1
|
Bueno de Mesquita CP, Walsh CM, Attia Z, Koehler BD, Tarble ZJ, Van Tassel DL, Kane NC, Hulke BS. Environment, plant genetics, and their interaction shape important aspects of sunflower rhizosphere microbial communities. Appl Environ Microbiol 2024:e0163524. [PMID: 39445779 DOI: 10.1128/aem.01635-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
Associations with soil microorganisms are crucial for plants' overall health and functioning. While much work has been done to understand drivers of rhizosphere microbiome structure and function, the relative importance of geography, climate, soil properties, and plant genetics remains unclear, as results have been mixed and comprehensive studies across many sites and genotypes are limited. Rhizosphere microbiomes are crucial for crop resistance to pathogens, stress tolerance, nutrient availability, and ultimately yield. Here, we quantify the relative roles of plant genotype, environment, and their interaction in shaping soil rhizosphere communities, using 16S and ITS gene sequencing of rhizosphere soils from 10 genotypes of cultivated sunflower (Helianthus annuus) at 15 sites across the Great Plains of the United States. While site generally outweighed genotype overall in terms of effects on archaeal, bacterial, and fungal richness, community composition, and taxa relative abundances, there was also a significant interaction such that genotype exerted a significant influence on archaeal, bacterial, and fungal microbiomes in certain sites. Site effects were attributed to a combination of spatial distance and differences in climate and soil properties. Microbial taxa that were previously associated with resistance to the fungal necrotrophic pathogen Sclerotinia were present in most sites but differed significantly in relative abundance across sites. Our results have implications for plant breeding and agronomic microbiome manipulations for agricultural improvement across different geographic regions.IMPORTANCEDespite the importance of plant breeding in agriculture, we still have a limited understanding of how plant genetic variation shapes soil microbiome composition across broad geographic regions. Using 15 sites across the Great Plains of North America, we show that cultivated sunflower rhizosphere archaeal, bacterial, and fungal communities are driven primarily by site soil and climatic differences, but genotype can interact with site to influence the composition, especially in warmer and drier sites with lower overall microbial richness. We also show that all taxa that were previously found to be associated with resistance to the fungal pathogen Sclerotinia sclerotiorum were widespread but significantly affected by site, while a subset was also significantly affected by genotype. Our results contribute to a broader understanding of rhizosphere archaeal, bacterial, and fungal community assembly and provide foundational knowledge for plant breeding efforts and potential future microbiome manipulations in agriculture.
Collapse
Affiliation(s)
| | - Corinne M Walsh
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Ziv Attia
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Brady D Koehler
- USDA-ARS Sunflower Improvement Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, North Dakota, USA
| | - Zachary J Tarble
- USDA-ARS Sunflower Improvement Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, North Dakota, USA
| | | | - Nolan C Kane
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Brent S Hulke
- USDA-ARS Sunflower Improvement Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, North Dakota, USA
| |
Collapse
|
2
|
Berger A, Pérez-Valera E, Blouin M, Breuil MC, Butterbach-Bahl K, Dannenmann M, Besson-Bard A, Jeandroz S, Valls J, Spor A, Subramaniam L, Pétriacq P, Wendehenne D, Philippot L. Microbiota responses to mutations affecting NO homeostasis in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2024. [PMID: 39329426 DOI: 10.1111/nph.20159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024]
Abstract
Interactions between plants and microorganisms are pivotal for plant growth and productivity. Several plant molecular mechanisms that shape these microbial communities have been identified. However, the importance of nitric oxide (NO) produced by plants for the associated microbiota remains elusive. Using Arabidopsis thaliana isogenic mutants overproducing NO (nox1, NO overexpression) or down-producing NO (i.e. nia1nia2 impaired in the expression of both nitrate reductases NR1/NIA1 and NR2/NIA2; the 35s::GSNOR1 line overexpressing nitrosoglutathione reductase (GSNOR) and 35s::AHB1 line overexpressing haemoglobin 1 (AHB1)), we investigated how altered NO homeostasis affects microbial communities in the rhizosphere and in the roots, soil microbial activity and soil metabolites. We show that the rhizosphere microbiome was affected by the mutant genotypes, with the nox1 and nia1nia2 mutants causing opposite shifts in bacterial and fungal communities compared with the wild-type (WT) Col-0 in the rhizosphere and roots, respectively. These mutants also exhibited distinctive soil metabolite profiles than those from the other genotypes while soil microbial activity did not differ between the mutants and the WT Col-0. Our findings support our hypothesis that changes in NO production by plants can influence the plant microbiome composition with differential effects between fungal and bacterial communities.
Collapse
Affiliation(s)
- Antoine Berger
- Université de Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 21000, Dijon, France
| | - Eduardo Pérez-Valera
- Université de Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 21000, Dijon, France
| | - Manuel Blouin
- Université de Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 21000, Dijon, France
| | | | - Klaus Butterbach-Bahl
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology, 82467, Garmisch-Partenkirchen, Germany
- Land-CRAFT, Department of Agroecology, University of Aarhus, 8000, Aarhus, Denmark
| | - Michael Dannenmann
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology, 82467, Garmisch-Partenkirchen, Germany
| | - Angélique Besson-Bard
- Université de Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 21000, Dijon, France
| | - Sylvain Jeandroz
- Université de Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 21000, Dijon, France
| | - Josep Valls
- Univ. Bordeaux, INRAE, UMR 1366 OENO - Axe Molécules À Intérêt Biologique, ISVV, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Aymé Spor
- Université de Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 21000, Dijon, France
| | - Logapragasan Subramaniam
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology, 82467, Garmisch-Partenkirchen, Germany
| | - Pierre Pétriacq
- Univ. Bordeaux, INRAE, UMR 1366 OENO - Axe Molécules À Intérêt Biologique, ISVV, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - David Wendehenne
- Université de Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 21000, Dijon, France
| | - Laurent Philippot
- Université de Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 21000, Dijon, France
| |
Collapse
|
3
|
Anneberg TJ, Cullen NP, O'Neill EM, Wei N, Ashman TL. Neopolyploidy has variable effects on the diversity and composition of the wild strawberry microbiome. AMERICAN JOURNAL OF BOTANY 2024; 111:e16287. [PMID: 38366679 DOI: 10.1002/ajb2.16287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 02/18/2024]
Abstract
PREMISE Whole-genome duplication (neopolyploidy) can instantly differentiate the phenotype of neopolyploids from their diploid progenitors. These phenotypic shifts in organs such as roots and leaves could also differentiate the way neopolyploids interact with microbial species. While some studies have addressed how specific microbial interactions are affected by neopolyploidy, we lack an understanding of how genome duplication affects the diversity and composition of microbial communities. METHODS We performed a common garden experiment with multiple clones of artificially synthesized autotetraploids and their ancestral diploids, derived from 13 genotypes of wild strawberry, Fragaria vesca. We sequenced epiphytic bacteria and fungi from roots and leaves and characterized microbial communities and leaf functional traits. RESULTS Autotetraploidy had no effect on bacterial alpha diversity of either organ, but it did have a genotype-dependent effect on the diversity of fungi on leaves. In contrast, autotetraploidy restructured the community composition of leaf bacteria and had a genotype-dependent effect on fungal community composition in both organs. The most differentially abundant bacterial taxon on leaves belonged to the Sphingomonas, while a member of the Trichoderma was the most differentially abundant fungal taxon on roots. Ploidy-induced change in leaf size was strongly correlated with a change in bacterial but not fungal leaf communities. CONCLUSIONS Genome duplication can immediately alter aspects of the plant microbiome, but this effect varies by host genotype and bacterial and fungal community. Expanding these studies to wild settings where plants are exposed continuously to microbes are needed to confirm the patterns observed here.
Collapse
Affiliation(s)
- Thomas J Anneberg
- Department of Biological Sciences, University of Pittsburgh, PA, USA
| | - Nevin P Cullen
- Department of Biological Sciences, University of Pittsburgh, PA, USA
| | | | - Na Wei
- Department of Biological Sciences, University of Pittsburgh, PA, USA
- Holden Arboretum, OH, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, PA, USA
| |
Collapse
|
4
|
Fan W, Xiao Y, Dong J, Xing J, Tang F, Shi F. Variety-driven rhizosphere microbiome bestows differential salt tolerance to alfalfa for coping with salinity stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1324333. [PMID: 38179479 PMCID: PMC10766110 DOI: 10.3389/fpls.2023.1324333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Soil salinization is a global environmental issue and a significant abiotic stress that threatens crop production. Root-associated rhizosphere microbiota play a pivotal role in enhancing plant tolerance to abiotic stresses. However, limited information is available concerning the specific variations in rhizosphere microbiota driven by different plant genotypes (varieties) in response to varying levels of salinity stress. In this study, we compared the growth performance of three alfalfa varieties with varying salt tolerance levels in soils with different degrees of salinization. High-throughput 16S rRNA and ITS sequencing were employed to analyze the rhizosphere microbial communities. Undoubtedly, the increasing salinity significantly inhibited alfalfa growth and reduced rhizosphere microbial diversity. However, intriguingly, salt-tolerant varieties exhibited relatively lower susceptibility to salinity, maintaining more stable rhizosphere bacterial community structure, whereas the reverse was observed for salt-sensitive varieties. Bacillus emerged as the dominant species in alfalfa's adaptation to salinity stress, constituting 21.20% of the shared bacterial genera among the three varieties. The higher abundance of Bacillus, Ensifer, and Pseudomonas in the rhizosphere of salt-tolerant alfalfa varieties is crucial in determining their elevated salt tolerance. As salinity levels increased, salt-sensitive varieties gradually accumulated a substantial population of pathogenic fungi, such as Fusarium and Rhizoctonia. Furthermore, rhizosphere bacteria of salt-tolerant varieties exhibited increased activity in various metabolic pathways, including biosynthesis of secondary metabolites, carbon metabolism, and biosynthesis of amino acids. It is suggested that salt-tolerant alfalfa varieties can provide more carbon sources to the rhizosphere, enriching more effective plant growth-promoting bacteria (PGPB) such as Pseudomonas to mitigate salinity stress. In conclusion, our results highlight the variety-mediated enrichment of rhizosphere microbiota in response to salinity stress, confirming that the high-abundance enrichment of specific dominant rhizosphere microbes and their vital roles play a significant role in conferring high salt adaptability to these varieties.
Collapse
Affiliation(s)
- Wenqiang Fan
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanzi Xiao
- College of Agriculture and Forestry, Hulunbuir University, Hulunber, China
| | - Jiaqi Dong
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Jing Xing
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Fang Tang
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Fengling Shi
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
5
|
Poupin MJ, Ledger T, Roselló-Móra R, González B. The Arabidopsis holobiont: a (re)source of insights to understand the amazing world of plant-microbe interactions. ENVIRONMENTAL MICROBIOME 2023; 18:9. [PMID: 36803555 PMCID: PMC9938593 DOI: 10.1186/s40793-023-00466-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
As holobiont, a plant is intrinsically connected to its microbiomes. However, some characteristics of these microbiomes, such as their taxonomic composition, biological and evolutionary role, and especially the drivers that shape them, are not entirely elucidated. Reports on the microbiota of Arabidopsis thaliana first appeared more than ten years ago. However, there is still a lack of a comprehensive understanding of the vast amount of information that has been generated using this holobiont. The main goal of this review was to perform an in-depth, exhaustive, and systematic analysis of the literature regarding the Arabidopsis-microbiome interaction. A core microbiota was identified as composed of a few bacterial and non-bacterial taxa. The soil (and, to a lesser degree, air) were detected as primary microorganism sources. From the plant perspective, the species, ecotype, circadian cycle, developmental stage, environmental responses, and the exudation of metabolites were crucial factors shaping the plant-microbe interaction. From the microbial perspective, the microbe-microbe interactions, the type of microorganisms belonging to the microbiota (i.e., beneficial or detrimental), and the microbial metabolic responses were also key drivers. The underlying mechanisms are just beginning to be unveiled, but relevant future research needs were identified. Thus, this review provides valuable information and novel analyses that will shed light to deepen our understanding of this plant holobiont and its interaction with the environment.
Collapse
Affiliation(s)
- M J Poupin
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, 7941169, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - T Ledger
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, 7941169, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - R Roselló-Móra
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA UIB-CSIC), Illes Balears, Majorca, Spain
| | - B González
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, 7941169, Santiago, Chile.
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile.
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile.
| |
Collapse
|
6
|
Polyploidy and microbiome associations mediate similar responses to pathogens in Arabidopsis. Curr Biol 2022; 32:2719-2729.e5. [DOI: 10.1016/j.cub.2022.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/14/2022] [Accepted: 05/06/2022] [Indexed: 01/04/2023]
|