1
|
Wang L, Wang Q, Zhou Y. Oral Microbial Translocation Genes in Gastrointestinal Cancers: Insights from Metagenomic Analysis. Microorganisms 2024; 12:2086. [PMID: 39458395 PMCID: PMC11510655 DOI: 10.3390/microorganisms12102086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Along with affecting oral health, oral microbial communities may also be endogenously translocated to the gut, thereby mediating the development of a range of malignancies in that habitat. While species-level studies have proven the capability of oral pathogens to migrate to the intestine, genetic evidence supporting this mechanism remains insufficient. In this study, we identified over 55,000 oral translocation genes (OTGs) associated with colorectal cancer (CRC) and inflammatory bowel disease (IBD). These genes are primarily involved in signal transduction and cell wall biosynthesis and show consistency in their functions between IBD and CRC. Furthermore, we found that Leclercia adecarboxylata, a newly discovered opportunistic pathogen, has a significantly high abundance in the gut microbiota of colorectal cancer patients. OTGs of this pathogen were enriched in 15 metabolic pathways, including those associated with amino acid and cofactor metabolism. These findings, for the first time, provide evidence at the genetic level of the transfer of oral pathogens to the intestine and offer new insights into the understanding of the roles of oral pathogens in the development of gastrointestinal cancers.
Collapse
Affiliation(s)
| | | | - Yan Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (L.W.); (Q.W.)
| |
Collapse
|
2
|
Tran TH, Escapa IF, Roberts AQ, Gao W, Obawemimo AC, Segre JA, Kong HH, Conlan S, Kelly MS, Lemon KP. Metabolic capabilities are highly conserved among human nasal-associated Corynebacterium species in pangenomic analyses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.05.543719. [PMID: 37333201 PMCID: PMC10274666 DOI: 10.1101/2023.06.05.543719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Corynebacterium species are globally ubiquitous in human nasal microbiota across the lifespan. Moreover, nasal microbiota profiles typified by higher relative abundances of Corynebacterium are often positively associated with health. Among the most common human nasal Corynebacterium species are C. propinquum, C. pseudodiphtheriticum, C. accolens, and C. tuberculostearicum. To gain insight into the functions of these four species, we identified genomic, phylogenomic, and pangenomic properties and estimated the metabolic capabilities of 87 distinct human nasal Corynebacterium strain genomes: 31 from Botswana and 56 from the USA. C. pseudodiphtheriticum had geographically distinct clades consistent with localized strain circulation, whereas some strains from the other species had wide geographic distribution spanning Africa and North America. All species had similar genomic and pangenomic structures. Gene clusters assigned to all COG metabolic categories were overrepresented in the persistent versus accessory genome of each species indicating limited strain-level variability in metabolic capacity. Based on prevalence data, at least two Corynebacterium species likely coexist in the nasal microbiota of 82% of adults. So, it was surprising that core metabolic capabilities were highly conserved among the four species indicating limited species-level metabolic variation. Strikingly, strains in the USA clade of C. pseudodiphtheriticum lacked genes for assimilatory sulfate reduction present in most of the strains in the Botswana clade and in the other studied species, indicating a recent, geographically related loss of assimilatory sulfate reduction. Overall, the minimal species and strain variability in metabolic capacity implies coexisting strains might have limited ability to occupy distinct metabolic niches.
Collapse
Affiliation(s)
- Tommy H. Tran
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Isabel F. Escapa
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Ari Q. Roberts
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Wei Gao
- The Forsyth Institute (Microbiology), Cambridge, MA, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Abiola C. Obawemimo
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Julia A. Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Heidi H. Kong
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sean Conlan
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Matthew S. Kelly
- Division of Pediatric Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Katherine P. Lemon
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Division of Infectious Diseases, Texas Children’s Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
3
|
Lane Starr NM, Al-Rayyan N, Smith JM, Sandstrom S, Swaney MH, Salamzade R, Steidl O, Kalan LR, Singh AM. Combined metagenomic- and culture-based approaches to investigate bacterial strain-level associations with medication-controlled mild-moderate atopic dermatitis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100259. [PMID: 38779310 PMCID: PMC11109885 DOI: 10.1016/j.jacig.2024.100259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/05/2024] [Accepted: 01/27/2024] [Indexed: 05/25/2024]
Abstract
Background The skin microbiome is disrupted in atopic dermatitis (AD). Existing research focuses on moderate to severe, unmedicated disease. Objective We sought to investigate metagenomic- and culture-based bacterial strain-level differences in mild, medicated AD and the effects these have on human keratinocytes (HKs). Methods Skin swabs from anterior forearms were collected from 20 pediatric participants (11 participants with AD sampled at lesional and nonlesional sites and 9 age- and sex-matched controls). Participants had primarily mild to moderate AD and maintained medication use. Samples were processed for microbial metagenomic sequencing and bacterial isolation. Isolates identified as Staphylococcus aureus were tested for enterotoxin production. HK cultures were treated with cell-free conditioned media from representative Staphylococcus species to measure barrier effects. Results Metagenomic sequencing identified significant differences in microbiome composition between AD and control groups. Differences were seen at the species and strain levels for Staphylococci, with S aureus found only in participants with AD and differences in Staphylococcus epidermidis strains between control and AD swabs. These strains showed differences in toxin gene presence, which was confirmed in vitro for S aureus enterotoxins. The strain from the participant with the most severe AD produced enterotoxin B levels more than 100-fold higher than the other strains (P < .001). Strains also displayed differential effects on HK metabolism and barrier function. Conclusions Strain-level differences in toxin genes from Staphylococcus strains may explain varying effects on HK, with S aureus and non-aureus strains negatively affecting viability and barrier function. These differences are likely important in AD pathogenesis.
Collapse
Affiliation(s)
- Nicole M. Lane Starr
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
| | - Numan Al-Rayyan
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
| | - Jennifer M. Smith
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
| | - Shelby Sandstrom
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
| | - Mary Hannah Swaney
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
| | - Rauf Salamzade
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
| | - Olivia Steidl
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
| | - Lindsay R. Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
- Division of Infectious Disease, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
- Department of Biochemistry and Biomedical Sciences, M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Anne Marie Singh
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
| |
Collapse
|
4
|
De La Cruz KF, Townsend EC, Alex Cheong JZ, Salamzade R, Liu A, Sandstrom S, Davila E, Huang L, Xu KH, Wu SY, Meudt JJ, Shanmuganayagam D, Gibson ALF, Kalan LR. The porcine skin microbiome exhibits broad fungal antagonism. Fungal Genet Biol 2024; 173:103898. [PMID: 38815692 DOI: 10.1016/j.fgb.2024.103898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
The skin and its microbiome function to protect the host from pathogen colonization and environmental stressors. In this study, using the Wisconsin Miniature Swine™ model, we characterize the porcine skin fungal and bacterial microbiomes, identify bacterial isolates displaying antifungal activity, and use whole-genome sequencing to identify biosynthetic gene clusters encoding for secondary metabolites that may be responsible for the antagonistic effects on fungi. Through this comprehensive approach of paired microbiome sequencing with culturomics, we report the discovery of novel species of Corynebacterium and Rothia. Further, this study represents the first comprehensive evaluation of the porcine skin mycobiome and the evaluation of bacterial-fungal interactions on this surface. Several diverse bacterial isolates exhibit potent antifungal properties against opportunistic fungal pathogens in vitro. Genomic analysis of inhibitory species revealed a diverse repertoire of uncharacterized biosynthetic gene clusters suggesting a reservoir of novel chemical and biological diversity. Collectively, the porcine skin microbiome represents a potential unique source of novel antifungals.
Collapse
Affiliation(s)
- Karinda F De La Cruz
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Elizabeth C Townsend
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, United States; Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - J Z Alex Cheong
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Rauf Salamzade
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Aiping Liu
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Shelby Sandstrom
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Evelin Davila
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; National Summer Undergraduate Research Project, University of Arizona, Tucson, AZ, United States
| | - Lynda Huang
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Kayla H Xu
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Sherrie Y Wu
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jennifer J Meudt
- Department of Animal & Dairy Sciences, University of Wisconsin, Madison, WI, United States; Center for Biomedical Swine Research & Innovation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Dhanansayan Shanmuganayagam
- Department of Animal & Dairy Sciences, University of Wisconsin, Madison, WI, United States; Center for Biomedical Swine Research & Innovation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Angela L F Gibson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Lindsay R Kalan
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada; David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
5
|
Spurgeon ME, Townsend EC, Blaine-Sauer S, McGregor SM, Horswill M, den Boon JA, Ahlquist P, Kalan L, Lambert PF. Key aspects of papillomavirus infection influence the host cervicovaginal microbiome in a preclinical murine papillomavirus (MmuPV1) infection model. mBio 2024; 15:e0093324. [PMID: 38742830 PMCID: PMC11237646 DOI: 10.1128/mbio.00933-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Human papillomaviruses (HPVs) are the most common sexually transmitted infection in the United States and are a major etiological agent of cancers in the anogenital tract and oral cavity. Growing evidence suggests changes in the host microbiome are associated with the natural history and ultimate outcome of HPV infection. We sought to define changes in the host cervicovaginal microbiome during papillomavirus infection, persistence, and pathogenesis using the murine papillomavirus (MmuPV1) cervicovaginal infection model. Cervicovaginal lavages were performed over a time course of MmuPV1 infection in immunocompetent female FVB/N mice and extracted DNA was analyzed by qPCR to track MmuPV1 viral copy number. 16S ribosomal RNA (rRNA) gene sequencing was used to determine the composition and diversity of microbial communities throughout this time course. We also sought to determine whether specific microbial communities exist across the spectrum of MmuPV1-induced neoplastic disease. We, therefore, performed laser-capture microdissection to isolate regions of disease representing all stages of neoplastic disease progression (normal, low- and high-grade dysplasia, and cancer) from female reproductive tract tissue sections from MmuPV1-infected mice and performed 16S rRNA sequencing. Consistent with other studies, we found that the natural murine cervicovaginal microbiome is highly variable across different experiments. Despite these differences in initial microbiome composition between experiments, we observed that MmuPV1 persistence, viral load, and severity of disease influenced the composition of the cervicovaginal microbiome. These studies demonstrate that papillomavirus infection can alter the cervicovaginal microbiome.IMPORTANCEHuman papillomaviruses (HPVs) are the most common sexually transmitted infection in the United States. A subset of HPVs that infect the anogenital tract (cervix, vagina, anus) and oral cavity cause at least 5% of cancers worldwide. Recent evidence indicates that the community of microbial organisms present in the human cervix and vagina, known as the cervicovaginal microbiome, plays a role in HPV-induced cervical cancer. However, the mechanisms underlying this interplay are not well-defined. In this study, we infected the female reproductive tract of mice with a murine papillomavirus (MmuPV1) and found that key aspects of papillomavirus infection and disease influence the host cervicovaginal microbiome. This is the first study to define changes in the host microbiome associated with MmuPV1 infection in a preclinical animal model of HPV-induced cervical cancer. These results pave the way for using MmuPV1 infection models to further investigate the interactions between papillomaviruses and the host microbiome.
Collapse
Affiliation(s)
- Megan E. Spurgeon
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Elizabeth C. Townsend
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Simon Blaine-Sauer
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Stephanie M. McGregor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mark Horswill
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Johan A. den Boon
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Paul Ahlquist
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Lindsay Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Swaney MH, Henriquez N, Campbell T, Handelsman J, Kalan LR. Skin-associated Corynebacterium amycolatum shares cobamides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.28.591522. [PMID: 38712214 PMCID: PMC11071462 DOI: 10.1101/2024.04.28.591522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The underlying interactions that occur to maintain skin microbiome composition, function, and overall skin health are largely unknown. Often, these types of interactions are mediated by microbial metabolites. Cobamides, the vitamin B12 family of cofactors, are essential for metabolism in many bacteria, but are only synthesized by a small fraction of prokaryotes, including certain skin-associated species. Therefore, we hypothesize that cobamide sharing mediates skin community dynamics. Preliminary work predicts that several skin-associated Corynebacterium species encode de novo cobamide biosynthesis and that their abundance is associated with skin microbiome diversity. Here, we show that commensal Corynebacterium amycolatum produces cobamides and that this synthesis can be tuned by cobalt limitation. To demonstrate cobamide sharing by C. amycolatum, we employed a co-culture assay using an E. coli cobamide auxotroph and show that C. amycolatum produces sufficient cobamides to support E. coli growth, both in liquid co-culture and when separated spatially on solid medium. We also generated a C. amycolatum non-cobamide-producing strain (cob-) using UV mutagenesis that contains mutated cobamide biosynthesis genes cobK and cobO and confirm that disruption of cobamide biosynthesis abolishes support of E. coli growth through cobamide sharing. Our study provides a unique model to study metabolite sharing by microorganisms, which will be critical for understanding the fundamental interactions that occur within complex microbiomes and for developing approaches to target the human microbiota for health advances.
Collapse
Affiliation(s)
- M H Swaney
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin, Madison, WI, USA
| | - N Henriquez
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, CAN
| | - T Campbell
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, CAN
| | - J Handelsman
- Wisconsin Institute for Discovery, Madison, WI, USA
- Department of Plant Pathology, University of Wisconsin, Madison, WI, USA
| | - L R Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, CAN
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, CAN
- David Braley Centre for Antibiotic Discovery, Hamilton, ON, CAN
| |
Collapse
|
7
|
Alvarez-Aponte ZI, Govindaraju AM, Hallberg ZF, Nicolas AM, Green MA, Mok KC, Fonseca-García C, Coleman-Derr D, Brodie EL, Carlson HK, Taga ME. Phylogenetic distribution and experimental characterization of corrinoid production and dependence in soil bacterial isolates. THE ISME JOURNAL 2024; 18:wrae068. [PMID: 38648288 PMCID: PMC11287214 DOI: 10.1093/ismejo/wrae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/15/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Soil microbial communities impact carbon sequestration and release, biogeochemical cycling, and agricultural yields. These global effects rely on metabolic interactions that modulate community composition and function. However, the physicochemical and taxonomic complexity of soil and the scarcity of available isolates for phenotypic testing are significant barriers to studying soil microbial interactions. Corrinoids-the vitamin B12 family of cofactors-are critical for microbial metabolism, yet they are synthesized by only a subset of microbiome members. Here, we evaluated corrinoid production and dependence in soil bacteria as a model to investigate the ecological roles of microorganisms involved in metabolic interactions. We isolated and characterized a taxonomically diverse collection of 161 soil bacteria from a single study site. Most corrinoid-dependent bacteria in the collection prefer B12 over other corrinoids, while all tested producers synthesize B12, indicating metabolic compatibility between producers and dependents in the collection. Furthermore, a subset of producers release B12 at levels sufficient to support dependent isolates in laboratory culture at estimated ratios of up to 1000 dependents per producer. Within our isolate collection, we did not find strong phylogenetic patterns in corrinoid production or dependence. Upon investigating trends in the phylogenetic dispersion of corrinoid metabolism categories across sequenced bacteria from various environments, we found that these traits are conserved in 47 out of 85 genera. Together, these phenotypic and genomic results provide evidence for corrinoid-based metabolic interactions among bacteria and provide a framework for the study of nutrient-sharing ecological interactions in microbial communities.
Collapse
Affiliation(s)
- Zoila I Alvarez-Aponte
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Alekhya M Govindaraju
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Zachary F Hallberg
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Alexa M Nicolas
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Myka A Green
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Kenny C Mok
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Citlali Fonseca-García
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
- Plant Gene Expression Center, USDA-ARS, Albany, CA 94710, United States
| | - Devin Coleman-Derr
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
- Plant Gene Expression Center, USDA-ARS, Albany, CA 94710, United States
| | - Eoin L Brodie
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Hans K Carlson
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Michiko E Taga
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| |
Collapse
|
8
|
Roslan MAM, Omar MN, Sharif NAM, Raston NHA, Arzmi MH, Neoh HM, Ramzi AB. Recent advances in single-cell engineered live biotherapeutic products research for skin repair and disease treatment. NPJ Biofilms Microbiomes 2023; 9:95. [PMID: 38065982 PMCID: PMC10709320 DOI: 10.1038/s41522-023-00463-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The human microbiome has emerged as a key player in maintaining skin health, and dysbiosis has been linked to various skin disorders. Amidst growing concerns regarding the side effects of antibiotic treatments, the potential of live biotherapeutic products (LBPs) in restoring a healthy microbiome has garnered significant attention. This review aims to evaluate the current state of the art of the genetically or metabolically engineered LBPs, termed single-cell engineered LBPs (eLBPs), for skin repair and disease treatment. While some studies demonstrate promising outcomes, the translation of eLBPs into clinical applications remains a significant hurdle. Substantial concerns arise regarding the practical implementation and scalability of eLBPs, despite the evident potential they hold in targeting specific cells and delivering therapeutic agents. This review underscores the need for further research, robust clinical trials, and the exploration of current advances in eLBP-based bioengineered bacterial chassis and new outlooks to substantiate the viability and effectiveness of eLBPs as a transformative approach in skin repair and disease intervention.
Collapse
Affiliation(s)
| | - Mohd Norfikri Omar
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Nur Azlina Mohd Sharif
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Nurul Hanun Ahmad Raston
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Mohd Hafiz Arzmi
- Department of Fundamental Dental & Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
- Melbourne Dental School, The University of Melbourne, 3053, Melbourne, Victoria, Australia
| | - Hui-Min Neoh
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Ahmad Bazli Ramzi
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| |
Collapse
|
9
|
Nicholas-Haizelden K, Murphy B, Hoptroff M, Horsburgh MJ. Bioprospecting the Skin Microbiome: Advances in Therapeutics and Personal Care Products. Microorganisms 2023; 11:1899. [PMID: 37630459 PMCID: PMC10456854 DOI: 10.3390/microorganisms11081899] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Bioprospecting is the discovery and exploration of biological diversity found within organisms, genetic elements or produced compounds with prospective commercial or therapeutic applications. The human skin is an ecological niche which harbours a rich and compositional diversity microbiome stemming from the multifactorial interactions between the host and microbiota facilitated by exploitable effector compounds. Advances in the understanding of microbial colonisation mechanisms alongside species and strain interactions have revealed a novel chemical and biological understanding which displays applicative potential. Studies elucidating the organismal interfaces and concomitant understanding of the central processes of skin biology have begun to unravel a potential wealth of molecules which can exploited for their proposed functions. A variety of skin-microbiome-derived compounds display prospective therapeutic applications, ranging from antioncogenic agents relevant in skin cancer therapy to treatment strategies for antimicrobial-resistant bacterial and fungal infections. Considerable opportunities have emerged for the translation to personal care products, such as topical agents to mitigate various skin conditions such as acne and eczema. Adjacent compound developments have focused on cosmetic applications such as reducing skin ageing and its associated changes to skin properties and the microbiome. The skin microbiome contains a wealth of prospective compounds with therapeutic and commercial applications; however, considerable work is required for the translation of in vitro findings to relevant in vivo models to ensure translatability.
Collapse
Affiliation(s)
- Keir Nicholas-Haizelden
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK;
| | - Barry Murphy
- Unilever Research & Development, Port Sunlight, Wirral CH63 3JW, UK; (B.M.); (M.H.)
| | - Michael Hoptroff
- Unilever Research & Development, Port Sunlight, Wirral CH63 3JW, UK; (B.M.); (M.H.)
| | - Malcolm J. Horsburgh
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK;
| |
Collapse
|
10
|
Akinsuyi OS, Roesch LFW. Meta-Analysis Reveals Compositional and Functional Microbial Changes Associated with Osteoporosis. Microbiol Spectr 2023; 11:e0032223. [PMID: 37042756 PMCID: PMC10269714 DOI: 10.1128/spectrum.00322-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Over the past decade, the role of the gut microbiota in many disease states has gained a great deal of attention. Mounting evidence from case-control and observational studies has linked changes in the gut microbiota to the pathophysiology of osteoporosis (OP). Nonetheless, the results of these studies contain discrepancies, leaving the literature without a consensus on osteoporosis-associated microbial signatures. Here, we conducted a comprehensive meta-analysis combining and reexamining five publicly available 16S rRNA partial sequence data sets to identify gut bacteria consistently associated with osteoporosis across different cohorts. After adjusting for the batch effect associated with technical variation and heterogeneity of studies, we observed a significant shift in the microbiota composition in the osteoporosis group. An increase in the relative abundance of opportunistic pathogens Clostridium sensu stricto, Bacteroides, and Intestinibacter was observed in the OP group. Moreover, short-chain-fatty-acid (SCFA) producers, including members of the genera Collinsella, Megasphaera, Agathobaculum, Mediterraneibacter, Clostridium XIV, and Dorea, were depleted in the OP group relative to the healthy control (HC) group. Lactic acid-producing bacteria, including Limosilactobacillus, were significantly increased in the OP group. The random forest algorithm further confirmed that these bacteria differentiate the two groups. Furthermore, functional prediction revealed depletion of the SCFA biosynthesis pathway (glycolysis, tricarboxylic acid [TCA] cycle, and Wood-Ljungdahl pathway) and amino acid biosynthesis pathway (methionine, histidine, and arginine) in the OP group relative to the HC group. This study uncovered OP-associated compositional and functional microbial alterations, providing robust insight into OP pathogenesis and aiding the possible development of a therapeutic intervention to manage the disease. IMPORTANCE Osteoporosis is the most common metabolic bone disease associated with aging. Mounting evidence has linked changes in the gut microbiota to the pathophysiology of osteoporosis. However, which microbes are associated with dysbiosis and their impact on bone density and inflammation remain largely unknown due to inconsistent results in the literature. Here, we present a meta-analysis with a standard workflow, robust statistical approaches, and machine learning algorithms to identify notable microbial compositional changes influencing osteoporosis.
Collapse
Affiliation(s)
- Oluwamayowa S. Akinsuyi
- Institute of Food and Agriculture, Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Luiz F. W. Roesch
- Institute of Food and Agriculture, Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
11
|
Salamzade R, Cheong JA, Sandstrom S, Swaney MH, Stubbendieck RM, Starr NL, Currie CR, Singh AM, Kalan LR. Evolutionary investigations of the biosynthetic diversity in the skin microbiome using lsaBGC. Microb Genom 2023; 9:mgen000988. [PMID: 37115189 PMCID: PMC10210951 DOI: 10.1099/mgen.0.000988] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/20/2023] [Indexed: 04/29/2023] Open
Abstract
Bacterial secondary metabolites, synthesized by enzymes encoded in biosynthetic gene clusters (BGCs), can underlie microbiome homeostasis and serve as commercialized products, which have historically been mined from a select group of taxa. While evolutionary approaches have proven beneficial for prioritizing BGCs for experimental characterization efforts to uncover new natural products, dedicated bioinformatics tools designed for comparative and evolutionary analysis of BGCs within focal taxa are limited. We thus developed l ineage s pecific a nalysis of BGCs (lsa BGC; https://github.com/Kalan-Lab/lsaBGC ) to aid exploration of microdiversity and evolutionary trends across homologous groupings of BGCs, gene cluster families (GCFs), in any bacterial taxa of interest. lsa BGC enables rapid and direct identification of GCFs in genomes, calculates evolutionary statistics and conservation for BGC genes, and builds a framework to allow for base resolution mining of novel variants through metagenomic exploration. Through application of the suite to four genera commonly found in skin microbiomes, we uncover new insights into the evolution and diversity of their BGCs. We show that the BGC of the virulence-associated carotenoid staphyloxanthin in Staphylococcus aureus is ubiquitous across the genus Staphylococcus . While one GCF encoding the biosynthesis of staphyloxanthin showcases evidence for plasmid-mediated horizontal gene transfer (HGT) between species, another GCF appears to be transmitted vertically amongst a sub-clade of skin-associated Staphylococcus . Further, the latter GCF, which is well conserved in S. aureus , has been lost in most Staphylococcus epidermidis , which is the most common Staphylococcus species on human skin and is also regarded as a commensal. We also identify thousands of novel single-nucleotide variants (SNVs) within BGCs from the Corynebacterium tuberculostearicum sp. complex, a narrow, multi-species clade that features the most prevalent Corynebacterium in healthy skin microbiomes. Although novel SNVs were approximately 10 times as likely to correspond to synonymous changes when located in the top five percentile of conserved sites, lsa BGC identified SNVs that defied this trend and are predicted to underlie amino acid changes within functionally key enzymatic domains. Ultimately, beyond supporting evolutionary investigations of BGCs, lsa BGC also provides important functionalities to aid efforts for the discovery or directed modification of natural products.
Collapse
Affiliation(s)
- Rauf Salamzade
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin, Madison, WI, USA
| | - J.Z. Alex Cheong
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin, Madison, WI, USA
| | - Shelby Sandstrom
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Mary Hannah Swaney
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin, Madison, WI, USA
| | | | - Nicole Lane Starr
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Cameron R. Currie
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Anne Marie Singh
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Lindsay R. Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Division of Infectious Disease, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
12
|
Sultana S, Bruns S, Wilkes H, Simon M, Wienhausen G. Vitamin B 12 is not shared by all marine prototrophic bacteria with their environment. THE ISME JOURNAL 2023; 17:836-845. [PMID: 36914732 DOI: 10.1038/s41396-023-01391-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/14/2023]
Abstract
Vitamin B12 (cobalamin, herein B12) is an essential cofactor involved in amino acid synthesis and carbon resupply to the TCA cycle for most prokaryotes, eukaryotic microorganisms, and animals. Despite being required by most, B12 is produced by only a minor fraction of prokaryotes and therefore leads to complex interaction between prototrophs and auxotrophs. However, it is unknown how B12 is provided by prototrophs to auxotrophs. In this study, 33 B12 prototrophic alphaproteobacterial strains were grown in co-culture with Thalassiosira pseudonana, a B12 auxotrophic diatom, to determine the bacterial ability to support the growth of the diatom by sharing B12. Among these strains, 18 were identified to share B12 with the diatom, while nine were identified to retain B12 and not support growth of the diatom. The other bacteria either shared B12 with the diatom only with the addition of substrate or inhibited the growth of the diatom. Extracellular B12 measurements of B12-provider and B12-retainer strains confirmed that the cofactor could only be detected in the environment of the tested B12-provider strains. Intracellular B12 was measured by LC-MS and showed that the concentrations of the different B12-provider as well as B12-retainer strains differed substantially. Although B12 is essential for the vast majority of microorganisms, mechanisms that export this essential cofactor are still unknown. Our results suggest that a large proportion of bacteria that can synthesise B12 de novo cannot share the cofactor with their environment.
Collapse
Affiliation(s)
- Sabiha Sultana
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany
| | - Stefan Bruns
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany
| | - Heinz Wilkes
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany.,Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstraße 231, D-26129, Oldenburg, Germany
| | - Gerrit Wienhausen
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany. .,Institute for Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, D-26129, Oldenburg, Germany.
| |
Collapse
|
13
|
Smythe P, Wilkinson HN. The Skin Microbiome: Current Landscape and Future Opportunities. Int J Mol Sci 2023; 24:3950. [PMID: 36835363 PMCID: PMC9963692 DOI: 10.3390/ijms24043950] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Our skin is the largest organ of the body, serving as an important barrier against the harsh extrinsic environment. Alongside preventing desiccation, chemical damage and hypothermia, this barrier protects the body from invading pathogens through a sophisticated innate immune response and co-adapted consortium of commensal microorganisms, collectively termed the microbiota. These microorganisms inhabit distinct biogeographical regions dictated by skin physiology. Thus, it follows that perturbations to normal skin homeostasis, as occurs with ageing, diabetes and skin disease, can cause microbial dysbiosis and increase infection risk. In this review, we discuss emerging concepts in skin microbiome research, highlighting pertinent links between skin ageing, the microbiome and cutaneous repair. Moreover, we address gaps in current knowledge and highlight key areas requiring further exploration. Future advances in this field could revolutionise the way we treat microbial dysbiosis associated with skin ageing and other pathologies.
Collapse
Affiliation(s)
- Paisleigh Smythe
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
- Skin Research Centre, Hull York Medical School, University of York, York YO10 5DD, UK
| | - Holly N. Wilkinson
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
- Skin Research Centre, Hull York Medical School, University of York, York YO10 5DD, UK
| |
Collapse
|
14
|
Salamzade R, Swaney MH, Kalan LR. Comparative Genomic and Metagenomic Investigations of the Corynebacterium tuberculostearicum Species Complex Reveals Potential Mechanisms Underlying Associations To Skin Health and Disease. Microbiol Spectr 2023; 11:e0357822. [PMID: 36541755 PMCID: PMC9927478 DOI: 10.1128/spectrum.03578-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Corynebacterium are a diverse genus and dominant member of the human skin microbiome. Recently, we reported that the most prevalent Corynebacterium species found on skin, including Corynebacterium tuberculostearicum and Corynebacterium kefirresidentii, comprise a narrow species complex despite the diversity of the genus. Here, we apply high-resolution phylogenomics and comparative genomics to describe the structure of the C. tuberculostearicum species complex and highlight genetic traits which are enriched or depleted in it relative to other Corynebacterium. Through metagenomic investigations, we also find that individual species within the complex can associate with specific body sites. Finally, we discover that one species from the complex, C. kefirresidentii, increases in relative abundance during atopic dermatitis flares, and show that most genomes of this species encode a colocalized set of putative virulence genes. IMPORTANCE Corynebacterium are commonly found bacteria on the human skin. In this study, we perform comparative genomics to gain insight into genetic traits which differentiate a phylogenetically related group of Corynebacterium, the Corynebacterium tuberculostearicum species complex, that includes the most prevalent species from the genus in skin microbiomes. After resolving the presence of distinct species within the complex, we applied metagenomic analysis to uncover biogeographic associations of individual species within the complex with specific body sites and discovered that one species, commonly found in the nares of individuals, increases in abundance across multiple body sites during atopic dermatitis flares.
Collapse
Affiliation(s)
- Rauf Salamzade
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin, Madison, Wisconsin, USA
| | - Mary Hannah Swaney
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin, Madison, Wisconsin, USA
| | - Lindsay R. Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medicine, Division of Infectious Disease, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
15
|
Swaney MH, Nelsen A, Sandstrom S, Kalan LR. Sweat and Sebum Preferences of the Human Skin Microbiota. Microbiol Spectr 2023; 11:e0418022. [PMID: 36602383 PMCID: PMC9927561 DOI: 10.1128/spectrum.04180-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
The microorganisms inhabiting human skin must overcome numerous challenges that typically impede microbial growth, including low pH, osmotic pressure, and low nutrient availability. Yet the skin microbiota thrive on the skin and have adapted to these stressful conditions. The limited nutrients available for microbial use in this unique niche include those from host-derived sweat, sebum, and corneocytes. Here, we have developed physiologically relevant, synthetic skin-like growth media composed of compounds present in sweat and sebum. We find that skin-associated bacterial species exhibit unique growth profiles at different concentrations of artificial sweat and sebum. Most strains evaluated demonstrate a preference for high sweat concentrations, while the sebum preference is highly variable, suggesting that the capacity for sebum utilization may be a driver of the skin microbial community structure. In particular, the prominent skin commensal Staphylococcus epidermidis exhibits the strongest preference for sweat while growing equally well across sebum concentrations. Conversely, the growth of Corynebacterium kefirresidentii, another dominant skin microbiome member, is dependent on increasing concentrations of both sweat and sebum but only when sebum is available, suggesting a lipid requirement of this species. Furthermore, we observe that strains with similar growth profiles in the artificial media cluster by phylum, suggesting that phylogeny is a key factor in sweat and sebum use. Importantly, these findings provide an experimental rationale for why different skin microenvironments harbor distinct microbiome communities. In all, our study further emphasizes the importance of studying microorganisms in an ecologically relevant context, which is critical for our understanding of their physiology, ecology, and function on the skin. IMPORTANCE The human skin microbiome is adapted to survive and thrive in the harsh environment of the skin, which is low in nutrient availability. To study skin microorganisms in a system that mimics the natural skin environment, we developed and tested a physiologically relevant, synthetic skin-like growth medium that is composed of compounds found in the human skin secretions sweat and sebum. We find that most skin-associated bacterial species tested prefer high concentrations of artificial sweat but that artificial sebum concentration preference varies from species to species, suggesting that sebum utilization may be an important contributor to skin microbiome composition. This study demonstrates the utility of a skin-like growth medium, which can be applied to diverse microbiological systems, and underscores the importance of studying microorganisms in an ecologically relevant context.
Collapse
Affiliation(s)
- Mary Hannah Swaney
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin, Madison, Wisconsin, USA
| | - Amanda Nelsen
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Shelby Sandstrom
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Lindsay R. Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medicine, Division of Infectious Disease, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- M. G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
16
|
Zha J, Zhao Z, Xiao Z, Eng T, Mukhopadhyay A, Koffas MA, Tang YJ. Biosystem design of Corynebacterium glutamicum for bioproduction. Curr Opin Biotechnol 2023; 79:102870. [PMID: 36549106 DOI: 10.1016/j.copbio.2022.102870] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/13/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022]
Abstract
Corynebacterium glutamicum, a natural glutamate-producing bacterium adopted for industrial production of amino acids, has been extensively explored recently for high-level biosynthesis of amino acid derivatives, bulk chemicals such as organic acids and short-chain alcohols, aromatics, and natural products, including polyphenols and terpenoids. Here, we review the recent advances with a focus on biosystem design principles, metabolic characterization and modeling, omics analysis, utilization of nonmodel feedstock, emerging CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) tools for Corynebacterium strain engineering, biosensors, and novel strains of C. glutamicum. Future research directions for developing C. glutamicum cell factories are also discussed.
Collapse
Affiliation(s)
- Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Zhen Zhao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Zhengyang Xiao
- Department of Energy, Environmental and Chemical Engineering, Washington University in Saint Louis, MO 63130, USA
| | - Thomas Eng
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aindrila Mukhopadhyay
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mattheos Ag Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Yinjie J Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University in Saint Louis, MO 63130, USA.
| |
Collapse
|
17
|
Hallberg ZF, Seth EC, Thevasundaram K, Taga ME. Comparative Analysis of Corrinoid Profiles across Host-Associated and Environmental Samples. Biochemistry 2022; 61:2791-2796. [PMID: 36037062 DOI: 10.1021/acs.biochem.2c00367] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Vitamin B12 (the cyanated form of cobalamin cofactors) is best known for its essential role in human health. In addition to its function in human metabolism, cobalamin also plays important roles in microbial metabolism and can impact microbial community function. Cobalamin is a member of the structurally diverse family of cofactors known as cobamides that are produced exclusively by certain prokaryotes. Cobamides are considered shared nutrients in microbial communities because the majority of bacteria that possess cobamide-dependent enzymes cannot synthesize cobamides de novo. Furthermore, different microbes have evolved metabolic specificity for particular cobamides, and therefore, the availability of cobamides in the environment is important for cobamide-dependent microbes. Determining the cobamides present in an environment of interest is essential for understanding microbial metabolic interactions. By examining the abundances of different cobamides in diverse environments, including 10 obtained in this study, we find that, contrary to its preeminence in human metabolism, cobalamin is relatively rare in many microbial habitats. Comparison of cobamide profiles of mammalian gastrointestinal samples and wood-feeding insects reveals that host-associated cobamide abundances vary and that fecal cobamide profiles differ from those of their host gastrointestinal tracts. Environmental cobamide profiles obtained from aquatic, soil, and contaminated groundwater samples reveal that the cobamide compositions of environmental samples are highly variable. As the only commercially available cobamide, cobalamin is routinely supplied during microbial culturing efforts. However, these findings suggest that cobamides specific to a given microbiome may yield greater insight into nutrient utilization and physiological processes that occur in these habitats.
Collapse
Affiliation(s)
- Zachary F Hallberg
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Erica C Seth
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Kersh Thevasundaram
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Michiko E Taga
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
18
|
Szczepańska M, Blicharz L, Nowaczyk J, Makowska K, Goldust M, Waśkiel-Burnat A, Czuwara J, Samochocki Z, Rudnicka L. The Role of the Cutaneous Mycobiome in Atopic Dermatitis. J Fungi (Basel) 2022; 8:1153. [PMID: 36354920 PMCID: PMC9695942 DOI: 10.3390/jof8111153] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 08/28/2024] Open
Abstract
Atopic dermatitis is a chronic inflammatory skin disorder characterized by eczematous lesions, itch, and a significant deterioration in the quality of life. Recently, microbiome dysbiosis has been implicated in the pathogenesis of atopic dermatitis. Changes in the fungal microbiome (also termed mycobiome) appear to be an important factor influencing the clinical picture of this entity. This review summarizes the available insights into the role of the cutaneous mycobiome in atopic dermatitis and the new research possibilities in this field. The prevalence and characteristics of key fungal species, the most important pathogenesis pathways, as well as classic and emerging therapies of fungal dysbiosis and infections complicating atopic dermatitis, are presented.
Collapse
Affiliation(s)
- Milena Szczepańska
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | - Leszek Blicharz
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | - Joanna Nowaczyk
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | - Karolina Makowska
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | - Mohamad Goldust
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany
| | - Anna Waśkiel-Burnat
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | - Joanna Czuwara
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | - Zbigniew Samochocki
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | - Lidia Rudnicka
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| |
Collapse
|