1
|
Behera B, Swain PP, Rout B, Panigrahy R, Sahoo RK. Genotypic characterization of hypervirulent Klebsiella pneumoniae (hvKp) in a tertiary care Indian hospital. Int Microbiol 2024; 27:1373-1382. [PMID: 38252202 DOI: 10.1007/s10123-024-00480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) is an emerging pathogen and causes endophthalmitis, liver abscess, osteomyelitis, meningitis, and necrotizing soft tissue infections in both immunodeficient and healthy people. The acquisition of the antibiotic resistance genes of hvKp has become an emerging concern throughout the globe. In this study, a total of 74 K. pneumoniae isolates were collected and identified by VITEK2 and blaSHV gene amplification. Out of these, 18.91% (14/74) isolates were identified as hvKp by both phenotypic string test and genotypic iucA PCR amplification. The antibiotic susceptibility revealed that 57.14% (8/14) isolates were multidrug-resistant (MDR) and 35.71% (5/14) isolates were extremely drug-resistant (XDR). All the isolates were resistant to β-lactam, β-lactamase + inhibitor groups of antibiotics, and the least resistance to colistin. Of 14 hvKp isolates, all isolates are positive for iroB (100%), followed by iutA (92.85%), peg344 (85.71%), rmpA (57.14%), and magA (21.42%) genes. Among serotypes, K1 was the most prevalent serotype 21.4% (3/14), followed by K5 14.3% (2/14). The most common carbapenemase gene was blaOXA-48 (78.57%) followed by blaNDM (14.28%) and blaKPC (14.28%) which co-carried multiple resistance genes such as blaSHV (100%), blaCTX-M (92.85%), and blaTEM (78.57%). About 92.85% (13/14) of hvKp isolates were strong biofilm producers, while one isolate (hvKp 10) was the only moderate biofilm producer. The (GTG)5-PCR molecular typing method revealed high diversity among the hvKp isolates in the tertiary care hospital. Our findings suggest that MDR-hvKp is an emerging pathogen and a challenge for clinical practice. In order to avoid hvKp strain outbreaks in hospital settings, robust infection control and effective surveillance should be implemented.
Collapse
Affiliation(s)
- Birasen Behera
- Department of Microbiology, Institute of Medical Sciences and SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751029, India
| | - Pragyan Paramita Swain
- Centre For Biotechnology, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751029, India
| | - Bidyutprava Rout
- Department of Microbiology, Institute of Medical Sciences and SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751029, India
| | - Rajashree Panigrahy
- Department of Microbiology, Institute of Medical Sciences and SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751029, India.
| | - Rajesh Kumar Sahoo
- Centre For Biotechnology, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751029, India.
| |
Collapse
|
2
|
Shamanna V, Srinivas S, Couto N, Nagaraj G, Sajankila SP, Krishnappa HG, Kumar KA, Aanensen DM, Lingegowda RK. Geographical distribution, disease association and diversity of Klebsiella pneumoniae K/L and O antigens in India: roadmap for vaccine development. Microb Genom 2024; 10:001271. [PMID: 39037209 PMCID: PMC11316559 DOI: 10.1099/mgen.0.001271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024] Open
Abstract
Klebsiella pneumoniae poses a significant healthcare challenge due to its multidrug resistance and diverse serotype landscape. This study aimed to explore the serotype diversity of 1072 K. pneumoniae and its association with geographical distribution, disease severity and antimicrobial/virulence patterns in India. Whole-genome sequencing was performed on the Illumina platform, and genomic analysis was carried out using the Kleborate tool. The analysis revealed a total of 78 different KL types, among which KL64 (n=274/1072, 26 %), KL51 (n=249/1072, 24 %), and KL2 (n=88/1072, 8 %) were the most prevalent. In contrast, only 13 distinct O types were identified, with O1/O2v1 (n=471/1072, 44 %), O1/O2v2 (n=353/1072, 33 %), and OL101 (n=66/1072, 6 %) being the predominant serotypes. The study identified 114 different sequence types (STs) with varying serotypes, with ST231 being the most predominant. O serotypes were strongly linked with STs, with O1/O2v1 predominantly associated with ST231. Simpson's diversity index and Fisher's exact test revealed higher serotype diversity in the north and east regions, along with intriguing associations between specific serotypes and resistance profiles. No significant association between KL or O types and disease severity was observed. Furthermore, we found the specific association of virulence factors yersiniabactin and aerobactin (P<0.05) with KL types but no association with O antigen types (P>0.05). Conventionally described hypervirulent clones (i.e. KL1 and KL2) in India lacked typical virulent markers (i.e. aerobactin), contrasting with other regional serotypes (KL51). The cumulative distribution of KL and O serotypes suggests that future vaccines may have to include either ~20 KL or four O types to cover >85 % of the carbapenemase-producing Indian K. pneumoniae population. The results highlight the necessity for comprehensive strategies to manage the diverse landscape of K. pneumoniae strains across different regions in India. Understanding regional serotype dynamics is pivotal for targeted surveillance, interventions, and tailored vaccine strategies to tackle the diverse landscape of K. pneumoniae infections across India. This article contains data hosted by Microreact.
Collapse
Affiliation(s)
- Varun Shamanna
- Central Research Laboratory, KIMS, Bengaluru, India
- Department of Biotechnology, NMAM Institute of Technology, Nitte, Udupi, India
| | | | - Natacha Couto
- Centre for Genomic Pathogen Surveillance, Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | | | | | | | | | - David M. Aanensen
- Centre for Genomic Pathogen Surveillance, Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | | | - NIHR Global Health Research Unit on genomic surveillance - India consortium
- Central Research Laboratory, KIMS, Bengaluru, India
- Department of Biotechnology, NMAM Institute of Technology, Nitte, Udupi, India
- Centre for Genomic Pathogen Surveillance, Pandemic Sciences Institute, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Dingiswayo L, Adelabu OA, Arko-Cobbah E, Pohl C, Mokoena NZ, Du Plessis M, Musoke J. Hypervirulent Klebsiella pneumoniae in a South African tertiary hospital-Clinical profile, genetic determinants, and virulence in Caenorhabditis elegans. Front Microbiol 2024; 15:1385724. [PMID: 38846562 PMCID: PMC11156222 DOI: 10.3389/fmicb.2024.1385724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction A distinct strain of Klebsiella pneumoniae (K. pneumoniae) referred to as hypervirulent (hvKp) is associated with invasive infections such as pyogenic liver abscess in young and healthy individuals. In South Africa, limited information about the prevalence and virulence of this hvKp strain is available. The aim of this study was to determine the prevalence of hvKp and virulence-associated factors in K. pneumoniae isolates from one of the largest tertiary hospitals in a South African province. Methods A total of 74 K. pneumoniae isolates were received from Pelonomi Tertiary Hospital National Health Laboratory Service (NHLS), Bloemfontein. Virulence-associated genes (rmpA, capsule serotype K1/K2, iroB and irp2) were screened using Polymerase Chain Reaction (PCR). The iutA (aerobactin transporter) gene was used as a primary biomarker of hvKp. The extracted DNAs were sequenced using the next-generation sequencing pipeline and the curated sequences were used for phylogeny analyses using appropriate bioinformatic tools. The virulence of hvKp vs. classical Klebsiella pneumoniae (cKp) was investigated using the Caenorhabditis elegans nematode model. Results Nine (12.2%) isolates were identified as hvKp. Moreover, hvKp was significantly (p < 0.05) more virulent in vivo in Caenorhabditis elegans relative to cKp. The virulence-associated genes [rmpA, iroB, hypermucoviscous phenotype (hmv) phenotype and capsule K1/K2] were significantly (p < 0.05) associated with hvKp. A homology search of the curated sequences revealed a high percentage of identity between 99.8 and 100% with other homologous iutA gene sequences of other hvKp in the GenBank. Conclusion Findings from this study confirm the presence of hvKp in a large tertiary hospital in central South Africa. However, the low prevalence and mild to moderate clinical presentation of infected patients suggest a marginal threat to public health. Further studies in different settings are required to establish the true potential impact of hvKp in developing countries.
Collapse
Affiliation(s)
- Likhona Dingiswayo
- Department of Medical Microbiology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Olusesan Adeyemi Adelabu
- Department of Medical Microbiology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Emmanuel Arko-Cobbah
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Carolina Pohl
- Department of Microbiology and Biochemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Nthabiseng Zelda Mokoena
- Department of Microbiology and Biochemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Morne Du Plessis
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Jolly Musoke
- Department of Medical Microbiology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- National Health Laboratory Service, Department of Medical Microbiology, Universitas Academic Hospital, Bloemfontein, South Africa
| |
Collapse
|
4
|
Hala S, Malaikah M, Huang J, Bahitham W, Fallatah O, Zakri S, Antony CP, Alshehri M, Ghazzali RN, Ben-Rached F, Alsahafi A, Alsaedi A, AlAhmadi G, Kaaki M, Alazmi M, AlhajHussein B, Yaseen M, Zowawi HM, Alghoribi MF, Althaqafi AO, Al-Amri A, Moradigaravand D, Pain A. The emergence of highly resistant and hypervirulent Klebsiella pneumoniae CC14 clone in a tertiary hospital over 8 years. Genome Med 2024; 16:58. [PMID: 38637822 PMCID: PMC11025284 DOI: 10.1186/s13073-024-01332-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Klebsiella pneumoniae is a major bacterial and opportunistic human pathogen, increasingly recognized as a healthcare burden globally. The convergence of resistance and virulence in K. pneumoniae strains has led to the formation of hypervirulent and multidrug-resistant strains with dual risk, limiting treatment options. K. pneumoniae clones are known to emerge locally and spread globally. Therefore, an understanding of the dynamics and evolution of the emerging strains in hospitals is warranted to prevent future outbreaks. METHODS In this study, we conducted an in-depth genomic analysis on a large-scale collection of 328 multidrug-resistant (MDR) K. pneumoniae strains recovered from 239 patients from a single major hospital in the western coastal city of Jeddah in Saudi Arabia from 2014 through 2022. We employed a broad range of phylogenetic and phylodynamic methods to understand the evolution of the predominant clones on epidemiological time scales, virulence and resistance determinants, and their dynamics. We also integrated the genomic data with detailed electronic health record (EHR) data for the patients to understand the clinical implications of the resistance and virulence of different strains. RESULTS We discovered a diverse population underlying the infections, with most strains belonging to Clonal Complex 14 (CC14) exhibiting dominance. Specifically, we observed the emergence and continuous expansion of strains belonging to the dominant ST2096 in the CC14 clade across hospital wards in recent years. These strains acquired resistance mutations against colistin and extended spectrum β-lactamase (ESBL) and carbapenemase genes, namely blaOXA-48 and blaOXA-232, located on three distinct plasmids, on epidemiological time scales. Strains of ST2096 exhibited a high virulence level with the presence of the siderophore aerobactin (iuc) locus situated on the same mosaic plasmid as the ESBL gene. Integration of ST2096 with EHR data confirmed the significant link between colonization by ST2096 and the diagnosis of sepsis and elevated in-hospital mortality (p-value < 0.05). CONCLUSIONS Overall, these results demonstrate the clinical significance of ST2096 clones and illustrate the rapid evolution of an emerging hypervirulent and MDR K. pneumoniae in a clinical setting.
Collapse
Affiliation(s)
- Sharif Hala
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Jeddah, Makkah, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Mohammed Malaikah
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Jeddah, Makkah, Saudi Arabia
- Laboratory of Infectious Disease Epidemiology, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jiayi Huang
- Laboratory of Infectious Disease Epidemiology, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- KAUST Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Wesam Bahitham
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Omniya Fallatah
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Samer Zakri
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Chakkiath Paul Antony
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Jeddah, Makkah, Saudi Arabia
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
| | - Mohammed Alshehri
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Raeece Naeem Ghazzali
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Jeddah, Makkah, Saudi Arabia
| | - Fathia Ben-Rached
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Jeddah, Makkah, Saudi Arabia
| | - Abdullah Alsahafi
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Asim Alsaedi
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Ghadeer AlAhmadi
- King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | - Mai Kaaki
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Meshari Alazmi
- KAUST Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- College of Computer Science and Engineering, University of Hail, Hail, Saudi Arabia
| | - Baraa AlhajHussein
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Muhammad Yaseen
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Hosam M Zowawi
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
- The University of Queensland, UQ Centre for Clinical Research, Herston, QLD, Australia
| | - Majed F Alghoribi
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Abdulhakeem O Althaqafi
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Abdulfattah Al-Amri
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Danesh Moradigaravand
- Laboratory of Infectious Disease Epidemiology, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- KAUST Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Arnab Pain
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Jeddah, Makkah, Saudi Arabia.
- The University of Queensland, UQ Centre for Clinical Research, Herston, QLD, Australia.
| |
Collapse
|
5
|
Moses VK, Kandi V, Bharadwaj VG, Suvvari TK, Podaralla E. Molecular Characterization of Klebsiella pneumoniae Clinical Isolates Through Whole-Genome Sequencing: A Comprehensive Analysis of Serotypes, Sequence Types, and Antimicrobial and Virulence Genes. Cureus 2024; 16:e58449. [PMID: 38765395 PMCID: PMC11099497 DOI: 10.7759/cureus.58449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction Antimicrobial resistance (AMR) has become a menace, spreading among bacterial species globally. AMR is now recognized as a silent pandemic responsible for treatment failures. Therefore, an effective surveillance mechanism is warranted to understand the bacterial species isolated from human clinical specimens. The present study employed next-generation sequencing (NGS) or whole-genome sequencing (WGS) to identify the resistance and virulence genes, sequence type, and serotypes. Methods This study included 18 multidrug-resistant (MDR) Klebsiella pneumoniae (K. pneumoniae) isolates obtained from patients suffering from different infections attending the Prathima Institute of Medical Sciences, Karimnagar, India. All isolates were identified, and antimicrobial susceptibility profiles were determined through conventional microbiological techniques and confirmed by automated systems. All the isolates were investigated using NGS or WGS to identify the genes coding for resistance, such as extended-spectrum beta-lactamases (ESBLs), metallo-beta-lactamases, and virulence genes. Multilocus sequence typing (MLST) was conducted to identify the sequence types, and Kleborate analysis was performed to confirm the species, genes for AMR, and virulence and evaluate the capsular polysaccharide (KL) and cell wall/lipopolysaccharide (O) serotypes carried by the isolates. Results The mean age of the patients was 46.11±20.35 years. Among the patients included, 12 (66.66%) were males and 6 (33.33%) were females. A high percentage (>50%) of hypervirulent K. pneumoniae (hvKp) strains that had genes coding for AMR and plasmids having the potential to carry blaNDM and resistance genes were observed. Among the isolates, 16 (88.88%) revealed the presence of multiple antibiotic-resistant genes with evidence of at least one gene coding for beta-lactamase resistance. There was a high prevalence of blaSHV (17/18; 94.44%) and blaCTX-M-15 (16/18; 88.88%) AMR genes. Other AMR genes identified included blaTEM (83.33%; 15/18) and blaOXA (14/18; 77.77%). Two (11.11%) strains each showed the presence of blaNDM-1 and blaNDM-5 genes. The virulence genes identified included gapA, infB, mdh, pgi, phoE, rpoB, tonB, and ybt. The most frequent K. pneumoniae serotypes found were KL51:O1v2 (3/18, 16.66%), KL17:O1v1 (3/18, 16.66%), and KL64:O2v1 (3/18, 16.66%). KL64 (4/18; 22.22%) was the most common capsular serotype identified among the isolates. The most frequent MLST-based sequence type (ST) identified included ST-147 (5/18, 27.77%), followed by ST-231 (3/18, 16.66%) and ST-101 (2/18, 11.11%). Conclusions The molecular analysis of K. pneumoniae isolates revealed multiple AMR, plasmid, and virulence genes. Additionally, many global STs were noticed by MLST. The results noted a high prevalence of hvKp strains. Molecular characterization of bacterial strains using NGS/WGS is important to understand the epidemiology of bacterial strains and the antibiotic resistance and virulence genes they are potentially carrying. The data obtained from this study may be utilized to devise careful antibiotic-prescribing approaches and improve patient management practices.
Collapse
Affiliation(s)
- Vinay Kumar Moses
- Microbiology, Government Medical College, Karimnagar, Karimnagar, IND
| | - Venkataramana Kandi
- Clinical Microbiology, Prathima Institute of Medical Sciences, Karimnagar, IND
| | - Vallab Ganesh Bharadwaj
- Microbiology, Trichy Sri Ramasamy Memorial Medical College Hospital & Research Centre, Tiruchirapalli, IND
| | - Tarun Kumar Suvvari
- General Medicine, Rangaraya Medical College, Kakinada, IND
- Research, Squad Medicine and Research, Visakhapatnam, IND
| | | |
Collapse
|
6
|
Ghosh D, Pal A, Mohapatra S, Raj S, Vivekanandan P. Distinct epigenetic signatures of classical and hypervirulent Klebsiella pneumoniae. mSphere 2024; 9:e0046423. [PMID: 38112443 PMCID: PMC10826340 DOI: 10.1128/msphere.00464-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023] Open
Abstract
Emergence and spread of the hypervirulent pathotype of Klebsiella pneumoniae have significantly increased infection rates in community as well as healthcare settings. There is an increasing interest to identify discriminating features between classical K. pneumoniae (cKp) and hypervirulent K. pneumoniae (hvKp) to facilitate our understanding of the rapid emergence and dissemination of the hypervirulent pathotype. Here, we sought to identify unique epigenetic signatures of hvKp pathotype that differ from its classical counterpart using single-base resolution methylome analysis of native DNA sequencing on the Oxford Nanopore Technologies platform. The overall global adenine methylation in GATC motifs (i.e., Dam methylation motif) and cytosine methylation in CCWGG motifs (i.e., Dcm methylation motif) were significantly higher in hvKp isolates compared to that in cKp isolates, irrespective of their position in chromosomes or putative extra-chromosomal genetic elements. Notably, we observed significant enrichment of hypermethylated GATC and CCWGG motifs in the virulome of hvKp compared to hvKp genes not directly associated with virulence. We also observed increased methylation of GATC and CCWGG motifs in the capsule synthesis locus of hvKp isolates compared to cKp isolates. Furthermore, we identified several differentially methylated genes (DMGs) between the two pathotypes; interestingly, these DMGs include metal ion transporters, multidrug efflux pumps, transcriptional regulators of stress response, and genes associated with biofilm formation. Our results highlight hypermethylation of GATC and CCWGG motifs as unique epigenetic signatures of hvKp isolates.IMPORTANCEHypervirulent Klebsiella pneumoniae (hvKp) is a more virulent and rapidly evolving hypermucoviscous pathotype of classical K. pneumoniae (cKp). The hypervirulent pathotype is a major public health concern and is associated with high infection rates in community as well as hospital settings. With the recent emergence of multidrug-resistant hvKp, it has become imperative to investigate non-classical mechanisms such as epigenetics in addition to canonical biochemical and genetic mechanisms that delineate and differentiate the hypervirulent pathotype from its classical counterpart. Here, we identify genome-wide differences in adenine and cytosine methylation marks at well-characterized motifs between the two pathotypes. Overall, significantly higher levels of methylation were observed across chromosomal DNA and extrachromosomal elements in hvKp compared to cKp. Among hvKp isolates, the genes associated with virulence are particularly enriched for methylation marks. Our findings shed light on how epigenetic signatures may help distinguish the pathogenic potential of bacteria.
Collapse
Affiliation(s)
- Dipannita Ghosh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Arijit Pal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Sarita Mohapatra
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Stephen Raj
- Department of Microbiology, PGIMER, Chandigarh, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
7
|
Hallal Ferreira Raro O, Nordmann P, Dominguez Pino M, Findlay J, Poirel L. Emergence of Carbapenemase-Producing Hypervirulent Klebsiella pneumoniae in Switzerland. Antimicrob Agents Chemother 2023; 67:e0142422. [PMID: 36853006 PMCID: PMC10019205 DOI: 10.1128/aac.01424-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/19/2023] [Indexed: 03/01/2023] Open
Abstract
Increasing occurrence of multidrug-resistant (MDR) and hypervirulent (hv) Klebsiella pneumoniae (MDR-hvKp) convergent clones is being observed. Those strains have the potential of causing difficult-to-treat infections in healthy adults with an increased capacity for mortality. It is therefore crucial to track their dissemination to prevent their further spread. The aim of our study was to investigate the occurrence of carbapenemase-producing hvKp isolates in Switzerland and to determine their genetic profile. A total of 279 MDR carbapenemase-producing K. pneumoniae from patients hospitalized all over Switzerland was investigated, and a rate of 9.0% K. pneumoniae presenting a virulence genotype was identified. Those isolates produced either KPC, NDM, or OXA-48 and had been either recovered from rectal swabs, urine, and blood. A series of previously reported K. pneumoniae clones such as ST23-K1, ST395-K2, and ST147-K20 or ST147-K64 were identified. All the isolates defined as MDR-hvKp (4.7%) possessed the aerobactin and the yersiniabactin clusters. The ST23-K1s were the only isolates presenting the colibactin cluster and achieved higher virulence scores. This study highlights the occurrence and circulation of worrisome MDR-hvKp and MDR nonhypervirulent K. pneumoniae (MDR-nhv-Kp) isolates in Switzerland. Our findings raise an alert regarding the need for active surveillance networks to track and monitor the spread of such successful hybrid clones representing a public health threat worldwide.
Collapse
Affiliation(s)
- Otávio Hallal Ferreira Raro
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Patrice Nordmann
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
- Institute for Microbiology, University Hospital, Lausanne, Switzerland
| | - Manuel Dominguez Pino
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Jacqueline Findlay
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Laurent Poirel
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| |
Collapse
|