1
|
Ayala JC, Balthazar JT, Shafer WM. Transcriptional responses of Neisseria gonorrhoeae to glucose and lactate: implications for resistance to oxidative damage and biofilm formation. mBio 2024; 15:e0176124. [PMID: 39012148 PMCID: PMC11323468 DOI: 10.1128/mbio.01761-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Understanding how bacteria adapt to different environmental conditions is crucial for advancing knowledge regarding pathogenic mechanisms that operate during infection as well as efforts to develop new therapeutic strategies to cure or prevent infections. Here, we investigated the transcriptional response of Neisseria gonorrhoeae, the causative agent of gonorrhea, to L-lactate and glucose, two important carbon sources found in the host environment. Our study revealed extensive transcriptional changes that gonococci make in response to L-lactate, with 37% of the gonococcal transcriptome being regulated, compared to only 9% by glucose. We found that L-lactate induces a transcriptional program that would negatively impact iron transport, potentially limiting the availability of labile iron, which would be important in the face of the multiple hydrogen peroxide attacks encountered by gonococci during its lifecycle. Furthermore, we found that L-lactate-mediated transcriptional response promoted aerobic respiration and dispersal of biofilms, contrasting with an anaerobic condition previously reported to favor biofilm formation. Our findings suggest an intricate interplay between carbon metabolism, iron homeostasis, biofilm formation, and stress response in N. gonorrhoeae, providing insights into its pathogenesis and identifying potential therapeutic targets.IMPORTANCEGonorrhea is a prevalent sexually transmitted infection caused by the human pathogen Neisseria gonorrhoeae, with ca. 82 million cases reported worldwide annually. The rise of antibiotic resistance in N. gonorrhoeae poses a significant public health threat, highlighting the urgent need for alternative treatment strategies. By elucidating how N. gonorrhoeae responds to host-derived carbon sources such as L-lactate and glucose, this study offers insights into the metabolic adaptations crucial for bacterial survival and virulence during infection. Understanding these adaptations provides a foundation for developing novel therapeutic approaches targeting bacterial metabolism, iron homeostasis, and virulence gene expression. Moreover, the findings reported herein regarding biofilm formation and L-lactate transport and metabolism contribute to our understanding of N. gonorrhoeae pathogenesis, offering potential avenues for preventing and treating gonorrhea infections.
Collapse
Affiliation(s)
- Julio C. Ayala
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of STD Prevention, National Center for HIV, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jacqueline T. Balthazar
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - William M. Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, Georgia, USA
| |
Collapse
|
2
|
Potter AD, Criss AK. Dinner date: Neisseria gonorrhoeae central carbon metabolism and pathogenesis. Emerg Top Life Sci 2024; 8:15-28. [PMID: 37144661 PMCID: PMC10625648 DOI: 10.1042/etls20220111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/06/2023]
Abstract
Neisseria gonorrhoeae, the causative agent of the sexually transmitted infection gonorrhea, is a human-adapted pathogen that does not productively infect other organisms. The ongoing relationship between N. gonorrhoeae and the human host is facilitated by the exchange of nutrient resources that allow for N. gonorrhoeae growth in the human genital tract. What N. gonorrhoeae 'eats' and the pathways used to consume these nutrients have been a topic of investigation over the last 50 years. More recent investigations are uncovering the impact of N. gonorrhoeae metabolism on infection and inflammatory responses, the environmental influences driving N. gonorrhoeae metabolism, and the metabolic adaptations enabling antimicrobial resistance. This mini-review is an introduction to the field of N. gonorrhoeae central carbon metabolism in the context of pathogenesis. It summarizes the foundational work used to characterize N. gonorrhoeae central metabolic pathways and the effects of these pathways on disease outcomes, and highlights some of the most recent advances and themes under current investigation. This review ends with a brief description of the current outlook and technologies under development to increase understanding of how the pathogenic potential of N. gonorrhoeae is enabled by metabolic adaptation.
Collapse
Affiliation(s)
- Aimee D. Potter
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA USA
| |
Collapse
|
3
|
Roe SK, Felter B, Zheng B, Ram S, Wetzler LM, Garges E, Zhu T, Genco CA, Massari P. In Vitro Pre-Clinical Evaluation of a Gonococcal Trivalent Candidate Vaccine Identified by Transcriptomics. Vaccines (Basel) 2023; 11:1846. [PMID: 38140249 PMCID: PMC10747275 DOI: 10.3390/vaccines11121846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/03/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Gonorrhea, a sexually transmitted disease caused by Neisseria gonorrhoeae, poses a significant global public health threat. Infection in women can be asymptomatic and may result in severe reproductive complications. Escalating antibiotic resistance underscores the need for an effective vaccine. Approaches being explored include subunit vaccines and outer membrane vesicles (OMVs), but an ideal candidate remains elusive. Meningococcal OMV-based vaccines have been associated with reduced rates of gonorrhea in retrospective epidemiologic studies, and with accelerated gonococcal clearance in mouse vaginal colonization models. Cross-protection is attributed to shared antigens and possibly cross-reactive, bactericidal antibodies. Using a Candidate Antigen Selection Strategy (CASS) based on the gonococcal transcriptome during human mucosal infection, we identified new potential vaccine targets that, when used to immunize mice, induced the production of antibodies with bactericidal activity against N. gonorrhoeae strains. The current study determined antigen recognition by human sera from N. gonorrhoeae-infected subjects, evaluated their potential as a multi-antigen (combination) vaccine in mice and examined the impact of different adjuvants (Alum or Alum+MPLA) on functional antibody responses to N. gonorrhoeae. Our results indicated that a stronger Th1 immune response component induced by Alum+MPLA led to antibodies with improved bactericidal activity. In conclusion, a combination of CASS-derived antigens may be promising for developing effective gonococcal vaccines.
Collapse
Affiliation(s)
- Shea K. Roe
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; (S.K.R.); (C.A.G.)
| | - Brian Felter
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; (S.K.R.); (C.A.G.)
| | - Bo Zheng
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA (S.R.)
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA (S.R.)
| | - Lee M. Wetzler
- Section of Infectious Diseases, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Eric Garges
- Department of Preventive Medicine and Biostatistics, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA;
| | - Tianmou Zhu
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; (S.K.R.); (C.A.G.)
| | - Caroline A. Genco
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; (S.K.R.); (C.A.G.)
| | - Paola Massari
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; (S.K.R.); (C.A.G.)
| |
Collapse
|
4
|
Liyayi IK, Forehand AL, Ray JC, Criss AK. Metal piracy by Neisseria gonorrhoeae to overcome human nutritional immunity. PLoS Pathog 2023; 19:e1011091. [PMID: 36730177 PMCID: PMC9894411 DOI: 10.1371/journal.ppat.1011091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Ian K. Liyayi
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Amy L. Forehand
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jocelyn C. Ray
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
5
|
Sunkavalli A, McClure R, Genco C. Molecular Regulatory Mechanisms Drive Emergent Pathogenetic Properties of Neisseria gonorrhoeae. Microorganisms 2022; 10:922. [PMID: 35630366 PMCID: PMC9147433 DOI: 10.3390/microorganisms10050922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/05/2022] Open
Abstract
Neisseria gonorrhoeae is the causative agent of the sexually transmitted infection (STI) gonorrhea, with an estimated 87 million annual cases worldwide. N. gonorrhoeae predominantly colonizes the male and female genital tract (FGT). In the FGT, N. gonorrhoeae confronts fluctuating levels of nutrients and oxidative and non-oxidative antimicrobial defenses of the immune system, as well as the resident microbiome. One mechanism utilized by N. gonorrhoeae to adapt to this dynamic FGT niche is to modulate gene expression primarily through DNA-binding transcriptional regulators. Here, we describe the major N. gonorrhoeae transcriptional regulators, genes under their control, and how these regulatory processes lead to pathogenic properties of N. gonorrhoeae during natural infection. We also discuss the current knowledge of the structure, function, and diversity of the FGT microbiome and its influence on gonococcal survival and transcriptional responses orchestrated by its DNA-binding regulators. We conclude with recent multi-omics data and modeling tools and their application to FGT microbiome dynamics. Understanding the strategies utilized by N. gonorrhoeae to regulate gene expression and their impact on the emergent characteristics of this pathogen during infection has the potential to identify new effective strategies to both treat and prevent gonorrhea.
Collapse
Affiliation(s)
- Ashwini Sunkavalli
- Department of Immunology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
| | - Ryan McClure
- Pacific Northwest National Laboratory, Richland, WA 99354, USA;
| | - Caroline Genco
- Department of Immunology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
| |
Collapse
|
6
|
Kraus-Römer S, Wielert I, Rathmann I, Grossbach J, Maier B. External Stresses Affect Gonococcal Type 4 Pilus Dynamics. Front Microbiol 2022; 13:839711. [PMID: 35283813 PMCID: PMC8914258 DOI: 10.3389/fmicb.2022.839711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial type 4 pili (T4P) are extracellular polymers that serve both as adhesins and molecular motors. Functionally, they are involved in adhesion, colony formation, twitching motility, and horizontal gene transfer. T4P of the human pathogen Neisseria gonorrhoeae have been shown to enhance survivability under treatment with antibiotics or hydrogen peroxide. However, little is known about the effect of external stresses on T4P production and motor properties. Here, we address this question by directly visualizing gonococcal T4P dynamics. We show that in the absence of stress gonococci produce T4P at a remarkably high rate of ∼200 T4P min–1. T4P retraction succeeds elongation without detectable time delay. Treatment with azithromycin or ceftriaxone reduces the T4P production rate. RNA sequencing results suggest that reduced piliation is caused by combined downregulation of the complexes required for T4P extrusion from the cell envelope and cellular energy depletion. Various other stresses including inhibitors of cell wall synthesis and DNA replication, as well as hydrogen peroxide and lactic acid, inhibit T4P production. Moreover, hydrogen peroxide and acidic pH strongly affect pilus length and motor function. In summary, we show that gonococcal T4P are highly dynamic and diverse external stresses reduce piliation despite the protective effect of T4P against some of these stresses.
Collapse
Affiliation(s)
| | - Isabelle Wielert
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - Isabel Rathmann
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - Jan Grossbach
- Faculty of Mathematics and Natural Sciences, CECAD, University of Cologne, Cologne, Germany
| | - Berenike Maier
- Institute for Biological Physics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Cologne, Germany
- *Correspondence: Berenike Maier,
| |
Collapse
|
7
|
Transcriptional and Translational Responsiveness of the Neisseria gonorrhoeae Type IV Secretion System to Conditions of Host Infections. Infect Immun 2021; 89:e0051921. [PMID: 34581604 DOI: 10.1128/iai.00519-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The type IV secretion system of Neisseria gonorrhoeae translocates single-stranded DNA into the extracellular space, facilitating horizontal gene transfer and initiating biofilm formation. Expression of this system has been observed to be low under laboratory conditions, and multiple levels of regulation have been identified. We used a translational fusion of lacZ to traD, the gene for the type IV secretion system coupling protein, to screen for increased type IV secretion system expression. We identified several physiologically relevant conditions, including surface adherence, decreased manganese or iron, and increased zinc or copper, which increase gonococcal type IV secretion system protein levels through transcriptional and/or translational mechanisms. These metal treatments are reminiscent of the conditions in the macrophage phagosome. The ferric uptake regulator, Fur, was found to repress traD transcript levels but to also have a second role, acting to allow TraD protein levels to increase only in the absence of iron. To better understand type IV secretion system regulation during infection, we examined transcriptomic data from active urethral infection samples from five men. The data demonstrated differential expression of 20 of 21 type IV secretion system genes during infection, indicating upregulation of genes necessary for DNA secretion during host infection.
Collapse
|
8
|
Shankar P, McClure RS, Waters KM, Tanguay RL. Gene co-expression network analysis in zebrafish reveals chemical class specific modules. BMC Genomics 2021; 22:658. [PMID: 34517816 PMCID: PMC8438978 DOI: 10.1186/s12864-021-07940-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/15/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Zebrafish is a popular animal model used for high-throughput screening of chemical hazards, however, investigations of transcriptomic mechanisms of toxicity are still needed. Here, our goal was to identify genes and biological pathways that Aryl Hydrocarbon Receptor 2 (AHR2) Activators and flame retardant chemicals (FRCs) alter in developing zebrafish. Taking advantage of a compendium of phenotypically-anchored RNA sequencing data collected from 48-h post fertilization (hpf) zebrafish, we inferred a co-expression network that grouped genes based on their transcriptional response. RESULTS Genes responding to the FRCs and AHR2 Activators localized to distinct regions of the network, with FRCs inducing a broader response related to neurobehavior. AHR2 Activators centered in one region related to chemical stress responses. We also discovered several highly co-expressed genes in this module, including cyp1a, and we subsequently show that these genes are definitively within the AHR2 signaling pathway. Systematic removal of the two chemical types from the data, and analysis of network changes identified neurogenesis associated with FRCs, and regulation of vascular development associated with both chemical classes. We also identified highly connected genes responding specifically to each class that are potential biomarkers of exposure. CONCLUSIONS Overall, we created the first zebrafish chemical-specific gene co-expression network illuminating how chemicals alter the transcriptome relative to each other. In addition to our conclusions regarding FRCs and AHR2 Activators, our network can be leveraged by other studies investigating chemical mechanisms of toxicity.
Collapse
Affiliation(s)
- Prarthana Shankar
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, 28645 East Highway 34, Oregon State University, Corvallis, OR, 97331, USA
| | - Ryan S McClure
- Biological Sciences Division, Pacific National Northwest Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, WA, 99352, USA
| | - Katrina M Waters
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, 28645 East Highway 34, Oregon State University, Corvallis, OR, 97331, USA.,Biological Sciences Division, Pacific National Northwest Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, WA, 99352, USA
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, 28645 East Highway 34, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|