041, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
8
|
Zhang L, Meng L, Fang Y, Ogata H, Okazaki Y. Spatiotemporal dynamics of giant viruses within a deep freshwater lake reveal a distinct dark-water community. THE ISME JOURNAL 2024; 18:wrae182. [PMID: 39312489 PMCID: PMC11465185 DOI: 10.1093/ismejo/wrae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/02/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
Giant viruses (GVs) significantly regulate the ecological dynamics of diverse ecosystems. Although metagenomics has expanded our understanding of their diversity and ecological roles played in marine environments, little is known about GVs of freshwater ecosystems. Most previous studies have employed short-read sequencing and therefore resulted in fragmented genomes, hampering accurate assessment of genetic diversity. We sought to bridge this knowledge gap and overcome previous technical limitations. We subjected spatiotemporal (2 depths × 12 months) samples from Lake Biwa to metagenome-assembled genome reconstruction enhanced by long-read metagenomics. This yielded 293 GV metagenome-assembled genomes. Of these, 285 included previously unknown species in five orders of nucleocytoviruses and the first representatives of freshwater mirusviruses, which exhibited marked divergence from marine-derived lineages. The good performance of our long-read metagenomic assembly was demonstrated by the detection of 42 (14.3%) genomes composed of single contigs with completeness values >90%. GVs were partitioned across water depths, with most species specific to either the sunlit epilimnion or the dark hypolimnion. Epilimnion-specific members tended to be transient and exhibit short and intense abundance peaks, in line with the fact that they regulate the surface algal blooms. During the spring bloom, mirusviruses and members of three nucleocytovirus families were among the most abundant viruses. In contrast, hypolimnion-specific ones, including a mirusvirus genome, were typically more persistent in the hypolimnion throughout the water-stratified period, suggesting that they infect hosts specific to the hypolimnion and play previously unexplored ecological roles in dark water microbial ecosystems.
Collapse
Affiliation(s)
- Liwen Zhang
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Lingjie Meng
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yue Fang
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yusuke Okazaki
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
9
|
Wong HL, Bulzu PA, Ghai R, Chiriac MC, Salcher MM. Ubiquitous genome streamlined Acidobacteriota in freshwater environments. ISME COMMUNICATIONS 2024; 4:ycae124. [PMID: 39544963 PMCID: PMC11561045 DOI: 10.1093/ismeco/ycae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/30/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
Acidobacteriota are abundant in soil, peatlands, and sediments, but their ecology in freshwater environments remains understudied. UBA12189, an Acidobacteriota genus, is an uncultivated, genome-streamlined lineage with a small genome size found in aquatic environments where detailed genomic analyses are lacking. Here, we analyzed 66 MAGs of UBA12189 (including one complete genome) from freshwater lakes and rivers in Europe, North America, and Asia. UBA12189 has small genome sizes (<1.4 Mbp), low GC content, and a highly diverse pangenome. In freshwater lakes, this bacterial lineage is abundant from the surface waters (epilimnion) down to a 300-m depth (hypolimnion). UBA12189 appears to be free-living from CARD-FISH analysis. When compared to other genome-streamlined bacteria such as Nanopelagicales and Methylopumilus, genome reduction has caused UBA12189 to have a more limited metabolic repertoire in carbon, sulfur, and nitrogen metabolisms, limited numbers of membrane transporters, as well as a higher degree of auxotrophy for various amino acids, vitamins, and reduced sulfur. Despite having reduced genomes, UBA12189 encodes proteorhodopsin, complete biosynthesis pathways for heme and vitamin K2, cbb3-type cytochrome c oxidases, and heme-requiring enzymes. These genes may give a selective advantage during the genome streamlining process. We propose the new genus Acidiparvus, with two new species named "A. lacustris" and "A. fluvialis". Acidiparvus is the first described genome-streamlined lineage under the phylum Acidobacteriota, which is a free-living, slow-growing scavenger in freshwater environments.
Collapse
Affiliation(s)
- Hon Lun Wong
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sadkach 7, 37005 České Budějovice, Czech Republic
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Paul-Adrian Bulzu
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sadkach 7, 37005 České Budějovice, Czech Republic
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sadkach 7, 37005 České Budějovice, Czech Republic
| | - Maria-Cecilia Chiriac
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sadkach 7, 37005 České Budějovice, Czech Republic
| | - Michaela M Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sadkach 7, 37005 České Budějovice, Czech Republic
| |
Collapse
|
10
|
Garner RE, Kraemer SA, Onana VE, Fradette M, Varin MP, Huot Y, Walsh DA. A genome catalogue of lake bacterial diversity and its drivers at continental scale. Nat Microbiol 2023; 8:1920-1934. [PMID: 37524802 DOI: 10.1038/s41564-023-01435-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 06/20/2023] [Indexed: 08/02/2023]
Abstract
Lakes are heterogeneous ecosystems inhabited by a rich microbiome whose genomic diversity is poorly defined. We present a continental-scale study of metagenomes representing 6.5 million km2 of the most lake-rich landscape on Earth. Analysis of 308 Canadian lakes resulted in a metagenome-assembled genome (MAG) catalogue of 1,008 mostly novel bacterial genomospecies. Lake trophic state was a leading driver of taxonomic and functional diversity among MAG assemblages, reflecting the responses of communities profiled by 16S rRNA amplicons and gene-centric metagenomics. Coupling the MAG catalogue with watershed geomatics revealed terrestrial influences of soils and land use on assemblages. Agriculture and human population density were drivers of turnover, indicating detectable anthropogenic imprints on lake bacteria at the continental scale. The sensitivity of bacterial assemblages to human impact reinforces lakes as sentinels of environmental change. Overall, the LakePulse MAG catalogue greatly expands the freshwater genomic landscape, advancing an integrative view of diversity across Earth's microbiomes.
Collapse
Affiliation(s)
- Rebecca E Garner
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Groupe de recherche interuniversitaire en limnologie, Montreal, Quebec, Canada
| | | | - Vera E Onana
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Groupe de recherche interuniversitaire en limnologie, Montreal, Quebec, Canada
| | - Maxime Fradette
- Département de géomatique appliquée, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Marie-Pierre Varin
- Département de géomatique appliquée, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Yannick Huot
- Groupe de recherche interuniversitaire en limnologie, Montreal, Quebec, Canada
- Département de géomatique appliquée, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - David A Walsh
- Department of Biology, Concordia University, Montreal, Quebec, Canada.
- Groupe de recherche interuniversitaire en limnologie, Montreal, Quebec, Canada.
| |
Collapse
|
11
|
Park H, Shabarova T, Salcher MM, Kosová L, Rychtecký P, Mukherjee I, Šimek K, Porcal P, Seďa J, Znachor P, Kasalický V. In the right place, at the right time: the integration of bacteria into the Plankton Ecology Group model. MICROBIOME 2023; 11:112. [PMID: 37210505 DOI: 10.1186/s40168-023-01522-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/17/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Planktonic microbial communities have critical impacts on the pelagic food web and water quality status in freshwater ecosystems, yet no general model of bacterial community assembly linked to higher trophic levels and hydrodynamics has been assessed. In this study, we utilized a 2-year survey of planktonic communities from bacteria to zooplankton in three freshwater reservoirs to investigate their spatiotemporal dynamics. RESULTS We observed site-specific occurrence and microdiversification of bacteria in lacustrine and riverine environments, as well as in deep hypolimnia. Moreover, we determined recurrent bacterial seasonal patterns driven by both biotic and abiotic conditions, which could be integrated into the well-known Plankton Ecology Group (PEG) model describing primarily the seasonalities of larger plankton groups. Importantly, bacteria with different ecological potentials showed finely coordinated successions affiliated with four seasonal phases, including the spring bloom dominated by fast-growing opportunists, the clear-water phase associated with oligotrophic ultramicrobacteria, the summer phase characterized by phytoplankton bloom-associated bacteria, and the fall/winter phase driven by decay-specialists. CONCLUSIONS Our findings elucidate the major principles driving the spatiotemporal microbial community distribution in freshwater ecosystems. We suggest an extension to the original PEG model by integrating new findings on recurrent bacterial seasonal trends. Video Abstract.
Collapse
Grants
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- 20-12496X Grantová Agentura České Republiky
- 19-00113S Grantová Agentura České Republiky
- 19-23469S Grantová Agentura České Republiky
- 19-00113S Grantová Agentura České Republiky
- 22-33245S Grantová Agentura České Republiky
- 20-12496X Grantová Agentura České Republiky
Collapse
Affiliation(s)
- Hongjae Park
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
| | - Tanja Shabarova
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Lenka Kosová
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Pavel Rychtecký
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Indranil Mukherjee
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Karel Šimek
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Petr Porcal
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jaromír Seďa
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Petr Znachor
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Vojtěch Kasalický
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
12
|
Chiriac MC, Haber M, Salcher MM. Adaptive genetic traits in pelagic freshwater microbes. Environ Microbiol 2023; 25:606-641. [PMID: 36513610 DOI: 10.1111/1462-2920.16313] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Pelagic microbes have adopted distinct strategies to inhabit the pelagial of lakes and oceans and can be broadly categorized in two groups: free-living, specialized oligotrophs and patch-associated generalists or copiotrophs. In this review, we aim to identify genomic traits that enable pelagic freshwater microbes to thrive in their habitat. To do so, we discuss the main genetic differences of pelagic marine and freshwater microbes that are both dominated by specialized oligotrophs and the difference to freshwater sediment microbes, where copiotrophs are more prevalent. We phylogenomically analysed a collection of >7700 metagenome-assembled genomes, classified habitat preferences on different taxonomic levels, and compared the metabolic traits of pelagic freshwater, marine, and freshwater sediment microbes. Metabolic differences are mainly associated with transport functions, environmental information processing, components of the electron transport chain, osmoregulation and the isoelectric point of proteins. Several lineages with known habitat transitions (Nitrososphaeria, SAR11, Methylophilaceae, Synechococcales, Flavobacteriaceae, Planctomycetota) and the underlying mechanisms in this process are discussed in this review. Additionally, the distribution, ecology and genomic make-up of the most abundant freshwater prokaryotes are described in details in separate chapters for Actinobacteriota, Bacteroidota, Burkholderiales, Verrucomicrobiota, Chloroflexota, and 'Ca. Patescibacteria'.
Collapse
Affiliation(s)
| | - Markus Haber
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czechia
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czechia
| |
Collapse
|
13
|
Dong X, Peng Y, Wang M, Woods L, Wu W, Wang Y, Xiao X, Li J, Jia K, Greening C, Shao Z, Hubert CRJ. Evolutionary ecology of microbial populations inhabiting deep sea sediments associated with cold seeps. Nat Commun 2023; 14:1127. [PMID: 36854684 PMCID: PMC9974965 DOI: 10.1038/s41467-023-36877-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Deep sea cold seep sediments host abundant and diverse microbial populations that significantly influence biogeochemical cycles. While numerous studies have revealed their community structure and functional capabilities, little is known about genetic heterogeneity within species. Here, we examine intraspecies diversity patterns of 39 abundant species identified in sediment layers down to 430 cm below the sea floor across six cold seep sites. These populations are grouped as aerobic methane-oxidizing bacteria, anaerobic methanotrophic archaea and sulfate-reducing bacteria. Different evolutionary trajectories are observed at the genomic level among these physiologically and phylogenetically diverse populations, with generally low rates of homologous recombination and strong purifying selection. Functional genes related to methane (pmoA and mcrA) and sulfate (dsrA) metabolisms are under strong purifying selection in most species investigated. These genes differ in evolutionary trajectories across phylogenetic clades but are functionally conserved across sites. Intrapopulation diversification of genomes and their mcrA and dsrA genes is depth-dependent and subject to different selection pressure throughout the sediment column redox zones at different sites. These results highlight the interplay between ecological processes and the evolution of key bacteria and archaea in deep sea cold seep extreme environments, shedding light on microbial adaptation in the subseafloor biosphere.
Collapse
Affiliation(s)
- Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Yongyi Peng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Muhua Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Laura Woods
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Wenxue Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Yong Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xi Xiao
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, 510075, China
| | - Jiwei Li
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Casey R J Hubert
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
14
|
Okazaki Y, Nguyen TT, Nishihara A, Endo H, Ogata H, Nakano SI, Tamaki H. A Fast and Easy Method to Co-extract DNA and RNA from an Environmental Microbial Sample. Microbes Environ 2023; 38. [PMID: 36928278 PMCID: PMC10037101 DOI: 10.1264/jsme2.me22102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
We herein propose a fast and easy DNA and RNA co-extraction method for environmental microbial samples. It combines bead beating and phenol-chloroform phase separation followed by the separation and purification of DNA and RNA using the Qiagen AllPrep DNA/RNA mini kit. With a handling time of ~3 h, our method simultaneously extracted high-quality DNA (peak size >10-15 kb) and RNA (RNA integrity number >6) from lake bacterioplankton filtered samples. The method is also applicable to low-biomass samples (expected DNA or RNA yield <50 ng) and eukaryotic microbial samples, providing an easy option for more versatile eco-genomic applications.
Collapse
Affiliation(s)
- Yusuke Okazaki
- Institute for Chemical Research, Kyoto University
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology
| | | | - Arisa Nishihara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology
| | - Hisashi Endo
- Institute for Chemical Research, Kyoto University
| | | | | | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology
| |
Collapse
|