1
|
Wang H, Wu S, Ma J, Hong Y, Guo C, Zhao J, Lin X. Promoted growth with dynamic cellular stoichiometry driven by utilization of in-situ dissolved organic matter: Insights from bloom-forming dinoflagellate Prorocentrum donghaiense. MARINE ENVIRONMENTAL RESEARCH 2024; 204:106900. [PMID: 39667208 DOI: 10.1016/j.marenvres.2024.106900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/23/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
Mixotrophic dinoflagellates frequently cause harmful algal blooms (HABs) in eutrophic waters that contain diverse dissolved organic matter (DOM), especially intensive mariculture areas. Compared to the extensive investigation of phagotrophy and single organic molecule uptake by causative species, we have limited knowledge about the capability of mixotrophic dinoflagellates to utilize in-situ DOM in mariculture waters and its contribution to HABs. Here we use filtered in-situ mariculture water as the sole medium to examine the physiological response of Prorocentrum donghaiense to the natural mariculture DOM. Our results showed an 87.2% increase in the cell growth rate, as well as photosynthesis (16.8%-29.2%) and cellular chlorophyll a (32.4%-70.7%) when cultured with DOM compared to those grown in the inorganic medium. Meanwhile, cellular stoichiometry varied greatly among the groups supplied with mariculture DOM of different seasons, and the ecological implications were then discussed. Additionally, parallel cultures revealed the phycosphere bacterioplankton community compete with the algae cell regarding the nutrient utilization. This study quantifies the efficient utilization of in-situ mariculture DOM by P. donghaiense and indicates its vital role in sustaining HAB events and great effects on the biogeochemical cycle.
Collapse
Affiliation(s)
- Hongwei Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Siyang Wu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jian Ma
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China; College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yiting Hong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Chentao Guo
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Provincial Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian Province, Xiamen, Fujian, China
| | - Jing Zhao
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
2
|
Shu H, Shen Y, Wang H, Sun X, Ma J, Lin X. Biogenic Phosphonate Utilization by Globally Distributed Diatom Thalassiosira pseudonana. Microorganisms 2024; 12:761. [PMID: 38674705 PMCID: PMC11051927 DOI: 10.3390/microorganisms12040761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Phosphonates are a class of organic phosphorus (P) compounds that contribute ~25% of dissolved organic P. Recent studies reveal the important role of phosphonates mediated by prokaryotes in the marine P redox cycle. However, its bioavailability by eukaryotic phytoplankton is under debate. 2-Aminoethylphosphonic acid (2-AEP) and 2-amino-3-phosphonopropionic acid (2-AP3) are two biogenic phosphonates in the marine environment. Here, Thalassiosira pseudonana, a common diatom species in the ocean, is able to recover growth from P starvation when provided with 2-AEP and 2-AP3. Moreover, 2-AEP cultures exhibited a more similar growth rate at 12 °C than at 25 °C when compared with inorganic P cultures. The cellular stoichiometry of 2-AEP groups was further determined, the values of which are in-between the P-depleted and DIP-replete cultures. This study provides evidence that biogenic phosphonates could be adopted as alternative P sources to support diatom growth and may provide physiological adaptation.
Collapse
Affiliation(s)
- Huilin Shu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China; (H.S.); (Y.S.); (H.W.); (X.S.); (J.M.)
- College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Yuan Shen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China; (H.S.); (Y.S.); (H.W.); (X.S.); (J.M.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Hongwei Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China; (H.S.); (Y.S.); (H.W.); (X.S.); (J.M.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Xueqiong Sun
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China; (H.S.); (Y.S.); (H.W.); (X.S.); (J.M.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Jian Ma
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China; (H.S.); (Y.S.); (H.W.); (X.S.); (J.M.)
- College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China; (H.S.); (Y.S.); (H.W.); (X.S.); (J.M.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Wang C, Li J, Li S, Lin S. Effects and mechanisms of glyphosate as phosphorus nutrient on element stoichiometry and metabolism in the diatom Phaeodactylum tricornutum. Appl Environ Microbiol 2024; 90:e0213123. [PMID: 38265214 PMCID: PMC10880665 DOI: 10.1128/aem.02131-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/24/2023] [Indexed: 01/25/2024] Open
Abstract
The ability to utilize dissolved organic phosphorus (DOP) gives phytoplankton competitive advantages in P-limited environments. Our previous research indicates that the diatom Phaeodactylum tricornutum could grow on glyphosate, a DOP with carbon-phosphorus (C-P) bond and an herbicide, as sole P source. However, direct evidence and mechanism of glyphosate utilization are still lacking. In this study, using physiological and isotopic analysis, combined with transcriptomic profiling, we demonstrated the uptake of glyphosate by P. tricornutum and revealed the candidate responsible genes. Our data showed a low efficiency of glyphosate utilization by P. tricornutum, suggesting that glyphosate utilization costs energy and that the alga possessed an herbicide-resistant type of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase. Compared to the P-limited cultures, the glyphosate-grown P. tricornutum cells up-regulated genes involved in DNA replication, cell growth, transcription, translation, carbon metabolism, and many genes encoding antioxidants. Additionally, cellular C and silicon (Si) increased remarkably while cellular nitrogen (N) declined in the glyphosate-grown P. tricornutum, leading to higher Si:C and Si:N ratios, which corresponded to the up-regulation of genes involved in the C metabolism and Si uptake and the down-regulation of those encoding N uptake. This has the potential to enhance C and Si export to the deep sea when P is limited but phosphonate is available. In sum, our study documented how P. tricornutum could utilize the herbicide glyphosate as P nutrient and how glyphosate utilization may affect the element content and stoichiometry in this diatom, which have important ecological implications in the future ocean.IMPORTANCEGlyphosate is the most widely used herbicide in the world and could be utilized as phosphorus (P) source by some bacteria. Our study first revealed that glyphosate could be transported into Phaeodactylum tricornutum cells for utilization and identified putative genes responsible for glyphosate uptake. This uncovers an alternative strategy of phytoplankton to cope with P deficiency considering phosphonate accounts for about 25% of the total dissolved organic phosphorus (DOP) in the ocean. Additionally, accumulation of carbon (C) and silicon (Si), as well as elevation of Si:C ratio in P. tricornutum cells when grown on glyphosate indicates glyphosate as the source of P nutrient has the potential to result in more C and Si export into the deep ocean. This, along with the differential ability to utilize glyphosate among different species, glyphosate supply in dissolved inorganic phosphorus (DIP)-depleted ecosystems may cause changes in phytoplankton community structure. These insights have implications in evaluating the effects of human activities (use of Roundup) and climate change (potentially reducing DIP supply in sunlit layer) on phytoplankton in the future ocean.
Collapse
Affiliation(s)
- Cong Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiashun Li
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Sihan Li
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| |
Collapse
|
4
|
Wu SW, Cheng CQ, Huang YT, Tan JZ, Li SL, Yang JX, Huang XL, Huang D, Zou LG, Yang WD, Li HY, Li DW. A study on the mechanism of the impact of phenthoate exposure on Prorocentrum lima. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132624. [PMID: 37801972 DOI: 10.1016/j.jhazmat.2023.132624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/08/2023]
Abstract
Extensive application of organophosphorus pesticides such as phenthoate results in its abundance in ecosystems, particularly in waterbodies, thereby providing the impetus to assess its role in aquatic organisms. However, the impact of phenthoate on marine algal physiological and proteomic response is yet to be explored despite its biological significance. In this study, we thus ought to investigate the impact of phenthoate in the marine dinoflagellate Prorocentrum lima, which is known for synthesizing okadaic acid (OA), the toxin responsible for diarrhetic shellfish poisoning (DSP). Our results showed that P. lima effectively absorbed phenthoate in seawater, with a reduction efficiency of 90.31% after 48 h. Surprisingly, the provision of phenthoate (100 and 1000 µg/L) substantially reduced the OA content of P. lima by 35.08% and 60.28% after 48 h, respectively. Meanwhile, phenthoate treatment significantly reduced the oxidative stress in P. lima. Proteomic analysis revealed that the expression level of seven crucial proteins involved in endocytosis was upregulated, suggesting that P. lima could absorb phenthoate via the endocytic signaling pathway. Importantly, phenthoate treatment resulted in the downregulation of proteins such as polyketide synthase (PKS)- 2, Cytochrome P450 (CYP450)- 1, and CYP450-2, involved in OA synthesis, thereby decreasing the OA biosynthesis by P. lima. Our results demonstrated the potential role of P. lima in the removal of phenthoate in water and exemplified the crucial proteins and their possible molecular mechanisms underpinning the phenthoate remediation by P. lima and also the regulatory role of phenthoate in restricting the OA metabolism. Collectively, these findings uncovered the synergistic mechanisms of phenthoate and P. lima in remediating phenthoate and reducing the toxic impact of P. lima.
Collapse
Affiliation(s)
- Si-Wei Wu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Cai-Qin Cheng
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yi-Tong Huang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jin-Zhou Tan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Song-Liang Li
- The First People's Hospital of Qinzhou, The Tenth Affiliated Hospital of Guangxi Medical University, China
| | - Jia-Xin Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xue-Ling Huang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Dan Huang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Li-Gong Zou
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Da-Wei Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|