1
|
Silk ET, Bayer SB, Foster M, Roy NC, Taylor MW, Vatanen T, Gearry RB. Advancing microbiome research in Māori populations: insights from recent literature exploring the gut microbiomes of underrepresented and Indigenous peoples. mSystems 2024:e0090924. [PMID: 39365053 DOI: 10.1128/msystems.00909-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
The gut microbiome plays vital roles in human health, including mediating metabolism, immunity, and the gut-brain axis. Many ethnicities remain underrepresented in gut microbiome research, with significant variation between Indigenous and non-Indigenous peoples due to dietary, socioeconomic, health, and urbanization differences. Although research regarding the microbiomes of Indigenous peoples is increasing, Māori microbiome literature is lacking despite widespread inequities that Māori populations face. These inequities likely contribute to gut microbiome differences that exacerbate negative health outcomes. Characterizing the gut microbiomes of underrepresented populations is necessary to inform efforts to address health inequities. However, for microbiome research to be culturally responsible and meaningful, study design must improve to better protect the rights and interests of Indigenous peoples. Here, we discuss barriers to Indigenous participation in research and the role disparities may play in shaping the gut microbiomes of Indigenous peoples, with a particular focus on implications for Māori and areas for improvement.
Collapse
Affiliation(s)
- Ella T Silk
- Department of Medicine, University of Otago, Christchurch, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Simone B Bayer
- Department of Medicine, University of Otago, Christchurch, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Meika Foster
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Edible Research, Ohoka, New Zealand
| | - Nicole C Roy
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
- Riddet Institute, Palmerston North, New Zealand
| | - Michael W Taylor
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Tommi Vatanen
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Richard B Gearry
- Department of Medicine, University of Otago, Christchurch, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| |
Collapse
|
2
|
Gordon JI, Barratt MJ, Hibberd MC, Rahman M, Ahmed T. Establishing human microbial observatory programs in low- and middle-income countries. Ann N Y Acad Sci 2024; 1540:13-20. [PMID: 39298326 DOI: 10.1111/nyas.15224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Studies of the human microbiome are progressing rapidly but have largely focused on populations living in high-income countries. With increasing evidence that the microbiome contributes to the pathogenesis of diseases that affect infants, children, and adults in low- and middle-income countries (LMICs), and with profound and rapid ongoing changes occurring in our lifestyles and biosphere, understanding the origins of and developing microbiome-directed therapeutics for treating a number of global health challenges requires the development of programs for studying human microbial ecology in LMICs. Here, we discuss how the establishment of long-term human microbial observatory programs in selected LMICs could provide one timely approach.
Collapse
Affiliation(s)
- Jeffrey I Gordon
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- The Newman Center for Human Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael J Barratt
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- The Newman Center for Human Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Matthew C Hibberd
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- The Newman Center for Human Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mustafizur Rahman
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| |
Collapse
|
3
|
Blake KS. Missing microbiomes: global underrepresentation restricts who research will benefit. J Clin Invest 2024; 134:e183884. [PMID: 39007263 PMCID: PMC11245146 DOI: 10.1172/jci183884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
|
4
|
Arefin MR, Prouse C. Counter-collaborations towards alternative bio-securitizations. DIALOGUES IN HUMAN GEOGRAPHY 2024; 14:243-248. [PMID: 39131080 PMCID: PMC11309914 DOI: 10.1177/20438206231168886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
In this commentary, we argue that geographical thought and praxis must engage with repressive biosecurity and biosurveillance systems and fight for alternatives. In doing so, geographers can contribute to an emerging anti-colonial and anti-racist interdisciplinary science. We suggest two counter-collaborations towards alternative bio-securitizations: working with those who have been cast out of biopolitical worlds and have long been fostering life for their communities; and working with practitioners of hegemonic science to re-direct biomedical efforts. Building these collaborations would orient biosecurity praxis to those biosecuritizations that already exist at the margins of violent security programs and foster communal and just care relations as the foundation for a liberatory and interdisciplinary science.
Collapse
|
5
|
Wei X, Tsai MS, Liang L, Jiang L, Hung CJ, Jelliffe-Pawlowski L, Rand L, Snyder M, Jiang C. Vaginal microbiomes show ethnic evolutionary dynamics and positive selection of Lactobacillus adhesins driven by a long-term niche-specific process. Cell Rep 2024; 43:114078. [PMID: 38598334 DOI: 10.1016/j.celrep.2024.114078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/01/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
The vaginal microbiome's composition varies among ethnicities. However, the evolutionary landscape of the vaginal microbiome in the multi-ethnic context remains understudied. We perform a systematic evolutionary analysis of 351 vaginal microbiome samples from 35 multi-ethnic pregnant women, in addition to two validation cohorts, totaling 462 samples from 90 women. Microbiome alpha diversity and community state dynamics show strong ethnic signatures. Lactobacillaceae have a higher ratio of non-synonymous to synonymous polymorphism and lower nucleotide diversity than non-Lactobacillaceae in all ethnicities, with a large repertoire of positively selected genes, including the mucin-binding and cell wall anchor genes. These evolutionary dynamics are driven by the long-term evolutionary process unique to the human vaginal niche. Finally, we propose an evolutionary model reflecting the environmental niches of microbes. Our study reveals the extensive ethnic signatures in vaginal microbial ecology and evolution, highlighting the importance of studying the host-microbiome ecosystem from an evolutionary perspective.
Collapse
Affiliation(s)
- Xin Wei
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Ming-Shian Tsai
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Liang Liang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Liuyiqi Jiang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China
| | - Chia-Jui Hung
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biomedical Informatics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura Jelliffe-Pawlowski
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Larry Rand
- Department of Obstetrics, Gynecology & Reproductive Sciences, School of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Chao Jiang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
6
|
Tilves C, Mueller NT, Zmuda JM, Kuipers AL, Methé B, Li K, Carr JJ, Terry JG, Wheeler V, Nair S, Miljkovic I. Associations of Fecal Microbiota with Ectopic Fat in African Caribbean Men. Microorganisms 2024; 12:812. [PMID: 38674756 PMCID: PMC11052294 DOI: 10.3390/microorganisms12040812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVE The gut microbiome has been associated with visceral fat (VAT) in European and Asian populations; however, associations with VAT and with ectopic fats among African-ancestry individuals are not known. Our objective was to investigate cross-sectional associations of fecal microbiota diversity and composition with VAT and ectopic fat, as well as body mass index (BMI), among middle-aged and older African Caribbean men. METHODS We included in our analysis n = 193 men (mean age = 62.2 ± 7.6 years; mean BMI = 28.3 ± 4.9 kg/m2) from the Tobago Health Study. We assessed fecal microbiota using V4 16s rRNA gene sequencing. We evaluated multivariable-adjusted associations of microbiota features (alpha diversity, beta diversity, microbiota differential abundance) with BMI and with computed tomography-measured VAT and ectopic fats (pericardial and intermuscular fat; muscle and liver attenuation). RESULTS Lower alpha diversity was associated with higher VAT and BMI, and somewhat with higher pericardial and liver fat. VAT, BMI, and pericardial fat each explained similar levels of variance in beta diversity. Gram-negative Prevotellaceae and Negativicutes microbiota showed positive associations, while gram-positive Ruminococcaceae microbiota showed inverse associations, with ectopic fats. CONCLUSIONS Fecal microbiota features associated with measures of general adiposity also extend to metabolically pernicious VAT and ectopic fat accumulation in older African-ancestry men.
Collapse
Affiliation(s)
- Curtis Tilves
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO 80045, USA;
- LEAD Center, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Noel T. Mueller
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO 80045, USA;
- LEAD Center, Colorado School of Public Health, Aurora, CO 80045, USA
- Department of Pediatrics, Colorado School of Medicine, Aurora, CO 80045, USA
| | - Joseph M. Zmuda
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.M.Z.); (A.L.K.); (I.M.)
| | - Allison L. Kuipers
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.M.Z.); (A.L.K.); (I.M.)
| | - Barbara Methé
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA 15213, USA; (B.M.); (K.L.)
| | - Kelvin Li
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA 15213, USA; (B.M.); (K.L.)
| | - John Jeffrey Carr
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.J.C.); (J.G.T.); (S.N.)
| | - James G. Terry
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.J.C.); (J.G.T.); (S.N.)
| | - Victor Wheeler
- Tobago Health Studies Office, TTMF Jerningham Court, James Park Upper Scarborough, Scarborough, Trinidad and Tobago;
| | - Sangeeta Nair
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.J.C.); (J.G.T.); (S.N.)
| | - Iva Miljkovic
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.M.Z.); (A.L.K.); (I.M.)
| |
Collapse
|
7
|
Maghini DG, Oduaran OH, Wirbel J, Olubayo LAI, Smyth N, Mathema T, Belger CW, Agongo G, Boua PR, Choma SSR, Gómez-Olivé FX, Kisiangani I, Mashaba GR, Micklesfield L, Mohamed SF, Nonterah EA, Norris S, Sorgho H, Tollman S, Wafawanaka F, Tluway F, Ramsay M, Bhatt AS, Hazelhurst S. Expanding the human gut microbiome atlas of Africa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584859. [PMID: 38559015 PMCID: PMC10980044 DOI: 10.1101/2024.03.13.584859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Population studies are crucial in understanding the complex interplay between the gut microbiome and geographical, lifestyle, genetic, and environmental factors. However, populations from low- and middle-income countries, which represent ~84% of the world population, have been excluded from large-scale gut microbiome research. Here, we present the AWI-Gen 2 Microbiome Project, a cross-sectional gut microbiome study sampling 1,803 women from Burkina Faso, Ghana, Kenya, and South Africa. By intensively engaging with communities that range from rural and horticultural to urban informal settlements and post-industrial, we capture population diversity that represents a far greater breadth of the world's population. Using shotgun metagenomic sequencing, we find that study site explains substantially more microbial variation than disease status. We identify taxa with strong geographic and lifestyle associations, including loss of Treponema and Cryptobacteroides species and gain of Bifidobacterium species in urban populations. We uncover a wealth of prokaryotic and viral novelty, including 1,005 new bacterial metagenome-assembled genomes, and identify phylogeography signatures in Treponema succinifaciens. Finally, we find a microbiome signature of HIV infection that is defined by several taxa not previously associated with HIV, including Dysosmobacter welbionis and Enterocloster sp. This study represents the largest population-representative survey of gut metagenomes of African individuals to date, and paired with extensive clinical biomarkers, demographic data, and lifestyle information, provides extensive opportunity for microbiome-related discovery and research.
Collapse
Affiliation(s)
- Dylan G Maghini
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- Department of Medicine (Hematology), Stanford University, Stanford, CA, USA
| | - Ovokeraye H Oduaran
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Jakob Wirbel
- Department of Medicine (Hematology), Stanford University, Stanford, CA, USA
| | - Luicer A Ingasia Olubayo
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Natalie Smyth
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Theophilous Mathema
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Carl W Belger
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Godfred Agongo
- Department of Biochemistry and Forensic Sciences, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana
| | - Palwendé R Boua
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Burkina Faso
| | - Solomon SR Choma
- DIMAMO Population Health Research Centre, University of Limpopo, South Africa
| | - F Xavier Gómez-Olivé
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), Faculty of Health Sciences, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Given R Mashaba
- DIMAMO Population Health Research Centre, University of Limpopo, South Africa
| | - Lisa Micklesfield
- SAMRC/Wits Developmental Pathways for Health Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | - Shane Norris
- SAMRC/Wits Developmental Pathways for Health Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - Hermann Sorgho
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Burkina Faso
| | - Stephen Tollman
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), Faculty of Health Sciences, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Floidy Wafawanaka
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), Faculty of Health Sciences, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Furahini Tluway
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Ami S Bhatt
- Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- School of Electrical & Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
8
|
Fanfan D, Mulligan CJ, Groer M, Mai V, Weaver M, Huffman F, Lyon DE. The intersection of social determinants of health, the microbiome, and health outcomes in immigrants: A scoping review. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:3-19. [PMID: 37737631 PMCID: PMC11185843 DOI: 10.1002/ajpa.24850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 08/23/2023] [Accepted: 09/03/2023] [Indexed: 09/23/2023]
Abstract
In the present scoping review, we explore whether existing evidence supports the premise that social determinants of health (SDoH) affect immigrant health outcomes through their effects on the microbiome. We adapt the National Institute on Minority Health and Health Disparities' research framework to propose a conceptual model that considers the intersection of SDoH, the microbiome, and health outcomes in immigrants. We use this conceptual model as a lens through which to explore recent research about SDoH, biological factors associated with changes to immigrants' microbiomes, and long-term health outcomes. In the 17 articles reviewed, dietary acculturation, physical activity, ethnicity, birthplace, age at migration and length of time in the host country, socioeconomic status, and social/linguistic acculturation were important determinants of postmigration microbiome-related transformations. These factors are associated with progressive shifts in microbiome profile with time in host country, increasing the risks for cardiometabolic, mental, immune, and inflammatory disorders and antibiotic resistance. The evidence thus supports the premise that SDoH influence immigrants' health postmigration, at least in part, through their effects on the microbiome. Omission of important postmigration social-ecological variables (e.g., stress, racism, social/family relationships, and environment), limited research among minoritized subgroups of immigrants, complexity and inter- and intra-individual differences in the microbiome, and limited interdisciplinary and biosocial collaboration restrict our understanding of this area of study. To identify potential microbiome-based interventions and promote immigrants' well-being, more research is necessary to understand the intersections of immigrant health with factors from the biological, behavioral/psychosocial, physical/built environment, and sociocultural environment domains at all social-ecological levels.
Collapse
Affiliation(s)
- Dany Fanfan
- College of Nursing, University of Florida, Gainesville, Florida, USA
| | - Connie J. Mulligan
- Department of Anthropology, University of Florida, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Maureen Groer
- College of Nursing, University of Tennessee, Knoxville, Tennessee, USA
| | - Volker Mai
- College of Public Health and Health Professions and College of Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Michael Weaver
- College of Nursing, University of Florida, Gainesville, Florida, USA
| | - Fatma Huffman
- College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Debra E. Lyon
- College of Nursing, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
9
|
Farmer N, Maki KA, Barb JJ, Jones KK, Yang L, Baumer Y, Powell-Wiley TM, Wallen GR. Geographic social vulnerability is associated with the alpha diversity of the human microbiome. mSystems 2023; 8:e0130822. [PMID: 37642431 PMCID: PMC10654076 DOI: 10.1128/msystems.01308-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/26/2023] [Indexed: 08/31/2023] Open
Abstract
IMPORTANCE As a risk factor for conditions related to the microbiome, understanding the role of SVI on microbiome diversity may assist in identifying public health implications for microbiome research. Here we found, using a sub-sample of the Human Microbiome Project phase 1 cohort, that SVI was linked to microbiome diversity across body sites and that SVI may influence race/ethnicity-based differences in diversity. Our findings, build on the current knowledge regarding the role of human geography in microbiome research, suggest that measures of geographic social vulnerability be considered as additional contextual factors when exploring microbiome alpha diversity.
Collapse
Affiliation(s)
- Nicole Farmer
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, Maryland, USA
| | - Katherine A. Maki
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, Maryland, USA
| | - Jennifer J. Barb
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, Maryland, USA
| | - Kelly K. Jones
- Intramural Research Program, National Institute on Minority Health and Health Disparities, Bethesda, Maryland, USA
| | - Li Yang
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, Maryland, USA
| | - Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Tiffany M. Powell-Wiley
- Intramural Research Program, National Institute on Minority Health and Health Disparities, Bethesda, Maryland, USA
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Gwenyth R. Wallen
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Bader AC, Van Zuylen EM, Handsley-Davis M, Alegado RA, Benezra A, Pollet RM, Ehau-Taumaunu H, Weyrich LS, Anderson MZ. A relational framework for microbiome research with Indigenous communities. Nat Microbiol 2023; 8:1768-1776. [PMID: 37770743 DOI: 10.1038/s41564-023-01471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/26/2023] [Indexed: 09/30/2023]
Abstract
Ethical practices in human microbiome research have failed to keep pace with scientific advances in the field. Researchers seeking to 'preserve' microbial species associated with Indigenous groups, but absent from industrialized populations, have largely failed to include Indigenous people in knowledge co-production or benefit, perpetuating a legacy of intellectual and material extraction. We propose a framework centred on relationality among Indigenous peoples, researchers and microbes, to guide ethical microbiome research. Our framework centres accountability to flatten historical power imbalances that favour researcher perspectives and interests to provide space for Indigenous worldviews in pursuit of Indigenous research sovereignty. Ethical inclusion of Indigenous communities in microbiome research can provide health benefits for all populations and reinforce mutually beneficial partnerships between researchers and the public.
Collapse
Affiliation(s)
- Alyssa C Bader
- Department of Anthropology, McGill University, Montreal, Quebec, Canada.
| | - Essie M Van Zuylen
- Department of Microbiology and Immunology, University of Otago, Dunedin North, Dunedin, New Zealand
- School of Product Design, University of Canterbury, Christchurch, New Zealand
| | - Matilda Handsley-Davis
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage (CABAH), University of Wollongong, Wollongong, New South Wales, Australia
| | - Rosanna A Alegado
- Department of Oceanography, University of Hawai'i Mānoa, Honolulu, HI, USA
| | - Amber Benezra
- Department of Science and Technology Studies, Stevens Institute of Technology, Hoboken, NJ, USA
| | | | - Hanareia Ehau-Taumaunu
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, State College, PA, USA
| | - Laura S Weyrich
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage (CABAH), University of Wollongong, Wollongong, New South Wales, Australia
- Department of Anthropology, Pennsylvania State University, State College, PA, USA
| | - Matthew Z Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA.
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA.
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
11
|
Tossas KY, Zhu B, Perera RA, Serrano MG, Sullivan S, Sayeed S, Strauss JF, Winn RA, Buck GA, Seewaldt VL. Does the Vaginal Microbiome Operate Differently by Race to Influence Risk of Precervical Cancer? J Womens Health (Larchmt) 2023; 32:553-560. [PMID: 36897755 PMCID: PMC10171949 DOI: 10.1089/jwh.2022.0309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Background: The vaginal microbiome (VMB) plays an important role in the persistence of human papillomavirus (HPV) infection and differs by race and among women with cervical intraepithelial neoplasia (CIN). Materials and Methods: We explored these relationships using 16S rRNA VMB taxonomic profiles of 3050 predominantly Black women. VMB profiles were assigned to three subgroups based on taxonomic markers indicative of vaginal wellness: optimal (Lactobacillus crispatus, L. gasseri, and L. jensenii), moderate (L. iners), and suboptimal (Gardnerella vaginalis, Atopobium vaginae, Ca. Lachnocurva vaginae, and others). Multivariable Firth logistic regression models were adjusted for age, smoking, VMB, HPV, and pregnancy status. Results: VMB prevalence by subgroup was 18%, 30%, and 51% for the optimal, moderate, and suboptimal groups, respectively. In fully adjusted models, the risk of CIN grade 3 (CIN3) among non-Latina (nL) Blacks was twice that of nL Whites (odds ratio [OR] = 2.0, 95% confidence interval [CI]: 1.1, 3.9, p = 0.02). The VMB modified this association (p = 0.04) such that the risk of CIN3 was significantly higher for nL Blacks than for nL Whites only among women with optimal VMBs (OR = 7.8, 95% CI: 1.7, 74.5, p = 0.007). Within racial groups, the risk of CIN3 was only elevated among nL White women with suboptimal VMBs (OR = 6.0, 95% CI: 1.3, 56.9, p = 0.02) compared with their racial counterparts with optimal VMBs. Conclusions: Our findings suggest that race is a modifier of the VMB in HPV carcinogenesis. An optimal VMB does not appear to be protective for nL Black women compared with nL White women.
Collapse
Affiliation(s)
- Katherine Y. Tossas
- Department of Health Behavior and Policy and Division of Epidemiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Family Medicine and Population Health, Division of Epidemiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Bin Zhu
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Robert A. Perera
- Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Myrna G. Serrano
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Stephanie Sullivan
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sadia Sayeed
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jerome F. Strauss
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert A. Winn
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Gregory A. Buck
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| | | |
Collapse
|
12
|
Warbrick I, Heke D, Breed M. Indigenous Knowledge and the Microbiome-Bridging the Disconnect between Colonized Places, Peoples, and the Unseen Influences That Shape Our Health and Well-Being. mSystems 2023; 8:e0087522. [PMID: 36695590 PMCID: PMC9948692 DOI: 10.1128/msystems.00875-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Indigenous Peoples have a rich and long-standing connection with the environments that they descend from-a connection that has informed a deep and multifaceted understanding of the relationship between human well-being and the environment. Through cultural narratives and practices, much of this knowledge has endured despite the ongoing effects that colonization has had on many Indigenous peoples across the world. These narratives and practices, based on observation, experimentation, and practical application over many generations, have the potential to make compelling contributions to our understanding of the environmental microbiome and its relationship to health. Furthermore, the inclusion of Indigenous perspectives regarding the microbiome opens pathways to those who rarely engage with the field and its learnings. Within the scientific community, Indigenous perspectives have not always been acknowledged as valid contributions and are often seen as myth or lacking rigor. Thus, this paper aims to explore an Indigenous perspective of the microbiome as an unseen influence on health and well-being by framing the importance of the natural environment, Indigenous knowledge and leadership, and future research directions that can contribute to this domain. Although the Indigenous perspective in this article reflects the experiences, worldviews, and knowledge of two New Zealand Māori authors, it is hoped that the concepts discussed can relate to Indigenous peoples, and non-Indigenous advocates, globally.
Collapse
Affiliation(s)
- Isaac Warbrick
- Taupua Waiora Centre for Māori Health Research–Auckland University of Technology, Auckland, New Zealand
| | - Deborah Heke
- Taupua Waiora Centre for Māori Health Research–Auckland University of Technology, Auckland, New Zealand
| | - Martin Breed
- College of Science and Engineering–Flinders University, Adelaide, Australia
| |
Collapse
|
13
|
Abstract
The diversity and functional significance of microbiomes have become increasingly clear through the extensive sampling of Earth's many habitats and the rapid adoption of new sequencing technologies. However, much remains unknown about what makes a "healthy" microbiome, how to restore a disrupted microbiome, and how microbiomes assemble. In December 2019, we convened a workshop that focused on how to identify potential "rules of life" that govern microbiome structure and function. This collection of mSystems Perspective pieces reflects many of the main challenges and opportunities in the field identified by both in-person and virtual workshop participants. By borrowing conceptual and theoretical approaches from other fields, including economics and philosophy, these pieces suggest new ways to dissect microbiome patterns and processes. The application of conceptual advances, including trait-based theory and community coalescence, is providing new insights on how to predict and manage microbiome diversity and function. Technological and analytical advances, including deep transfer learning, metabolic models, and advances in analytical chemistry, are helping us sift through complex systems to pinpoint mechanisms of microbiome assembly and dynamics. Integration of all of these advancements (theory, concepts, technology) across biological and spatial scales is providing dramatically improved temporal and spatial resolution of microbiome dynamics. This integrative microbiome research is happening in a new moment in science where academic institutions, scientific societies, and funding agencies must act collaboratively to support and train a diverse and inclusive community of microbiome scientists.
Collapse
|
14
|
Bixby M, Gennings C, Malecki KMC, Sethi AK, Safdar N, Peppard PE, Eggers S. Individual Nutrition Is Associated with Altered Gut Microbiome Composition for Adults with Food Insecurity. Nutrients 2022; 14:3407. [PMID: 36014913 PMCID: PMC9416073 DOI: 10.3390/nu14163407] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
Diet is widely recognized as a key contributor to human gut microbiome composition and function. However, overall nutrition can be difficult to compare across a population with varying diets. Moreover, the role of food security in the relationship with overall nutrition and the gut microbiome is unclear. This study aims to investigate the association between personalized nutrition scores, variation in the adult gut microbiome, and modification by food insecurity. The data originate from the Survey of the Health of Wisconsin and the Wisconsin Microbiome Study. Individual nutrition scores were assessed using My Nutrition Index (MNI), calculated using data from food frequency questionnaires, and additional health history and demographic surveys. Food security and covariate data were measured through self-reported questionnaires. The gut microbiome was assessed using 16S amplicon sequencing of DNA extracted from stool samples. Associations, adjusted for confounding and interaction by food security, were estimated using Weighted Quantile Sum (WQS) regression models with Random Subset and Repeated Holdout extensions (WQSRSRH), with bacterial taxa used as components in the weighted index. Of 643 participants, the average MNI was 66.5 (SD = 31.9), and 22.8% of participants were food insecure. Increased MNI was significantly associated with altered gut microbial composition (β = 2.56, 95% CI = 0.52−4.61), with Ruminococcus, Oscillospira, and Blautia among the most heavily weighted of the 21 genera associated with the MNI score. In the stratified interaction WQSRSRH models, the bacterial taxa most heavily weighted in the association with MNI differed by food security, but the level of association between MNI and the gut microbiome was not significantly different. More bacterial genera are important in the association with higher nutrition scores for people with food insecurity versus food security, including Streptococcus, Parabacteroides Faecalibacterium, and Desulfovibrio. Individual nutrition scores are associated with differences in adult gut microbiome composition. The bacterial taxa most associated with nutrition vary by level of food security. While further investigation is needed, results showed a higher nutrition score was associated with a wider range of bacterial taxa for food insecure vs. secure, suggesting nutritional quality in food insecure individuals is important in maintaining health and reducing disparities.
Collapse
Affiliation(s)
- Moira Bixby
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Chris Gennings
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Kristen M. C. Malecki
- Population Health Sciences, University of Wisconsin School of Medicine and Public Health, 610 Walnut St., WARF 707, Madison, WI 53726, USA
| | - Ajay K. Sethi
- Population Health Sciences, University of Wisconsin School of Medicine and Public Health, 610 Walnut St., WARF 707, Madison, WI 53726, USA
| | - Nasia Safdar
- Department of Medicine, Division of Infectious Disease, School of Medicine and Public Health, University of Wisconsin-Madison, UW Med. Fndtn. Centennial Bldg., 1685 Highland Ave, Madison, WI 53705, USA
- William S. Middleton Veterans Affairs Medical Center, 2500 Overlook Terrace, Madison, WI 53705, USA
| | - Paul E. Peppard
- Population Health Sciences, University of Wisconsin School of Medicine and Public Health, 610 Walnut St., WARF 707, Madison, WI 53726, USA
| | - Shoshannah Eggers
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
15
|
Alimena S, Davis J, Fichorova RN, Feldman S. The vaginal microbiome: A complex milieu affecting risk of human papillomavirus persistence and cervical cancer. Curr Probl Cancer 2022; 46:100877. [PMID: 35709613 DOI: 10.1016/j.currproblcancer.2022.100877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
The purpose of this review is to describe the existing literature regarding the relationship between the vaginal microbiome, human papillomavirus persistence, and cervical cancer risk, as well as to discuss factors that mediate these relationships. Data suggest that alterations in the vaginal microbiome affect the risk of human papillomavirus infection and persistence, which has downstream effects on cervical dysplasia and cancer risk. The homeostatic Lactobillus species L. crispatus, L. gasseri, L. jensenii act to promote a healthy vaginal environment, while L. iners and pathogens causing bacterial vaginosis are associated with increased inflammation, human papillomavirus infection, cervical dysplasia, and potentially cancer. There are, however, still several large gaps in the literature, particularly related to the modifiable and non-modifiable factors that affect the vaginal microbiome and ensuing risk of pre-cancerous and cancerous lesions. Evidence currently suggests that endogenous and exogenous hormones, tobacco products, and sexual practices influence vaginal microbiome composition, but the nuances of these relationships and how changes in these factors affect dysplasia risk are yet to be delineated. Other studies examining how diet, exercise, race, socioeconomic status, and genetic factors influence the vaginal microbiome are difficult to interpret in the setting of multiple confounders. Future studies should focus on how changes in these modulatory factors might promote a healthy vaginal microbiome to prevent or treat dysplasia in the lower female genital tract.
Collapse
Affiliation(s)
- Stephanie Alimena
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA.
| | | | - Raina N Fichorova
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Sarah Feldman
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| |
Collapse
|
16
|
Bajaj JS, Fagan A, McGeorge S, Sterling RK, Rogal S, Sikaroodi M, Gillevet PM. Area Deprivation Index and Gut-Brain Axis in Cirrhosis. Clin Transl Gastroenterol 2022; 13:e00495. [PMID: 35537854 PMCID: PMC9236605 DOI: 10.14309/ctg.0000000000000495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Neighborhood deprivation has been associated with chronic diseases and with gut microbial alterations. Although cirrhosis is associated with gut microbiome changes and hepatic encephalopathy (HE), their association is unclear. METHODS Demographics and cirrhosis details (model for end-stage liver disease [MELD], prior HE, and medications) were recorded from outpatients with cirrhosis. Area deprivation index (ADI), which ranks neighborhoods by socioeconomic disadvantage, was recorded as state decile and national percentile (high = worse for both) and dichotomized on the median. Patients underwent cognitive testing to diagnose minimal HE (MHE). Stool microbiota was analyzed using 16S ribosomal RNA for α/β-diversity. Multivariable analysis was used to evaluate the factors independently associated with MHE. RESULTS A total of 321 people with cirrhosis (60 years, 78% men, 75% non-Hispanic White, 24% non-Hispanic African American, 4% Hispanic) were included. 45% had prior HE and 56% MHE. For ADI, the national percentile was 49.1 ± 21.8 while the state decile was 6.1 ± 2.3. ADI was not associated with race, ethnicity, MELD, or HE-related variables on regression. Regarding microbiota, α-diversity was lower in MHE and prior HE patients but similar across ADI rankings. Low vs high ADIs were associated with different β-diversity in univariable but not multivariable analyses. Multivariable analyses showed positive associations with MELD, prior HE, and lactate producers ( Lactobacillus and Lacticaseibacillus ) and negative associations with short-chain fatty acid producers ( Blautia , Lachnoclostridium , and Anaerobutyricum ) with MHE. DISCUSSION Cirrhosis-related variables may be more influential in determining gut microbiome composition and cognitive impairment than ADI. Therefore, the focus should be on improving cirrhosis care, regardless of ADI, but studies evaluating other measures of social determinants are needed in cirrhosis.
Collapse
Affiliation(s)
- Jasmohan S. Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Andrew Fagan
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Sara McGeorge
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Richard K. Sterling
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Shari Rogal
- Department of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Masoumeh Sikaroodi
- Microbiome Analysis Center, George Mason University, Manassas, Virginia, USA
| | - Patrick M. Gillevet
- Microbiome Analysis Center, George Mason University, Manassas, Virginia, USA
| |
Collapse
|
17
|
Abdill RJ, Adamowicz EM, Blekhman R. Public human microbiome data are dominated by highly developed countries. PLoS Biol 2022; 20:e3001536. [PMID: 35167588 PMCID: PMC8846514 DOI: 10.1371/journal.pbio.3001536] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/11/2022] [Indexed: 02/07/2023] Open
Abstract
The importance of sampling from globally representative populations has been well established in human genomics. In human microbiome research, however, we lack a full understanding of the global distribution of sampling in research studies. This information is crucial to better understand global patterns of microbiome-associated diseases and to extend the health benefits of this research to all populations. Here, we analyze the country of origin of all 444,829 human microbiome samples that are available from the world's 3 largest genomic data repositories, including the Sequence Read Archive (SRA). The samples are from 2,592 studies of 19 body sites, including 220,017 samples of the gut microbiome. We show that more than 71% of samples with a known origin come from Europe, the United States, and Canada, including 46.8% from the US alone, despite the country representing only 4.3% of the global population. We also find that central and southern Asia is the most underrepresented region: Countries such as India, Pakistan, and Bangladesh account for more than a quarter of the world population but make up only 1.8% of human microbiome samples. These results demonstrate a critical need to ensure more global representation of participants in microbiome studies.
Collapse
Affiliation(s)
- Richard J. Abdill
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Elizabeth M. Adamowicz
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ran Blekhman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
18
|
Bile Acids, Gut Microbes, and the Neighborhood Food Environment-a Potential Driver of Colorectal Cancer Health Disparities. mSystems 2022; 7:e0117421. [PMID: 35103491 PMCID: PMC8805634 DOI: 10.1128/msystems.01174-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bile acids (BAs) facilitate nutrient digestion and absorption and act as signaling molecules in a number of metabolic and inflammatory pathways. Expansion of the BA pool and increased exposure to microbial BA metabolites has been associated with increased colorectal cancer (CRC) risk. It is well established that diet influences systemic BA concentrations and microbial BA metabolism. Therefore, consumption of nutrients that reduce colonic exposure to BAs and microbial BA metabolites may be an effective method for reducing CRC risk, particularly in populations disproportionately burdened by CRC. Individuals who identify as Black/African American (AA/B) have the highest CRC incidence and death in the United States and are more likely to live in a food environment with an inequitable access to BA mitigating nutrients. Thus, this review discusses the current evidence supporting diet as a contributor to CRC disparities through BA-mediated mechanisms and relationships between these mechanisms and barriers to maintaining a low-risk diet.
Collapse
|
19
|
|
20
|
Benezra A. Microbial Kin: Relations of Environment and Time. Med Anthropol Q 2022; 35:511-528. [PMID: 35066930 DOI: 10.1111/maq.12680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022]
Abstract
Microbiome science considers human beings supraorganisms: single ecological units made up of symbiotic assemblages of human cells and microorganisms. Microbes co-evolve with humans, and microbial populations in human bodies are determined by environments/exposures including family, food and place, health care, race and gender inequities, and toxic pollution. Microbiomes are transgenerational links, disarrangements between different bodies and the outside world. This article asserts that microbes are kin-kin that are made of and making environments, across generations. Post/nonhuman theories have debated the agency, sociality, and ontologies of microbes and things like microbes, all the while appropriating and eliding Indigenous scholarship that directly address the nonhuman world. Microbial kin evokes Indigenous formulations that necessitate reciprocal, ethical accountability to more-than-human relations. This article uses fieldwork in a transnational microbiome malnutrition project in Bangladesh to explore what develops for both the biological and social sciences if we call human-microbe relations kinships, and call microbes our kin.
Collapse
Affiliation(s)
- Amber Benezra
- Science and Technology Studies, Stevens Institute of Technology
| |
Collapse
|
21
|
Bai J, Zhang W, Choi D, Kim S. Methodology Considerations in Studying Mental Health, Sleep Quality, and Biopsychosocial Determinants Among Chinese and Korean Americans During the COVID-19 Pandemic. Asian Pac Isl Nurs J 2022; 6:e39760. [PMID: 36186662 PMCID: PMC9511004 DOI: 10.2196/39760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Asians are one of the fastest-growing racial groups in the United States. The mental health of Asian Americans, particularly regarding depression and anxiety, needs significant attention. Various biopsychosocial factors interact to influence the risks of depression, anxiety, and sleep quality among Asian Americans. Currently, multiple methodological issues exist in the research of Asian Americans, such as limited data collection using Asian languages and inconsistent reporting of race and ethnicity data, which may be lacking entirely. All these methodological issues in research may account for the seemingly low prevalence rates of mental health problems among Asian Americans. In our study on mental health and sleep quality among Chinese and Korean Americans, we adopted multiple data collection strategies during the COVID-19 pandemic, including using culturally adaptive and validated measures as well as operating culture-sensitive procedures in the recruitment and data collection. The successful use of these strategies could promote early detection and personalized treatment of depression, anxiety, and sleep disturbance among Asian Americans. These strategies would further improve health care service use in this population. International Registered Report Identifier IRRID RR2-10.1136/bmjopen-2020-047281.
Collapse
Affiliation(s)
- Jinbing Bai
- Nell Hodgson Woodruff School of Nursing Emory University Atlanta, GA United States
| | - Wenhui Zhang
- Nell Hodgson Woodruff School of Nursing Emory University Atlanta, GA United States
| | - Daesung Choi
- Rollins School of Public Health Emory University Atlanta, GA United States
| | - Sangmi Kim
- Nell Hodgson Woodruff School of Nursing Emory University Atlanta, GA United States
| |
Collapse
|