1
|
Li J, Jiang N, Zheng H, Zheng X, Xu Y, Weng Y, Jiang F, Wang C, Chang P. Investigation of gut microbiota disorders in norovirus infected children patients based on 16s rRNA sequencing. Ann Med 2024; 56:2412834. [PMID: 39387550 PMCID: PMC11469441 DOI: 10.1080/07853890.2024.2412834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/18/2024] [Accepted: 05/27/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Norovirus is the leading cause of sporadic viral gastroenteritis cases and outbreaks. Gut microbiota plays a key role in maintaining immune homeostasis. We aimed to investigate the composition and functional effects of gut microbiota in children infected with norovirus. METHODS Stool samples were collected from 31 children infected with norovirus and 25 healthy children. The gut microbiota was analyzed by 16S rRNA gene sequencing, followed by composition, correlation network, functional and phenotype prediction analyses. RESULTS Gut microbiota in children infected with norovirus was characterized by lower species richness and diversity. Veillonella is the dominant gut microbiota specie in norovirus infection. Blautia was significantly lower in norovirus infection. There was a positive correlation between Faecalibacterium, Blautia, Subdoligranulum, Eubacterium_hallii_group, Fusicatenibacter, Agathobacter, Roseburia and Dorea. Functionally, secondary metabolites biosynthesis, transport and catabolism, selenocysteine lyase and peroxiredoxin were the most significantly higher functional compositions of gut microbiota in norovirus infection. However, sn-glycerol-1-phosphate dehydrogenase and fermentation were the most significantly lower functional compositions in norovirus infection group. Phenotype analysis showed that Contains_Mobile_Elements had the highest level of phenotypes in the gut microbiota of norovirus infection. CONCLUSION Norovirus infection may lead to dysregulation of the gut microbiome in children.
Collapse
Affiliation(s)
- Jie Li
- Comprehensive Technical Service Center, Taizhou Customs, Taizhou City, Zhejiang, China
| | - Nan Jiang
- Department of Integrated Traditional Chinese and Western Medicine, Taizhou Municipal Hospital, Taizhou City, Zhejiang, China
| | - Hui Zheng
- Medical and Chemical Testing Center, Taizhou Institute of Measurement Technology, Taizhou City, Zhejiang, China
| | - Xiao Zheng
- School Office, Dongshan Central Primary School, Taizhou City, Zhejiang, China
| | - Yi Xu
- Comprehensive Technical Service Center, Taizhou Customs, Taizhou City, Zhejiang, China
| | - Yongqing Weng
- Clinical Laboratory, Taizhou Municipal Hospital, Taizhou City, Zhejiang, China
| | - Feijian Jiang
- Supervision Section No. 1, Taizhou Customs, Taizhou City, Zhejiang, China
| | - Chong Wang
- Inspection Section, Taizhou Customs, Taizhou City, Zhejiang, China
| | - Peiliang Chang
- Supervision Section No. 4, Taizhou Customs, Taizhou City, Zhejiang, China
| |
Collapse
|
2
|
Lourenço CF, Almeida AR, Soares AM, Marques CR. Efficiency comparison of DNA extraction kits for analysing the cockle gut bacteriome. Heliyon 2024; 10:e38846. [PMID: 39640665 PMCID: PMC11620152 DOI: 10.1016/j.heliyon.2024.e38846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 12/07/2024] Open
Abstract
Cockles play a vital ecological role and provide valuable ecosystem services globally. However, the performance, production, and safe consumption of cockles are significantly influenced by their gut-associated bacteriome. Accurate understanding of gut-bacteriome interactions, and surveillance of pathogenic bacteria loads in cockles, rely on efficient DNA extraction methods that yield high-quality and representative bacterial DNA. Despite this importance, reliable extraction methods for cockles are currently overlooked. Therefore, we evaluated the performance of five DNA extraction kits (E.Z.N.A.® Soil DNA; FastDNA® Spin; DNeasy PowerSoil Pro; QIAamp PowerFecal DNA; ZymoBIOMICS™DNA Miniprep) in terms of DNA quality, yield, bacterial community structure (analysed by using denaturating gradient gel electrophoresis; DGGE), and bacteriome composition (analysed by 16S rRNA gene sequencing) in Cerastoderma edule gut. The DNeasy kit provided the highest purity and quantity of bacterial DNA, while the PowerFecal and Zymo kits exhibited reduced extraction efficiency. DGGE profiles revealed significant variability between the tested kits (R = 0.512; mean P = 0.011), but the FastDNA kit under-represented the bacterial community in cockles' gut. Based on alpha diversity, the DNeasy kit outperformed the others and successfully detected all abundant genera found with the alternative kits. Our findings indicate that the DNeasy kit is an efficient DNA extraction method, enabling a molecular representation of the gut-associated bacteriome in C. edule. These results contribute to the development of effective techniques for studying the cockle gut bacteriome and its ecological implications.
Collapse
Affiliation(s)
- Catarina F. Lourenço
- Center for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Ana R. Almeida
- Center for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Amadeu M.V.M. Soares
- Center for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Catarina R. Marques
- Center for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
3
|
Sun Y, Liang M, Wu M, Su L. Inhibition of Norovirus GII.4 binding to HBGAs by Sargassum fusiforme polysaccharide. Biosci Rep 2024; 44:BSR20240092. [PMID: 39158037 PMCID: PMC11392911 DOI: 10.1042/bsr20240092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/20/2024] Open
Abstract
Norovirus (NoV) is the main pathogen that causes acute gastroenteritis and brings a heavy socio-economic burden worldwide. In this study, five polysaccharide fractions, labeled pSFP-1-5, were isolated and purified from Sargassum fusiforme (S. fusiforme). In vitro experiments demonstrated that pSFP-5 significantly prevented the binding of type A, B and H histo-blood group antigens (HBGAs) to NoV GII.4 virus-like particles (NoV GII.4 VLPs). In addition, in vivo experiments revealed that pSFP-5 was effective in reducing the accumulation of NoV in oysters, indicating that pSFP-5 could reduce the risk of NoV infection from oyster consumption. The results of transmission electron microscopy showed that the appearance of NoV GII.4 VLPs changed after pSFP-5 treatment, indicating that pSFP-5 may achieve antiviral ability by altering the morphological structure of the viral particles so that they could not bind to HBGAs. The results of the present study indicate that pSFP-5 may be an effective anti-NoV substance and can be used as a potential anti-NoV drug component.
Collapse
Affiliation(s)
- Yiqiang Sun
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Meina Liang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Laijin Su
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
4
|
Roy PK, Roy A, Jeon EB, DeWitt CAM, Park JW, Park SY. Comprehensive analysis of predominant pathogenic bacteria and viruses in seafood products. Compr Rev Food Sci Food Saf 2024; 23:e13410. [PMID: 39030812 DOI: 10.1111/1541-4337.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/22/2024]
Abstract
Given the growing global demand for seafood, it is imperative to conduct a comprehensive study on the prevalence and persistence patterns of pathogenic bacteria and viruses associated with specific seafood varieties. This assessment thoroughly examines the safety of seafood products, considering the diverse processing methods employed in the industry. The importance of understanding the behavior of foodborne pathogens, such as Salmonella typhimurium, Vibrio parahaemolyticus, Clostridium botulinum, Listeria monocytogenes, human norovirus, and hepatitis A virus, is emphasized by recent cases of gastroenteritis outbreaks linked to contaminated seafood. This analysis examines outbreaks linked to seafood in the United States and globally, with a particular emphasis on the health concerns posed by pathogenic bacteria and viruses to consumers. Ensuring the safety of seafood is crucial since it directly relates to consumer preferences on sustainability, food safety, provenance, and availability. The review focuses on assessing the frequency, growth, and durability of infections that arise during the processing of seafood. It utilizes next-generation sequencing to identify the bacteria responsible for these illnesses. Additionally, it analyzes methods for preventing and intervening of infections while also considering the forthcoming challenges in ensuring the microbiological safety of seafood products. This evaluation emphasizes the significance of the seafood processing industry in promptly responding to evolving consumer preferences by offering current information on seafood hazards and future consumption patterns. To ensure the continuous safety and sustainable future of seafood products, it is crucial to identify and address possible threats.
Collapse
Affiliation(s)
- Pantu Kumar Roy
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Anamika Roy
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Eun Bi Jeon
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | | | - Jae W Park
- OSU Seafood Lab, Oregon State University, Astoria, Oregon, USA
| | - Shin Young Park
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
- OSU Seafood Lab, Oregon State University, Astoria, Oregon, USA
| |
Collapse
|
5
|
Li F, Gong X, Zhou Y, Geng Q, Jiang Y, Yao L, Qu M, Tan Z. Integrated evidence of transcriptional, metabolic, and intestinal microbiota changes in Ruditapes philippinarum due to perfluorooctanoic acid-induced immunotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170341. [PMID: 38272093 DOI: 10.1016/j.scitotenv.2024.170341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Perfluorooctanoic acid (PFOA) is a toxic pollutant that bioaccumulates and is a significant public health concern due to its ubiquitous and persistent occurrence in global environments. Few studies have evaluated the adverse effects of PFOA on immune system, and this is particularly true for mollusks. Here, the PFOA-associated effects on immune system were evaluated in Ruditapes philippinarum using integrated analysis of metabolomes, microbiomes, and transcriptomes, providing evidence for possible mechanisms related to immunotoxicity. PFOA exposure caused clear variation in several important metabolites related to immune regulatory function within the haemolyph from R. philippinarum, while also altering key metabolic pathways, including those of lipids, unsaturated fatty acids (UFAs), and bile acids (BAs). After exposure to PFOAs, intestinal bacterial communities also clearly changed, with the predominant microflora becoming Mycoplasma and Bacteroidetes that are related to intestinal inflammation. Molecular analyses provided consistent results, wherein the expression of immune-related genes was significantly altered. Integration of the multi-'omics' analyses suggested that the TLR/MyD88/NF-kB pathway, along with PI3K-Akt-mTOR pathway, PPAR-mediated lipid metabolism and the autophagy signaling pathway, likely play important roles in initiating immunotoxic effects in R. philippinarum after PFOA exposure. These results provide further evidence that PFOA exposure can lead to immunologic dysfunction and also provide new insights into the mechanisms of PFAS alteration of bivalve immune function.
Collapse
Affiliation(s)
- Fengling Li
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China
| | - Xiuqiong Gong
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Yang Zhou
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Qianqian Geng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China
| | - Yanhua Jiang
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China
| | - Lin Yao
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China
| | - Meng Qu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China; Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, People's Republic of China.
| |
Collapse
|
6
|
Sun Y, Liang M, Zhao F, Su L. Research Progress on Biological Accumulation, Detection and Inactivation Technologies of Norovirus in Oysters. Foods 2023; 12:3891. [PMID: 37959010 PMCID: PMC10649127 DOI: 10.3390/foods12213891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Noroviruses (NoVs) are major foodborne pathogens that cause acute gastroenteritis. Oysters are significant carriers of this pathogen, and disease transmission from the consumption of NoVs-infected oysters occurs worldwide. The review discusses the mechanism of NoVs bioaccumulation in oysters, particularly the binding of histo-blood group antigen-like (HBGA-like) molecules to NoVs in oysters. The review explores the factors that influence NoVs bioaccumulation in oysters, including temperature, precipitation and water contamination. The review also discusses the detection methods of NoVs in live oysters and analyzes the inactivation effects of high hydrostatic pressure, irradiation treatment and plasma treatment on NoVs. These non-thermal processing treatments can remove NoVs efficiently while retaining the original flavor of oysters. However, further research is needed to reduce the cost of these technologies to achieve large-scale commercial applications. The review aims to provide novel insights to reduce the bioaccumulation of NoVs in oysters and serve as a reference for the development of new, rapid and effective methods for detecting and inactivating NoVs in live oysters.
Collapse
Affiliation(s)
- Yiqiang Sun
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.S.); (M.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Meina Liang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.S.); (M.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Feng Zhao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China;
| | - Laijin Su
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.S.); (M.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
7
|
Hou JY, Xu H, Cao GZ, Tian LL, Wang LH, Zhu NQ, Zhang JJ, Yang HJ. Multi-omics reveals Dengzhan Shengmai formulation ameliorates cognitive impairments in D-galactose-induced aging mouse model by regulating CXCL12/CXCR4 and gut microbiota. Front Pharmacol 2023; 14:1175970. [PMID: 37101548 PMCID: PMC10123283 DOI: 10.3389/fphar.2023.1175970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 04/28/2023] Open
Abstract
Dengzhan Shengmai (DZSM), a traditional Chinese medicine formulation, has been administered extensively to elderly individuals with cognitive impairment (CI). However, the underlying mechanisms by which Dengzhan Shengmai improves cognitive impairment remains unknown. This study aimed to elucidate the underlying mechanism of the effect of Dengzhan Shengmai on aging-associated cognitive impairment via a comprehensive combination of transcriptomics and microbiota assessment. Dengzhan Shengmai was orally administered to a D-galactose-induced aging mouse model, and evaluation with an open field task (OFT), Morris water maze (MWM), and histopathological staining was performed. Transcriptomics and 16S rDNA sequencing were applied to elucidate the mechanism of Dengzhan Shengmai in alleviating cognitive deficits, and enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (PCR), and immunofluorescence were employed to verify the results. The results first confirmed the therapeutic effects of Dengzhan Shengmai against cognitive defects; specifically, Dengzhan Shengmai improved learning and impairment, suppressed neuro loss, and increased Nissl body morphology repair. Comprehensive integrated transcriptomics and microbiota analysis indicated that chemokine CXC motif receptor 4 (CXCR4) and its ligand CXC chemokine ligand 12 (CXCL12) were targets for improving cognitive impairments with Dengzhan Shengmai and also indirectly suppressed the intestinal flora composition. Furthermore, in vivo results confirmed that Dengzhan Shengmai suppressed the expression of CXC motif receptor 4, CXC chemokine ligand 12, and inflammatory cytokines. This suggested that Dengzhan Shengmai inhibited CXC chemokine ligand 12/CXC motif receptor 4 expression and modulated intestinal microbiome composition by influencing inflammatory factors. Thus, Dengzhan Shengmai improves aging-related cognitive impairment effects via decreased CXC chemokine ligand 12/CXC motif receptor 4 and inflammatory factor modulation to improve gut microbiota composition.
Collapse
Affiliation(s)
- Jing-Yi Hou
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences and MEGAROBO, Beijing, China
- Postdoctoral Mobile Research Station of China Academy of Chinese Medicine Sciences, Beijing, China
| | - He Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guang-Zhao Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang-Liang Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Han Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences and MEGAROBO, Beijing, China
- Postdoctoral Mobile Research Station of China Academy of Chinese Medicine Sciences, Beijing, China
| | - Nai-Qiang Zhu
- Postdoctoral Mobile Research Station of China Academy of Chinese Medicine Sciences, Beijing, China
| | - Jing-Jing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jing-Jing Zhang, ; Hong-Jun Yang,
| | - Hong-Jun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences and MEGAROBO, Beijing, China
- *Correspondence: Jing-Jing Zhang, ; Hong-Jun Yang,
| |
Collapse
|