1
|
Slinger BL, Banerjee S, Chandler JR, Blackwell HE. Interspecies Crosstalk via LuxI/LuxR-Type Quorum Sensing Pathways Contributes to Decreased Nematode Survival in Coinfections of Pseudomonas aeruginosa and Burkholderia multivorans. ACS Chem Biol 2024; 19:2557-2568. [PMID: 39636707 DOI: 10.1021/acschembio.4c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Quorum sensing (QS) is a prominent chemical communication mechanism used by common bacteria to regulate group behaviors at high cell density, including many processes important in pathogenesis. There is growing evidence that certain bacteria can use QS to sense not only themselves but also other species and that this crosstalk could alter collective behaviors. In the current study, we report the results of culture-based and in vivo coinfection experiments that probe interspecies interactions between the opportunistic pathogens Pseudomonas aeruginosa and Burkholderia multivorans involving their LuxI/LuxR-type QS circuits. Using a Caenorhabditis elegans infection model, we show that infections with both species result in poorer host outcomes compared with monoinfections. We use genetic mutants and a transwell infection assay to establish that crosstalk via LuxR-type receptors and signals is important for this coinfection pathogenicity. Using laboratory cocultures with cell-based reporter systems, we show that the RhlR and CepR receptors in P. aeruginosa and B. multivorans, respectively, can each recognize a QS signal produced by the other species. Lastly, we apply chemical biology to complement our genetic approach and demonstrate the potential to regulate interspecies interactions between the wild-type strains of P. aeruginosa and B. multivorans through the application of synthetic compounds that modulate RhlR and CepR activities. Overall, this study reveals that interspecies interaction via QS networks is possible between P. aeruginosa and B. multivorans and that it can contribute to coinfection severity with these two species.
Collapse
Affiliation(s)
- Betty L Slinger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Samalee Banerjee
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, Kansas 66045, United States
| | - Josephine R Chandler
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, Kansas 66045, United States
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Liu S, Feng X, Zhang H, Li P, Yang B, Gu Q. Decoding bacterial communication: Intracellular signal transduction, quorum sensing, and cross-kingdom interactions. Microbiol Res 2024; 292:127995. [PMID: 39657399 DOI: 10.1016/j.micres.2024.127995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
This review provides a comprehensive analysis of the intricate architecture of bacterial sensing systems, with a focus on signal transduction mechanisms and their critical roles in microbial physiology. It highlights quorum sensing (QS), quorum quenching (QQ), and quorum sensing interference (QSI) as fundamental processes driving bacterial communication, influencing gene expression, biofilm formation, and interspecies interactions. The analysis explores the importance of diffusible signal factors (DSFs) and secondary messengers such as cAMP and c-di-GMP in modulating microbial behaviors. Additionally, cross-kingdom signaling, where bacterial signals impact host-pathogen dynamics and ecological balance, is systematically reviewed. This review introduces "signalomics", an novel interdisciplinary framework integrating genomics, proteomics, and metabolomics to offer a holistic framework for understanding microbial communication and evolution. These findings hold significant implications for various domains, including food preservation, agriculture, and human health.
Collapse
Affiliation(s)
- Shuxun Liu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Xujie Feng
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Hangjia Zhang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku FI-20014, Finland
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
3
|
Nguyen ANX, Thirapanmethee K, Audshasai T, Khuntayaporn P, Chomnawang MT. Insights into molecular mechanisms of phytochemicals in quorum sensing modulation for bacterial biofilm control. Arch Microbiol 2024; 206:459. [PMID: 39499335 DOI: 10.1007/s00203-024-04171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/03/2024] [Accepted: 10/13/2024] [Indexed: 11/07/2024]
Abstract
Biofilm formation is a common mechanism by which bacteria undergo phenotypic changes to adapt to environmental stressors. The formation of biofilms has a detrimental impact in clinical settings by contributing to chronic infections and promoting antibiotic resistance. Delving into the molecular mechanisms, the quorum sensing (QS) system involves the release of chemical signals for bacterial cell-to-cell communication, which activates and regulates the expression of various genes and virulence factors, including those related to biofilm formation. Accordingly, the QS system becomes a potential target for combating biofilm-associated concerns. Natural products derived from plants have a long history of treating infectious diseases in humans due to their antimicrobial properties, making them valuable resources for screening anti-biofilm agents. This review aims to discover the mechanisms by which phytochemical agents inhibit QS, potentially offering promising new therapies for treating biofilm-associated infections. By targeting the QS system, these phytochemical agents can prevent bacterial aggregation and biofilm formation while also diminishing other bacterial virulence factors. Additionally, it is important to focus on the advancement of techniques and experiments to investigate their molecular mechanisms. A thorough understanding of these mechanisms may encourage further studies to evaluate the safety and efficacy of phytochemical agents used alone or in combination with other strategies.
Collapse
Affiliation(s)
- Anh Ngoc Xuan Nguyen
- Biopharmaceutical Sciences Program, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Krit Thirapanmethee
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Teerawit Audshasai
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Piyatip Khuntayaporn
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Mullika Traidej Chomnawang
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
4
|
Li S, Jia T, Chi Y, Chen J, Mao Z. Identification and characterization of LuxR solo homolog PplR in pathogenic Pseudomonas plecoglossicida NB2011. Front Cell Infect Microbiol 2024; 14:1458976. [PMID: 39524928 PMCID: PMC11543582 DOI: 10.3389/fcimb.2024.1458976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
Pseudomonas plecoglossicida is a causative agent of visceral granulomas in large yellow croaker (Larimichthys crocea). Quorum sensing (QS) is widely involved in imparting virulence to pathogenic bacteria; however, it has not been studied in P. plecoglossicida. In this study, we annotated a LuxR family transcriptional regulator in P. plecoglossicida NB2011 and designated as PplR. We aligned the protein sequence by BlastP and Clustal X2, monitored the N-acyl-homoserine lactone (AHL) signal production through cross-feeding bioassay and HC-MS/MS; investigated exogenous AHL signal binding by recombinant expression and thin layer chromatography; constructed a deletion mutant of the target gene by method of double homologous recombination; sequenced the transcript RNA and analyzed the data; additionally, characterized phenotypes of wild type and mutant strain. The LuxR homolog PplR was found to share high similarity with PpoR-the LuxR solo of Pseudomonas putida-without a cognate LuxI. The wild-type strain did not produce any AHL signals and the recombinant LuxR protein was found to bind C6-L-homoserine lactone (C6-HSL), C8-HSL, 3-oxo-C10-HSL, and 3-oxo-C12-HSL. RNA-seq analysis indicated 84 differentially expressed genes-5 upregulated and 79 downregulated-mainly enriched in gene ontology terms, such as flagella-dependent motility, integral component of membrane, DNA binding and transcription, and metal ion binding, suggesting that PplR is a master transcription regulator. The mutant strain showed attenuated biofilm-forming ability and stress resistance, and the data support a role for PplR in the regulation of these traits in P. plecoglossicida NB2011 independent of the presence of AHL signals. This is the first study to provide QS-related information on P. plecoglossicida.
Collapse
Affiliation(s)
| | | | | | | | - Zhijuan Mao
- Biological and Environmental College, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
5
|
Li P, Bez C, Zhang Y, Deng Y, Venturi V. N-acyl homoserine lactone cell-cell diffusible signalling in the Ralstonia solanacearum species complex. MOLECULAR PLANT PATHOLOGY 2024; 25:e13467. [PMID: 39099210 PMCID: PMC11298618 DOI: 10.1111/mpp.13467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 08/06/2024]
Abstract
Ralstonia solanacearum species complex (RSSC) includes soilborne bacterial plant pathogens with worldwide distribution and wide host ranges. Virulence factors are regulated via four hierarchically organized cell-cell contact independent quorum-sensing (QS) signalling systems: the Phc, which uses as signals (R)-methyl 3-hydroxypalmitate [(R)-3-OH PAME] or (R)-methyl 3-hydroxymyristate [(R)-3-OH MAME], the N-acyl homoserine lactone (AHL)-dependent RasI/R and SolI/R systems, and the recently identified anthranilic acid-dependent system. The unique Phc QS system has been extensively studied; however, the role of the two AHL QS systems has only recently been addressed. In this microreview, we present and discuss current data of the SolI/R and RasI/R QS systems in the RSSC. We also present the distribution and frequency of these AHL QS systems in the RSSC, discuss possible ecological roles and evolutive implications. The complex QS hierarchical networks emphasizes the crucial role of cell-cell signalling in the virulence of the RSSC.
Collapse
Affiliation(s)
- Peng Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life SciencesHainan Normal UniversityHaikouChina
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
| | - Cristina Bez
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
| | - Yong Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River BasinSouthwest UniversityChongqingChina
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen University, Sun Yatsen UniversityShenzhenChina
| | - Vittorio Venturi
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
- African Genome Center, University Mohammed VI Polytechnic (UM6P)Ben GuerirMorocco
| |
Collapse
|
6
|
Rico-Jiménez M, Udaondo Z, Krell T, Matilla MA. Auxin-mediated regulation of susceptibility to toxic metabolites, c-di-GMP levels, and phage infection in the rhizobacterium Serratia plymuthica. mSystems 2024; 9:e0016524. [PMID: 38837409 PMCID: PMC11264596 DOI: 10.1128/msystems.00165-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/26/2024] [Indexed: 06/07/2024] Open
Abstract
The communication between plants and their microbiota is highly dynamic and involves a complex network of signal molecules. Among them, the auxin indole-3-acetic acid (IAA) is a critical phytohormone that not only regulates plant growth and development, but is emerging as an important inter- and intra-kingdom signal that modulates many bacterial processes that are important during interaction with their plant hosts. However, the corresponding signaling cascades remain largely unknown. Here, we advance our understanding of the largely unknown mechanisms by which IAA carries out its regulatory functions in plant-associated bacteria. We showed that IAA caused important changes in the global transcriptome of the rhizobacterium Serratia plymuthica and multidisciplinary approaches revealed that IAA sensing interferes with the signaling mediated by other pivotal plant-derived signals such as amino acids and 4-hydroxybenzoic acid. Exposure to IAA caused large alterations in the transcript levels of genes involved in amino acid metabolism, resulting in significant metabolic alterations. IAA treatment also increased resistance to toxic aromatic compounds through the induction of the AaeXAB pump, which also confers resistance to IAA. Furthermore, IAA promoted motility and severely inhibited biofilm formation; phenotypes that were associated with decreased c-di-GMP levels and capsule production. IAA increased capsule gene expression and enhanced bacterial sensitivity to a capsule-dependent phage. Additionally, IAA induced the expression of several genes involved in antibiotic resistance and led to changes in the susceptibility and responses to antibiotics with different mechanisms of action. Collectively, our study illustrates the complexity of IAA-mediated signaling in plant-associated bacteria. IMPORTANCE Signal sensing plays an important role in bacterial adaptation to ecological niches and hosts. This communication appears to be particularly important in plant-associated bacteria since they possess a large number of signal transduction systems that respond to a wide diversity of chemical, physical, and biological stimuli. IAA is emerging as a key inter- and intra-kingdom signal molecule that regulates a variety of bacterial processes. However, despite the extensive knowledge of the IAA-mediated regulatory mechanisms in plants, IAA signaling in bacteria remains largely unknown. Here, we provide insight into the diversity of mechanisms by which IAA regulates primary and secondary metabolism, biofilm formation, motility, antibiotic susceptibility, and phage sensitivity in a biocontrol rhizobacterium. This work has important implications for our understanding of bacterial ecology in plant environments and for the biotechnological and clinical applications of IAA, as well as related molecules.
Collapse
Affiliation(s)
- Miriam Rico-Jiménez
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Zulema Udaondo
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, Spain
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Miguel A. Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
7
|
Hartmann A, Binder T, Rothballer M. Quorum sensing-related activities of beneficial and pathogenic bacteria have important implications for plant and human health. FEMS Microbiol Ecol 2024; 100:fiae076. [PMID: 38744663 PMCID: PMC11149725 DOI: 10.1093/femsec/fiae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/28/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024] Open
Abstract
Eukaryotic organisms coevolved with microbes from the environment forming holobiotic meta-genomic units. Members of host-associated microbiomes have commensalic, beneficial/symbiotic, or pathogenic phenotypes. More than 100 years ago, Lorenz Hiltner, pioneer of soil microbiology, introduced the term 'Rhizosphere' to characterize the observation that a high density of saprophytic, beneficial, and pathogenic microbes are attracted by root exudates. The balance between these types of microbes decide about the health of the host. Nowadays we know, that for the interaction of microbes with all eukaryotic hosts similar principles and processes of cooperative and competitive functions are in action. Small diffusible molecules like (phyto)hormones, volatiles and quorum sensing signals are examples for mediators of interspecies and cross-kingdom interactions. Quorum sensing of bacteria is mediated by different autoinducible metabolites in a density-dependent manner. In this perspective publication, the role of QS-related activities for the health of hosts will be discussed focussing mostly on N-acyl-homoserine lactones (AHL). It is also considered that in some cases very close phylogenetic relations exist between plant beneficial and opportunistic human pathogenic bacteria. Based on a genome and system-targeted new understanding, sociomicrobiological solutions are possible for the biocontrol of diseases and the health improvement of eukaryotic hosts.
Collapse
Affiliation(s)
- Anton Hartmann
- Faculty of Biology, Microbe-Host Interactions, Ludwig-Maximilian-University Munich, Grosshaderner Str. 2, D-82152 Planegg/Martinsried, Germany
- Department of Environmental Sciences, Helmholtz Zentrum Munich, German Research Center for Health and Environment, Research Unit Microbe-Plant Interactions, Ingolstädter Landstr. 1, D-85762 Neuherberg, Germany
| | - Tatiana Binder
- Department of Environmental Sciences, Helmholtz Zentrum Munich, German Research Center for Health and Environment, Research Unit Microbe-Plant Interactions, Ingolstädter Landstr. 1, D-85762 Neuherberg, Germany
| | - Michael Rothballer
- Department of Environmental Sciences, Helmholtz Zentrum Munich, German Research Center for Health and Environment, Research Unit Microbe-Plant Interactions, Ingolstädter Landstr. 1, D-85762 Neuherberg, Germany
- Helmholtz Zentrum Munich, German Research Center for Health and Environment, Institute of Network Biology, Ingolstädter Landstr. 1 D-85762 Neuherberg, Germany
| |
Collapse
|
8
|
de la Fuente I, Manzano-Morales S, Sanz D, Prieto A, Barriuso J. Quorum sensing in bacteria: in silico protein analysis, ecophysiology, and reconstruction of their evolutionary history. BMC Genomics 2024; 25:441. [PMID: 38702600 PMCID: PMC11069264 DOI: 10.1186/s12864-024-10355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Quorum sensing (QS) is a sophisticated cell-to-cell signalling mechanism that allows the coordination of important processes in microbial populations. The AI-1 and AI-2 autoinducer systems are among the best characterized bacterial QS systems at the genetic level. RESULTS In this study, we present data derived from in silico screening of QS proteins from bacterial genomes available in public databases. Sequence analyses allowed identifying candidate sequences of known QS systems that were used to build phylogenetic trees. Eight categories were established according to the number of genes from the two major QS systems present in each genome, revealing a correlation with specific taxa, lifestyles or metabolic traits. Many species had incomplete QS systems, encoding the receptor protein but not the biosynthesis of the quorum sensing molecule (QSMs). Reconstruction of the evolutionary history of the LuxR family and prediction of the 3D structure of the ancestral protein suggested their monomeric configuration in the absence of the signal molecule and the presence of a cavity for its binding. CONCLUSIONS Here we correlate the taxonomic affiliation and lifestyle of bacteria from different genera with the QS systems encoded in their genomes. Moreover, we present the first ancestral reconstruction of the LuxR QS receptors, providing further insight in their evolutionary history.
Collapse
Affiliation(s)
- Iñigo de la Fuente
- Centro de Investigaciones Biológicas (CIB Margarita Salas), Department of Microbial and Plant Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Saioa Manzano-Morales
- Centro de Investigaciones Biológicas (CIB Margarita Salas), Department of Microbial and Plant Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - David Sanz
- Centro de Investigaciones Biológicas (CIB Margarita Salas), Department of Microbial and Plant Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Alicia Prieto
- Centro de Investigaciones Biológicas (CIB Margarita Salas), Department of Microbial and Plant Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Jorge Barriuso
- Centro de Investigaciones Biológicas (CIB Margarita Salas), Department of Microbial and Plant Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain.
| |
Collapse
|
9
|
Gonzales M, Jacquet P, Gaucher F, Chabrière É, Plener L, Daudé D. AHL-Based Quorum Sensing Regulates the Biosynthesis of a Variety of Bioactive Molecules in Bacteria. JOURNAL OF NATURAL PRODUCTS 2024; 87:1268-1284. [PMID: 38390739 DOI: 10.1021/acs.jnatprod.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Bacteria are social microorganisms that use communication systems known as quorum sensing (QS) to regulate diverse cellular behaviors including the production of various secreted molecules. Bacterial secondary metabolites are widely studied for their bioactivities including antibiotic, antifungal, antiparasitic, and cytotoxic compounds. Besides playing a crucial role in natural bacterial niches and intermicrobial competition by targeting neighboring organisms and conferring survival advantages to the producer, these bioactive molecules may be of prime interest to develop new antimicrobials or anticancer therapies. This review focuses on bioactive compounds produced under acyl homoserine lactone-based QS regulation by Gram-negative bacteria that are pathogenic to humans and animals, including the Burkholderia, Serratia, Pseudomonas, Chromobacterium, and Pseudoalteromonas genera. The synthesis, regulation, chemical nature, biocidal effects, and potential applications of these identified toxic molecules are presented and discussed in light of their role in microbial interactions.
Collapse
Affiliation(s)
- Mélanie Gonzales
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
- Gene&GreenTK, Marseille 13005, France
| | | | | | - Éric Chabrière
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
| | | | | |
Collapse
|
10
|
Zeng M, Sarker B, Howitz N, Shah I, Andrews LB. Synthetic Homoserine Lactone Sensors for Gram-Positive Bacillus subtilis Using LuxR-Type Regulators. ACS Synth Biol 2024; 13:282-299. [PMID: 38079538 PMCID: PMC10805106 DOI: 10.1021/acssynbio.3c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 01/23/2024]
Abstract
A universal biochemical signal for bacterial cell-cell communication could facilitate programming dynamic responses in diverse bacterial consortia. However, the classical quorum sensing paradigm is that Gram-negative and Gram-positive bacteria generally communicate via homoserine lactones (HSLs) or oligopeptide molecular signals, respectively, to elicit population responses. Here, we create synthetic HSL sensors for Gram-positive Bacillus subtilis 168 using allosteric LuxR-type regulators (RpaR, LuxR, RhlR, and CinR) and synthetic promoters. Promoters were combinatorially designed from different sequence elements (-35, -16, -10, and transcriptional start regions). We quantified the effects of these combinatorial promoters on sensor activity and determined how regulator expression affects its activation, achieving up to 293-fold activation. Using the statistical design of experiments, we identified significant effects of promoter regions and pairwise interactions on sensor activity, which helped to understand the sequence-function relationships for synthetic promoter design. We present the first known set of functional HSL sensors (≥20-fold dynamic range) in B. subtilis for four different HSL chemical signals: p-coumaroyl-HSL, 3-oxohexanoyl-HSL, n-butyryl-HSL, and n-(3-hydroxytetradecanoyl)-HSL. This set of synthetic HSL sensors for a Gram-positive bacterium can pave the way for designable interspecies communication within microbial consortia.
Collapse
Affiliation(s)
- Min Zeng
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Biprodev Sarker
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Nathaniel Howitz
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Ishita Shah
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Lauren B. Andrews
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
- Molecular
and Cellular Biology Graduate Program, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Biotechnology
Training Program, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
11
|
Pflanze S, Mukherji R, Ibrahim A, Günther M, Götze S, Chowdhury S, Reimer L, Regestein L, Stallforth P. Nonribosomal peptides protect Pseudomonas nunensis 4A2e from amoebal and nematodal predation. Chem Sci 2023; 14:11573-11581. [PMID: 37886094 PMCID: PMC10599466 DOI: 10.1039/d3sc03335j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/01/2023] [Indexed: 10/28/2023] Open
Abstract
The rhizosphere is a highly competitive environment forcing bacteria to evolve strategies to oppose their enemies. The production of toxic secondary metabolites allows bacteria to counteract predators. In this study, we describe the anti-predator armamentarium of the soil-derived bacterium Pseudomonas nunensis 4A2e. Based on a genome mining approach, we identified several biosynthetic gene clusters coding for nonribosomal peptide synthetases. Generation of gene deletion mutants of the respective clusters shows a loss of defense capabilities. We isolated the novel lipopeptides keanumycin D and nunapeptins B and C, and fully elucidated their structures by a combination of in-depth mass spectrometry experiments, stable isotope labelling, and chemical synthesis. Additionally, investigation of the quorum sensing-dependent biosynthesis allowed us to elucidate parts of the underlying regulation of the biosynthetic machinery. Ecology-inspired bioassays highlight the role of these peptides as a defence strategy against protozoans and led us to find a previously unknown function against the bacterivorous nematode Oscheius myriophilus.
Collapse
Affiliation(s)
- Sebastian Pflanze
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Leibniz-HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Ruchira Mukherji
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Leibniz-HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Anan Ibrahim
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Leibniz-HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Markus Günther
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Leibniz-HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Sebastian Götze
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Leibniz-HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Somak Chowdhury
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Leibniz-HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Lisa Reimer
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Leibniz-HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Lars Regestein
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Leibniz-HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Pierre Stallforth
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Leibniz-HKI Beutenbergstrasse 11a 07745 Jena Germany
- Faculty of Chemistry and Earth Sciences, Friedrich Schiller University (FSU) Jena Germany
| |
Collapse
|
12
|
Dominelli N, Regaiolo A, Willy L, Heermann R. Interkingdom Signaling of the Insect Pathogen Photorhabdus luminescens with Plants Via the LuxR solo SdiA. Microorganisms 2023; 11:microorganisms11040890. [PMID: 37110313 PMCID: PMC10143992 DOI: 10.3390/microorganisms11040890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
In bacteria, group-coordinated behavior such as biofilm formation or virulence are often mediated via cell–cell communication, a process referred to as quorum sensing (QS). The canonical QS system of Gram-negative bacteria uses N-acyl homoserine lactones (AHLs) as communication molecules, which are produced by LuxI-type synthases and sensed by cognate LuxR-type receptors. These receptors act as transcriptional regulators controlling the expression of specific genes. Some bacteria harbor LuxR-type receptors lacking a cognate LuxI-type synthases, designated as LuxR solos. Among many other LuxR solos, the entomopathogenic enteric bacterium Photorhabdus luminescens harbors a SdiA-like LuxR solo containing an AHL signal-binding domain, for which a respective signal molecule and target genes have not been identified yet. Here we performed SPR analysis to demonstrate that SdiA acts as a bidirectional regulator of transcription, tightly controlling its own expression and the adjacent PluDJC_01670 (aidA) gene in P. luminescens, a gene supposed to be involved in the colonization of eukaryotes. Via qPCR we could further determine that in sdiA deletion mutant strains, aidA is upregulated, indicating that SdiA negatively affects expression of aidA. Furthermore, the ΔsdiA deletion mutant exhibited differences in biofilm formation and motility compared with the wild-type. Finally, using nanoDSF analysis we could identify putative binding ability of SdiA towards diverse AHLs, but also to plant-derived signals, modulating the DNA-binding capacity of SdiA, suggesting that this LuxR solo acts as an important player in interkingdom signaling between P. luminescens and plants.
Collapse
|