1
|
Zhang Y, Chen J, Yang X, Wu Y, Wang Z, Xu Y, Zhou L, Wang J, Jiao X, Sun L. Emerging Mobile Colistin Resistance Gene Mcr-1 and Mcr-10 in Enterobacteriaceae Isolates From Urban Sewage in China. Infect Drug Resist 2025; 18:1035-1048. [PMID: 39990786 PMCID: PMC11847452 DOI: 10.2147/idr.s502067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/08/2025] [Indexed: 02/25/2025] Open
Abstract
Purpose This study aimed to investigate the epidemiology and dissemination of mcr-positive Enterobacteriaceae in urban sewage in Yangzhou, China. Methods A total of 366 sewage samples were collected from the Yangzhou Wastewater Treatment Plant in Jiangsu Province. Colistin-resistant Enterobacteriaceae was identified through PCR targeting mcr-1 to mcr-10 genes. The isolates underwent antimicrobial susceptibility testing, and whole-genome sequencing was performed to analyze their genomic features. Additionally, conjugation experiments were conducted to assess the transferability of mcr-positive plasmids. Results Three mcr-positive Enterobacteriaceae isolates were identified, representing an isolation rate of 0.82%. These included one mcr-1-positive Escherichia coli (ST167) and two mcr-10-positive Klebsiella pneumoniae complex strains with novel sequence types ST6801 and ST6825. The mcr-1 gene was located on an IncI2 plasmid (pYZ22WS208_3) and successfully transferred to recipient strains. In contrast, the mcr-10 gene was carried on IncF plasmids (pYZ22WS067_1 and pYZ22WS223_1) but was not transferable in this study. Phylogenetic analysis revealed that the mcr-1-positive E. coli strain clustered within Clade II, alongside strains from various countries and sources. Phylogenomic analysis of mcr-10-positive isolates showed their sporadic distribution across 13 countries, with associations to diverse hosts and environments, indicating potential for widespread transmission. Conclusion This study demonstrates the presence of mcr-1 and mcr-10-positive Enterobacteriaceae in wastewater, emphasizing the importance of wastewater surveillance for tracking antibiotic resistance. The horizontal transfer of mcr-1 and potential spread of mcr-10 across various hosts underscore the need for ongoing monitoring and preventive measures.
Collapse
Affiliation(s)
- Yujing Zhang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Jiajie Chen
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xinyu Yang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yangshiyu Wu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Zhenyu Wang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yawen Xu
- Yangzhou Center for Disease Control and Prevention, Yangzhou, People’s Republic of China
| | - Le Zhou
- Yangzhou Center for Disease Control and Prevention, Yangzhou, People’s Republic of China
| | - Jing Wang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Lin Sun
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
2
|
Peng C, Liu S, Li Z, Liu C, Wang P, Jiang M, Wang F. A novel chicken-origin colistin-resistant Klebsiella pneumoniae ST5982 Co-harboring mcr-3.11 and CTX-M-27. Microb Pathog 2024; 197:107021. [PMID: 39427716 DOI: 10.1016/j.micpath.2024.107021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
Klebsiella pneumoniae (K. pneumoniae) is an important zoonotic opportunistic pathogen of Enterobacteriaceae that has become one of the most common infectious diseases causing Enterobacteriaceae after Escherichia coli. In this study, we identified a colistin-resistant, multidrug-resistant ST5982 K. pneumoniae strain of broiler origin. The isolate carried 35 resistance genes of 10 antibiotics classes, detected by whole genome sequencing (WGS); 11.4 % (4/35) of the resistance genes were distributed in the chromosome, and 88.6 % (31/35) of the resistance genes were located in four different resistance plasmids. Among the four plasmids, we found for the first time that CTX-M-27 and mcr-3.11 simultaneously coexisted in K. pneumoniae, and a resistance plasmid of IncI1 carrying a combination of mcr-3.11 and qnrS1 was identified. We successfully transferred mcr-3.11, qnrS1 and CTX-M-27 genes into E. coli J53 through conjugation experiments. In the present study, the co-occurrence of CTX-M-27 and mcr-3.11 in multidrug-resistant K. pneumoniae strain ST5982 was detected for the first time; its drug resistance was evaluated, and the risk of its transmission was assessed to provide a reference for further prevention and treatment of K. pneumoniae.
Collapse
Affiliation(s)
- Chong Peng
- Department of Veterinary Public Health, College of Veterinary Medicine & Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong, PR China
| | - Shuang Liu
- Department of Hematology, The Affiliated Tai'an City Central Hospital of Qingdao University, Tai'an City, 271000, Shandong, PR China
| | - Zixuan Li
- Department of Veterinary Public Health, College of Veterinary Medicine & Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong, PR China
| | - Cong Liu
- Department of Veterinary Public Health, College of Veterinary Medicine & Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong, PR China
| | - Peng Wang
- Department of Veterinary Public Health, College of Veterinary Medicine & Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong, PR China
| | - Meijie Jiang
- Department of Clinical Laboratory, The Affiliated Tai'an City Central Hospital of Qingdao University, Tai'an City, 271000, Shandong, PR China.
| | - Fangkun Wang
- Department of Veterinary Public Health, College of Veterinary Medicine & Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong, PR China.
| |
Collapse
|
3
|
Liu M, Wu J, Zhao J, Xi Y, Jin Y, Yang H, Chen S, Long J, Duan G. Global epidemiology and genetic diversity of mcr-positive Klebsiella pneumoniae: A systematic review and genomic analysis. ENVIRONMENTAL RESEARCH 2024; 259:119516. [PMID: 38950813 DOI: 10.1016/j.envres.2024.119516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/03/2024]
Abstract
The rapid increase of mcr-positive Klebsiella pneumoniae (K. pneumoniae) has received considerable attention and poses a major public health concern. Here, we systematically analyzed the global distribution of mcr-positive K. pneumoniae isolates based on published articles as well as publicly available genomes. Combining strain information from 78 articles and 673 K. pneumoniae genomes, a total of 1000 mcr-positive K. pneumoniae isolates were identified. We found that mcr-positive K. pneumoniae has disseminated widely worldwide, especially in Asia, with a higher diversity of sequence types (STs). These isolates were disseminated in 57 countries and were associated with 12 different hosts. Most of the isolates were found in China and were isolated from human sources. Moreover, MLST analysis showed that ST15 and ST11 accounted for the majority of mcr-positive K. pneumoniae, which deserve sustained attention in further surveillance programs. mcr-1 and mcr-9 were the dominant mcr variants in mcr-positive K. pneumoniae. Furthermore, a Genome-wide association study (GWAS) demonstrated that mcr-1- and mcr-9-producing genomes exhibited different antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), thereby indicating a distinct evolutionary path. Notably, the phylogenetic analysis suggested that certain mcr-positive K. pneumoniae genomes from various geographical areas and hosts harbored a high degree of genetic similarities (<20 SNPs), suggesting frequent cross-region and cross-host clonal transmission. Overall, our results emphasize the significance of monitoring and exploring the transmission and evolution of mcr-positive K. pneumoniae in the context of "One health".
Collapse
Affiliation(s)
- Mengyue Liu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jie Wu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiaxue Zhao
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanyan Xi
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jinzhao Long
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Bakleh MZ, Kohailan M, Marwan M, Alhaj Sulaiman A. A Systematic Review and Comprehensive Analysis of mcr Gene Prevalence in Bacterial Isolates in Arab Countries. Antibiotics (Basel) 2024; 13:958. [PMID: 39452224 PMCID: PMC11505126 DOI: 10.3390/antibiotics13100958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The resurgence of colistin has become critical in combating multidrug-resistant Gram-negative bacteria. However, the emergence of mobilized colistin resistance (mcr) genes presents a crucial global challenge, particularly in the Arab world, which includes regions with unique conditions and ongoing conflicts in some parts. METHODS To address this issue, a systematic review was conducted using multiple databases, including Cochrane, PubMed, Scopus, Web of Science, and Arab World Research Source. RESULTS A total of 153 studies were included, revealing substantial heterogeneity in the prevalence of mcr genes across 15 Arab countries, with notable findings indicating that Egypt and Lebanon reported the highest number of cases. The analysis indicated that the most prevalent sequence types were ST10, ST101, and ST1011, all of which are Escherichia coli strains linked to significant levels of colistin resistance and multiple antimicrobial resistance profiles. CONCLUSIONS By analyzing the diverse findings from different Arab countries, this review lays a critical foundation for future research and highlights the necessity for enhanced surveillance and targeted interventions to address the looming threat of colistin resistance in the region. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42024584379.
Collapse
Affiliation(s)
- Mouayad Zuheir Bakleh
- Division of Genomics and Precision Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Muhammad Kohailan
- Qatar Precision Health Institute, Qatar Foundation, Doha P. O. Box 5825, Qatar
| | - Muhammad Marwan
- Division of Biopsychology and Neuroscience, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Abdallah Alhaj Sulaiman
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar
| |
Collapse
|
5
|
Mireles NA, Malla CF, Tavío MM. Cinnamaldehyde and baicalin reverse colistin resistance in Enterobacterales and Acinetobacter baumannii strains. Eur J Clin Microbiol Infect Dis 2024; 43:1899-1908. [PMID: 39066966 PMCID: PMC11405490 DOI: 10.1007/s10096-024-04884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/22/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Colistin is used as a last resort antibiotic against infections caused by multidrug-resistant gram-negative bacteria, especially carbapenem-resistant bacteria. However, colistin-resistance in clinical isolates is becoming more prevalent. Cinnamaldehyde and baicalin, which are the major active constituents of Cinnamomum and Scutellaria, have been reported to exhibit antibacterial properties. The aim of this study was to evaluate the capacity of cinnamaldehyde and baicalin to enhance the antibiotic activity of colistin in Enterobacterales and Acinetobacter baumannii strains. METHODS The MICs of colistin were determined with and without fixed concentrations of cinnamaldehyde and baicalin by the broth microdilution method. The FIC indices were also calculated. In addition, time-kill assays were performed with colistin alone and in combination with cinnamaldehyde and baicalin to determine the bactericidal action of the combinations. Similarly, the effects of L-arginine, L-glutamic acid and sucrose on the MICs of colistin combined with cinnamaldehyde and baicalin were studied to evaluate the possible effects of these compounds on the charge of the bacterial cell- wall. RESULTS At nontoxic concentrations, cinnamaldehyde and baicalin partially or fully reversed resistance to colistin in Enterobacterales and A. baumannii. The combinations of the two compounds with colistin had bactericidal or synergistic effects on the most resistant strains. The ability of these agents to reverse colistin resistance could be associated with bacterial cell wall damage and increased permeability. CONCLUSION Cinnamaldehyde and baicalin are good adjuvants for the antibiotic colistin against Enterobacterales- and A. baumannii-resistant strains.
Collapse
Affiliation(s)
- Natalia A Mireles
- Microbiology, Clinical Science Department, Faculty of Health Sciences, Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, Las Palmas de Gran Canaria, 35016, Spain
- Medical Oncology, Josep Trueta University Hospital of Girona, Girona, 17007, Spain
| | - Cristina F Malla
- Microbiology, Clinical Science Department, Faculty of Health Sciences, Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, Las Palmas de Gran Canaria, 35016, Spain
| | - María M Tavío
- Microbiology, Clinical Science Department, Faculty of Health Sciences, Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, Las Palmas de Gran Canaria, 35016, Spain.
| |
Collapse
|
6
|
Hide M, Meng S, Cheng S, Bañuls AL, Ky S, Yay C, Laurent D, Delvallez G. Colistin resistance in ESBL- and Carbapenemase-producing Escherichia coli and Klebsiella pneumoniae clinical isolates in Cambodia. J Glob Antimicrob Resist 2024; 38:236-244. [PMID: 39004342 DOI: 10.1016/j.jgar.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
OBJECTIVES Despite the critical importance of colistin as a last-resort antibiotic, limited studies have investigated colistin resistance in human infections in Cambodia. This study aimed to investigate the colistin resistance and its molecular determinants among Extended-spectrum beta-lactamase (ESBL)- and carbapenemase-producing (CP) Klebsiella pneumoniae (K. pneumoniae) and Escherichia coli (E. coli) isolated in Cambodia between 2016 and 2020. METHODS E. coli (n = 223) and K. pneumoniae (n = 39) were tested for colistin minimum inhibitory concentration (MIC) by broth microdilution. Resistant isolates were subjected to polymerase chain reaction (PCR) for detection of mobile colistin resistance genes (mcr) and chromosomal mutations in the two-component system (TCS). RESULTS Eighteen isolates (10 K. pneumoniae and 8 E. coli) revealed colistin resistance with a rate of 5.9% in E. coli and 34.8% in K. pneumoniae among ESBL isolates, and 1% in E. coli and 12.5% in K. pneumoniae among CP isolates. The resistance was associated with mcr variants (13/18 isolates, mcr-1, mcr-3, and mcr-8.2) and TCS mutations within E. coli and K. pneumoniae, with the first detection of mcr-8.2 in Cambodia, the discovery of new mutations potentially associated to colistin resistance in the TCS of E. coli (PhoP I47V, PhoQ N352K, PmrB G19R, and PmrD G85R) and the co-occurrence of mcr genes and colistin resistance conferring TCS mutations in 11 of 18 isolates. CONCLUSIONS The findings highlight the presence of colistin resistance in ESBL- and CP- Enterobacteriaceae involved in human infections in Cambodia as well as chromosomal mutations in TCS and the emergence of mcr-8.2 in E. coli and K. pneumoniae. It underscores the need for continuous surveillance, antimicrobial stewardship, and control measures to mitigate the spread of colistin resistance.
Collapse
Affiliation(s)
- Mallorie Hide
- MIVEGEC, Montpellier University, CNRS, IRD, Montpellier, France; Medical Biology Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia; LMI Drug Resistance in Southeast Asia, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.
| | - Soda Meng
- Medical Biology Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sokleaph Cheng
- Medical Biology Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia; LMI Drug Resistance in Southeast Asia, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Anne-Laure Bañuls
- MIVEGEC, Montpellier University, CNRS, IRD, Montpellier, France; LMI Drug Resistance in Southeast Asia, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Santy Ky
- Kantha Bopha Hospital, Phnom Penh, Cambodia
| | | | - Denis Laurent
- Kantha Bopha Hospital, Phnom Penh, Cambodia; Jayavarman VII Hospital, Siem Reap, Cambodia
| | - Gauthier Delvallez
- Medical Biology Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| |
Collapse
|
7
|
Sourenian T, Palkovicova J, Papagiannitsis CC, Dolejska M, Hrabak J, Bitar I. A novel F type plasmid encoding mcr-10 in a clinical Enterobacter ludwigii strain from a tertiary hospital in the Czech Republic. J Glob Antimicrob Resist 2024; 37:195-198. [PMID: 38555080 DOI: 10.1016/j.jgar.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/16/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024] Open
Abstract
OBJECTIVE Here we describe a novel IncFIA plasmid harbouring mcr-10 gene in a clinical Enterobacter ludwigii strain isolated at the University Hospital in Pilsen in the Czech Republic. METHODS The strain was subjected to antibiotic susceptibility testing. Whole genome sequencing was performed using Illumina for short-read sequencing and Oxford Nanopore Technologies for long-read sequencing followed by hybrid assembly. The resulting genome was used to detect species using average nucleotide identity, resistance genes, plasmid replicon and MLST (using centre for genomic epidemiology databases; ResFinder, PlasmidFinder and MLST, respectively) and virulence genes using VFDB. RESULTS Τhe strain showed susceptibility against tetracycline, cefuroxime and chloramphenicol, and it was susceptible to the second and third generation of cephalosporins, carbapenems and colistin. Genome analysis identified the strain as E. ludwigii sequence type ST20 and located the mcr-10 gene on an IncFIA (HI1)/IncFII (Yp) plasmid (pI9455333_MCR10; 129 863 bp). Upon blasting the nucleotide sequence of pI9455333_MCR10 against the NCBI database, no similar plasmid sequence was detected, implying a novel plasmid structure. Nevertheless, it showed a partial similarity with pRHBSTW-00123_3 and FDAARGOS 1432, which were detected in Enterobacter cloacae complex (ECC) strains in wastewater samples in 2017 in UK and in 2021 in the United States, respectively, and pEC81-mcr, which was detected in a clinical Escherichia coli strain in 2020 in China. Moreover, I9455333cz genome carried virulence genes coding for curli fibers, fimbrial adherence determinants, siderophore aerobactin, iron uptake proteins and regulators of sigma factor. CONCLUSION In conclusion, we identified a novel IncF plasmid harbouring mcr-10 gene in a clinical Enterobacter ludwigii strain. To our knowledge, this is the first clinical report of mcr-10 in the Czech Republic.
Collapse
Affiliation(s)
- Tsolaire Sourenian
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia
| | - Jana Palkovicova
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia; Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | | | - Monika Dolejska
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia; Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic; Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic; Division of Clinical Microbiology and Immunology, Department of Laboratory Medicine, The University Hospital Brno, Czech Republic
| | - Jaroslav Hrabak
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia
| | - Ibrahim Bitar
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia.
| |
Collapse
|
8
|
Mondal AH, Khare K, Saxena P, Debnath P, Mukhopadhyay K, Yadav D. A Review on Colistin Resistance: An Antibiotic of Last Resort. Microorganisms 2024; 12:772. [PMID: 38674716 PMCID: PMC11051878 DOI: 10.3390/microorganisms12040772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Antibiotic resistance has emerged as a significant global public health issue, driven by the rapid adaptation of microorganisms to commonly prescribed antibiotics. Colistin, previously regarded as a last-resort antibiotic for treating infections caused by Gram-negative bacteria, is increasingly becoming resistant due to chromosomal mutations and the acquisition of resistance genes carried by plasmids, particularly the mcr genes. The mobile colistin resistance gene (mcr-1) was first discovered in E. coli from China in 2016. Since that time, studies have reported different variants of mcr genes ranging from mcr-1 to mcr-10, mainly in Enterobacteriaceae from various parts of the world, which is a major concern for public health. The co-presence of colistin-resistant genes with other antibiotic resistance determinants further complicates treatment strategies and underscores the urgent need for enhanced surveillance and antimicrobial stewardship efforts. Therefore, understanding the mechanisms driving colistin resistance and monitoring its global prevalence are essential steps in addressing the growing threat of antimicrobial resistance and preserving the efficacy of existing antibiotics. This review underscores the critical role of colistin as a last-choice antibiotic, elucidates the mechanisms of colistin resistance and the dissemination of resistant genes, explores the global prevalence of mcr genes, and evaluates the current detection methods for colistin-resistant bacteria. The objective is to shed light on these key aspects with strategies for combating the growing threat of resistance to antibiotics.
Collapse
Affiliation(s)
- Aftab Hossain Mondal
- Department of Microbiology, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary University, Gurugram 122505, Haryana, India; (A.H.M.); (P.D.)
| | - Kriti Khare
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.K.); (P.S.); (K.M.)
| | - Prachika Saxena
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.K.); (P.S.); (K.M.)
| | - Parbati Debnath
- Department of Microbiology, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary University, Gurugram 122505, Haryana, India; (A.H.M.); (P.D.)
| | - Kasturi Mukhopadhyay
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.K.); (P.S.); (K.M.)
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| |
Collapse
|
9
|
Gharaibeh MH, Al Sheyab SY, Malkawi IM, Al Qudsi FR. Phenotypic and genotypic characterization of Escherichia coli isolated from the chicken liver in relation to slaughterhouse conditions. Heliyon 2024; 10:e27759. [PMID: 38515697 PMCID: PMC10955320 DOI: 10.1016/j.heliyon.2024.e27759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Avian pathogenic Escherichia coli (APEC) has been identified as a sub-group of extraintestinal pathogenic E. coli (ExPEC). Recent studies indicate APEC as a potential foodborne zoonotic pathogen and a source or reservoir of human extraintestinal infections. The slaughtering and processing of poultry in low-income countries such as Jordan occurs in two distinct ways: in informal facilities known as Natafat and in formal slaughterhouses. This study compared E. coli phenotypes and genotypes according to slaughtering conditions (formal slaughterhouses vs. informal slaughter facilities). Therefore, liver samples (n = 242) were collected from formal (n = 121) and informal slaughter facilities (n = 121). Results revealed a high prevalence (94.2%) of E. coli among all isolates, with 59 (17 formal and 42 informal) isolates considered avian pathogenic E. coli (APEC) based on the virulence-associated genes. The prevalence of resistance among isolates was relatively high, reaching up to 99% against penicillin and 97% against nalidixic acid. However, the prevalence of resistance was the lowest (1.3%) against both meropenem and imipenem. Based on the MIC test findings, colistin resistance was 46.9% (107/228). The mcr -1 gene prevalence was 51.4% (55/107), of which 17.1 % were from formal plants (6/36) and 68.1% from informal facilities (49/72). Interestingly, only one isolate (0.9%) expressed mcr-10. Escherichia coli O157:H7 and associated virulence genes were found more in informal (n = 15 genes) than in formal slaughterhouses (n = 8). Phylogroups B1, C, and A were the most frequent in 228 E. coli isolates, while G, B2, and clade were the least frequent. In conclusion, these findings highlight the importance of implementing biosecurity measures in slaughterhouses to reduce antibiotic-resistant E. coli spread. Furthermore, this study provides valuable insights into the effects of wet market (Natafat) slaughter conditions on increasing bacterial resistance and virulence.
Collapse
Affiliation(s)
- Mohammad H. Gharaibeh
- Department of Basic Veterinary Medical Science, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P. O. Box 3030, Irbid, 22110, Jordan
| | - Sahba Y. Al Sheyab
- Department of Basic Veterinary Medical Science, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P. O. Box 3030, Irbid, 22110, Jordan
| | - Ismail M. Malkawi
- Department of Basic Veterinary Medical Science, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P. O. Box 3030, Irbid, 22110, Jordan
| | - Farah R. Al Qudsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, 21121, Jordan
| |
Collapse
|
10
|
Wang Q, Zhang M, Liu Y, Li J, Chen R, Wang Y, Jin Y, Bai Y, Song Z, Lu X, Wang C, Hao Y. Co-transfer of IncFII/IncFIB and IncFII plasmids mediated by IS26 facilitates the transmission of mcr-8.1 and tmexCD1-toprJ1. Ann Clin Microbiol Antimicrob 2024; 23:14. [PMID: 38350903 PMCID: PMC10865577 DOI: 10.1186/s12941-024-00676-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/04/2024] [Indexed: 02/15/2024] Open
Abstract
PURPOSE This study aimed to characterise the whole-genome structure of two clinical Klebsiella pneumoniae strains co-harbouring mcr-8.1 and tmexCD1-toprJ1, both resistant to colistin and tigecycline. METHODS K. pneumoniae strains TGC-02 (ST656) and TGC-05 (ST273) were isolated from urine samples of different patients hospitalised at separate times in 2021. Characterisation involved antimicrobial susceptibility testing (AST), conjugation assays, whole-genome sequencing (WGS), and bioinformatics analysis. Comparative genomic analysis was conducted on mcr-8.1-carrying and tmexCD1-toprJ1-carrying plasmids. RESULTS Both K. pneumoniae isolates displayed a multidrug-resistant phenotype, exhibiting resistance or reduced susceptibility to ampicillin, ampicillin/sulbactam, cefazolin, aztreonam, amikacin, gentamicin, tobramycin, ciprofloxacin, levofloxacin, nitrofurantoin, trimethoprim/sulfamethoxazole, apramycin, tigecycline and colistin. WGS analysis revealed that clinical strain TGC-02 carried the TmexCD1-toprJ1 gene on a 200-Kb IncFII/IncFIB-type plasmid, while mcr-8 was situated on a 146-Kb IncFII-type plasmid. In clinical strain TGC-05, TmexCD1-toprJ1 was found on a 300-Kb IncFIB/IncHI1B/IncR-type plasmid, and mcr-8 was identified on a 137-Kb IncFII/IncFIA-type plasmid. Conjugation experiments assessed the transferability of these plasmids. While transconjugants were not obtained for TGC-05 despite multiple screening with tigecycline or colistin, pTGC-02-tmex and pTGC-02-mcr8 from clinical K. pneumoniae TGC-02 demonstrated self-transferability through conjugation. Notably, the rearrangement of pTGC-02-tmex and pTGC-02-mcr8 via IS26-based homologous recombination was observed. Moreover, the conjugative and fusion plasmids of the transconjugant co-harboured the tmexCD1-toprJ1 gene cluster and mcr-8.1, potentially resulting from IS26-based homologous recombination. CONCLUSION The emergence of colistin- and tigecycline-resistant K. pneumoniae strains is concerning, and effective surveillance measures should be implemented to prevent further dissemination.
Collapse
Affiliation(s)
- Qian Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.9677 Jing-Shi Road, Jinan, 250021, Shandong, People's Republic of China
| | - Meng Zhang
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
- Department of Clinical Laboratory, Liaocheng Second People's Hospital, Liaocheng, 252600, Shandong, China
| | - Yue Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.9677 Jing-Shi Road, Jinan, 250021, Shandong, People's Republic of China
| | - Jinmei Li
- Department of Clinical Laboratory, Jinan Seventh People's Hospital, Jinan, 250021, Shandong, China
| | - Ran Chen
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.9677 Jing-Shi Road, Jinan, 250021, Shandong, People's Republic of China
| | - Yueling Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.9677 Jing-Shi Road, Jinan, 250021, Shandong, People's Republic of China
| | - Yan Jin
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.9677 Jing-Shi Road, Jinan, 250021, Shandong, People's Republic of China
| | - Yuanyuan Bai
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.9677 Jing-Shi Road, Jinan, 250021, Shandong, People's Republic of China
| | - Zhen Song
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.9677 Jing-Shi Road, Jinan, 250021, Shandong, People's Republic of China
| | - Xinglun Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.9677 Jing-Shi Road, Jinan, 250021, Shandong, People's Republic of China
| | - Changyin Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.9677 Jing-Shi Road, Jinan, 250021, Shandong, People's Republic of China.
| | - Yingying Hao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.9677 Jing-Shi Road, Jinan, 250021, Shandong, People's Republic of China.
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
11
|
Hanafiah A, Sukri A, Yusoff H, Chan CS, Hazrin-Chong NH, Salleh SA, Neoh HM. Insights into the Microbiome and Antibiotic Resistance Genes from Hospital Environmental Surfaces: A Prime Source of Antimicrobial Resistance. Antibiotics (Basel) 2024; 13:127. [PMID: 38391513 PMCID: PMC10885873 DOI: 10.3390/antibiotics13020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Hospital environmental surfaces are potential reservoirs for transmitting hospital-associated pathogens. This study aimed to profile microbiomes and antibiotic resistance genes (ARGs) from hospital environmental surfaces using 16S rRNA amplicon and metagenomic sequencing at a tertiary teaching hospital in Malaysia. Samples were collected from patient sinks and healthcare staff counters at surgery and orthopaedic wards. The samples' DNA were subjected to 16S rRNA amplicon and shotgun sequencing to identify bacterial taxonomic profiles, antibiotic resistance genes, and virulence factor pathways. The bacterial richness was more diverse in the samples collected from patient sinks than those collected from staff counters. Proteobacteria and Verrucomicrobia dominated at the phylum level, while Bacillus, Staphylococcus, Pseudomonas, and Acinetobacter dominated at the genus level. Staphylococcus epidermidis and Staphylococcus aureus were prevalent on sinks while Bacillus cereus dominated the counter samples. The highest counts of ARGs to beta-lactam were detected, followed by ARGs against fosfomycin and cephalosporin. We report the detection of mcr-10.1 that confers resistance to colistin at a hospital setting in Malaysia. The virulence gene pathways that aid in antibiotic resistance gene transfer between bacteria were identified. Environmental surfaces serve as potential reservoirs for nosocomial infections and require mitigation strategies to control the spread of antibiotic resistance bacteria.
Collapse
Affiliation(s)
- Alfizah Hanafiah
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Asif Sukri
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Hamidah Yusoff
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | | | - Nur Hazlin Hazrin-Chong
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Sharifah Azura Salleh
- Infection Control Unit, Hospital Canselor Tuanku Muhriz, Cheras, Kuala Lumpur 56000, Malaysia
| | - Hui-Min Neoh
- UKM Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
12
|
Tian Z, Chen J, Lin T, Zhu J, Gan H, Chen F, Zhang S, Guan W. Dietary Supplementation with Lysozyme-Cinnamaldehyde Conjugates Enhances Feed Conversion Efficiency by Improving Intestinal Health and Modulating the Gut Microbiota in Weaned Piglets Infected with Enterotoxigenic Escherichia coli. Animals (Basel) 2023; 13:3497. [PMID: 38003115 PMCID: PMC10668808 DOI: 10.3390/ani13223497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
This study aims to evaluate the efficacy of lysozyme-cinnamaldehyde conjugates (LC) as a potential alternative to antibiotics in treating piglets infected with enterotoxigenic Escherichia coli (ETEC). The results demonstrated that piglets fed with the LC diet exhibited lower rectal temperature and fecal scores at 9 h, 24 h, and 48 h post-ETEC challenge. Furthermore, LC supplementation led to significant improvements in the mechanical and immune barriers of the jejunum and ileum, as indicated by an increased villi-height-to-crypt-depth ratio (VCR) and the expression of tight junction proteins, mucin, and β-defensins. Furthermore, the LC diet lowered the levels of pro-inflammatory cytokines TNF-α and IL-1β in the plasma. Further analyses showed that the LC diet downregulated genes (specifically TLR4 and MyD88) linked to the TLRs/MyD88/NF-κB signaling pathway in the small intestine. Additionally, 16SrDNA sequencing data revealed that LC supplementation increased the α diversity of intestinal microorganisms and the relative abundance of Lactobacillus. In summary, the LC-supplemented diet effectively mitigated the adverse effects of E. coli K88, including intestinal barrier damage and inflammation. Furthermore, it improved the structure of the intestinal flora, ultimately contributing to better growth performance in piglets.
Collapse
Affiliation(s)
- Zhezhe Tian
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.T.); (J.C.); (T.L.); (J.Z.); (H.G.); (F.C.)
| | - Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.T.); (J.C.); (T.L.); (J.Z.); (H.G.); (F.C.)
| | - Tongbin Lin
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.T.); (J.C.); (T.L.); (J.Z.); (H.G.); (F.C.)
| | - Junhua Zhu
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.T.); (J.C.); (T.L.); (J.Z.); (H.G.); (F.C.)
| | - Haoyang Gan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.T.); (J.C.); (T.L.); (J.Z.); (H.G.); (F.C.)
| | - Fang Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.T.); (J.C.); (T.L.); (J.Z.); (H.G.); (F.C.)
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.T.); (J.C.); (T.L.); (J.Z.); (H.G.); (F.C.)
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.T.); (J.C.); (T.L.); (J.Z.); (H.G.); (F.C.)
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
13
|
Wang C, Tang B, Wu J, Jin X, Ke S, Yang H, Liu Y. Detection of mcr-1-harbouring Escherichia coli by quantum dot labelling of synthetic small peptides mimicking lipopolysaccharide receptors. Int J Antimicrob Agents 2023; 62:106898. [PMID: 37343806 DOI: 10.1016/j.ijantimicag.2023.106898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Overuse of antibiotics and the emergence of multidrug-resistant bacteria has made colistin the last line of defence against complex infections. In previous studies, MCR-1-mediated colistin resistance was mainly detected through PCR or antimicrobial susceptibility testing. However, intuitive detection methods for phenotype are rarely reported. In this study, two small peptide antibodies were constructed for immunofluorescence detection of mcr-1-harbouring Escherichia coli: one was a small peptide labelled with a quantum dot antibody; and the other was a small peptide labelled with a fluorescein isothiocyanate (FITC) antibody. Whether using FITC or quantum dots, colistin-resistant bacteria in the sample could be qualitatively detected. The assembled antibodies achieved the desired goals in terms of sensitivity, specificity, precision and repeatability. The non-specific problem of sandwich antigen recognition of lipid A binding to small peptides in modified lipopolysaccharide (LPS) was resolved, and this relatively developed immunofluorescence technique standardised the detection process. Together, in addition to PCR, both fluorescent antibodies can be used for immunofluorescent detection of mcr-1-harbouring E. coli.
Collapse
Affiliation(s)
- Chenghao Wang
- Zhejiang key Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou 310013, China; School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310053, China; Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou 310013, China
| | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-product Safety and Nutrition; Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Jiusheng Wu
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Xi Jin
- Zhejiang key Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou 310013, China; Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou 310013, China
| | - Shuwen Ke
- Zhejiang key Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou 310013, China; School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310053, China; Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou 310013, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-product Safety and Nutrition; Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| | - Yuehuan Liu
- Zhejiang key Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou 310013, China; Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou 310013, China.
| |
Collapse
|
14
|
Li X, Jiang T, Wu C, Kong Y, Ma Y, Wu J, Xie X, Zhang J, Ruan Z. Molecular epidemiology and genomic characterization of a plasmid-mediated mcr-10 and blaNDM-1 co-harboring multidrug-resistant Enterobacter asburiae. Comput Struct Biotechnol J 2023; 21:3885-3893. [PMID: 37602227 PMCID: PMC10433016 DOI: 10.1016/j.csbj.2023.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023] Open
Abstract
Colistin is considered as one of the last-resort antimicrobial agents for treating multidrug-resistant bacterial infections. Multidrug-resistant E. asburiae has been increasingly isolated from clinical patients, which posed a great challenge for antibacterial treatment. This study aimed to report a mcr-10 and blaNDM-1 co-carrying E. asburiae clinical isolate 5549 conferred a high-level resistance against colistin. Antibiotic susceptibility testing was performed using the microdilution broth method. Transferability of mcr-10 and blaNDM-1-carrying plasmids were investigated by conjugation experiments. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to identify modifications in lipid A. Whole genome sequencing and phylogenetic analysis between strain 5549 and a total of 301 E. asburiae genomes retrieved from NCBI database were performed. The genetic characteristics of mcr-10 and blaNDM-1-bearing plasmids were also analyzed. Our study indicated that strain 5549 showed extensively antibiotic-resistant trait, including colistin and carbapenem resistance. The mcr-10 and blaNDM-1 were carried by IncFIB/IncFII type p5549_mcr-10 (159417 bp) and IncN type p5549_NDM-1 (63489 bp), respectively. Conjugation assays identified that only the blaNDM-1-carrying plasmid could be successfully transferred to E. coli J53. Interestingly, mcr-10 did not mediate colistin resistance when it was cloned into E. coli DH5α. Mass spectrometry analysis showed the lipid A palmitoylation of the C-lacyl-oxo-acyl chain to the chemical structure of lipid A at m/z 2063 in strain 5549. In summary, this study is the first to report a mcr-10 and blaNDM-1 co-occurrence E. asburiae recovered from China. Our investigation revealed the distribution of different clonal lineage of E. asburiae with epidemiology perspective and the underlying mechanisms of colistin resistance. Active surveillance is necessary to control the further dissemination of multidrug-resistant E. asburiae.
Collapse
Affiliation(s)
- Xinyang Li
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tian Jiang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Clinical Laboratory, The Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, China
| | - Chenghao Wu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingying Kong
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Yilei Ma
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Jianyong Wu
- Department of Clinical Laboratory, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Xinyou Xie
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
15
|
Anyanwu MU, Jaja IF, Okpala COR, Njoga EO, Okafor NA, Oguttu JW. Mobile Colistin Resistance ( mcr) Gene-Containing Organisms in Poultry Sector in Low- and Middle-Income Countries: Epidemiology, Characteristics, and One Health Control Strategies. Antibiotics (Basel) 2023; 12:1117. [PMID: 37508213 PMCID: PMC10376608 DOI: 10.3390/antibiotics12071117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
Mobile colistin resistance (mcr) genes (mcr-1 to mcr-10) are plasmid-encoded genes that threaten the clinical utility of colistin (COL), one of the highest-priority critically important antibiotics (HP-CIAs) used to treat infections caused by multidrug-resistant and extensively drug-resistant bacteria in humans and animals. For more than six decades, COL has been used largely unregulated in the poultry sector in low- and middle-income countries (LMICs), and this has led to the development/spread of mcr gene-containing bacteria (MGCB). The prevalence rates of mcr-positive organisms from the poultry sector in LMICs between January 1970 and May 2023 range between 0.51% and 58.8%. Through horizontal gene transfer, conjugative plasmids possessing insertion sequences (ISs) (especially ISApl1), transposons (predominantly Tn6330), and integrons have enhanced the spread of mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, mcr-7, mcr-8, mcr-9, and mcr-10 in the poultry sector in LMICs. These genes are harboured by Escherichia, Klebsiella, Proteus, Salmonella, Cronobacter, Citrobacter, Enterobacter, Shigella, Providencia, Aeromonas, Raoultella, Pseudomonas, and Acinetobacter species, belonging to diverse clones. The mcr-1, mcr-3, and mcr-10 genes have also been integrated into the chromosomes of these bacteria and are mobilizable by ISs and integrative conjugative elements. These bacteria often coexpress mcr with virulence genes and other genes conferring resistance to HP-CIAs, such as extended-spectrum cephalosporins, carbapenems, fosfomycin, fluoroquinolone, and tigecycline. The transmission routes and dynamics of MGCB from the poultry sector in LMICs within the One Health triad include contact with poultry birds, feed/drinking water, manure, poultry farmers and their farm workwear, farming equipment, the consumption and sale of contaminated poultry meat/egg and associated products, etc. The use of pre/probiotics and other non-antimicrobial alternatives in the raising of birds, the judicious use of non-critically important antibiotics for therapy, the banning of nontherapeutic COL use, improved vaccination, biosecurity, hand hygiene and sanitization, the development of rapid diagnostic test kits, and the intensified surveillance of mcr genes, among others, could effectively control the spread of MGCB from the poultry sector in LMICs.
Collapse
Affiliation(s)
| | - Ishmael Festus Jaja
- Department of Livestock and Pasture Science, University of Fort Hare, Alice 5700, South Africa
| | - Charles Odilichukwu R Okpala
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
- UGA Cooperative Extension, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Emmanuel Okechukwu Njoga
- Department of Veterinary Public Health and Preventive Medicine, University of Nigeria, Nsukka 400001, Nigeria
| | | | - James Wabwire Oguttu
- Department of Agriculture and Animal Health, Florida Campus, University of South Africa, Johannesburg 1709, South Africa
| |
Collapse
|
16
|
Wang X, Chen D, Du J, Cheng K, Fang C, Liao X, Liu Y, Sun J, Lian X, Ren H. Occupational exposure in swine farm defines human skin and nasal microbiota. Front Microbiol 2023; 14:1117866. [PMID: 37065142 PMCID: PMC10090692 DOI: 10.3389/fmicb.2023.1117866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
Anthropogenic environments take an active part in shaping the human microbiome. Herein, we studied skin and nasal microbiota dynamics in response to the exposure in confined and controlled swine farms to decipher the impact of occupational exposure on microbiome formation. The microbiota of volunteers was longitudinally profiled in a 9-months survey, in which the volunteers underwent occupational exposure during 3-month internships in swine farms. By high-throughput sequencing, we showed that occupational exposure compositionally and functionally reshaped the volunteers’ skin and nasal microbiota. The exposure in farm A reduced the microbial diversity of skin and nasal microbiota, whereas the microbiota of skin and nose increased after exposure in farm B. The exposure in different farms resulted in compositionally different microbial patterns, as the abundance of Actinobacteria sharply increased at expense of Firmicutes after exposure in farm A, yet Proteobacteria became the most predominant in the volunteers in farm B. The remodeled microbiota composition due to exposure in farm A appeared to stall and persist, whereas the microbiota of volunteers in farm B showed better resilience to revert to the pre-exposure state within 9 months after the exposure. Several metabolic pathways, for example, the styrene, aminobenzoate, and N-glycan biosynthesis, were significantly altered through our PICRUSt analysis, and notably, the function of beta-lactam resistance was predicted to enrich after exposure in farm A yet decrease in farm B. We proposed that the differently modified microbiota patterns might be coordinated by microbial and non-microbial factors in different swine farms, which were always environment-specific. This study highlights the active role of occupational exposure in defining the skin and nasal microbiota and sheds light on the dynamics of microbial patterns in response to environmental conversion.
Collapse
Affiliation(s)
- Xiran Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Dongrui Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Juan Du
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ke Cheng
- Guangxi State Farms Yongxin Jinguang Animal Husbandry Group Co., Ltd, Nanning, China
| | - Chang Fang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaoping Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yahong Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jian Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
- *Correspondence: Jian Sun,
| | - Xinlei Lian
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Xinlei Lian,
| | - Hao Ren
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Hao Ren,
| |
Collapse
|
17
|
Identification of mcr-1 Genes and Characterization of Resistance Mechanisms to Colistin in Escherichia coli Isolates from Colombian Hospitals. Antibiotics (Basel) 2023; 12:antibiotics12030488. [PMID: 36978355 PMCID: PMC10044228 DOI: 10.3390/antibiotics12030488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
We report the presence of the mcr-1 gene among 880 Escherichia coli clinical isolates collected in 13 hospitals from 12 Colombian cities between 2016 and 2019. Seven (0.8%) isolates were colistin resistant (MIC ≥ 4 µg/mL). These colistin-resistant isolates were screened for the presence of the mcr-1 gene; five carried the gene. These five isolates were subjected to whole genome sequencing (WGS) to identify additional resistomes and their ST. In addition, antimicrobial susceptibility testing revealed that all E. coli isolates carrying mcr-1 were susceptible to third generation-cephalosporin and carbapenems, except one, which carried an extended-spectrum β-lactamase (CTX-M-55), along with the fosfomycin resistance encoding gene, fosA. WGS indicated that these isolates belonged to four distinct sequence types (ST58, ST46, ST393, and a newly described ST14315) and to phylogroups B1, A, and D. In this geographic region, the spread of mcr-1 in E. coli is low and has not been inserted into high-risk clones such as ST131, which has been present in the country longer.
Collapse
|
18
|
Rhouma M, Madec JY, Laxminarayan R. Colistin: from the shadows to a One Health approach for addressing antimicrobial resistance. Int J Antimicrob Agents 2023; 61:106713. [PMID: 36640846 DOI: 10.1016/j.ijantimicag.2023.106713] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/26/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
Antimicrobial resistance (AMR) poses a serious threat to human, animal and environmental health worldwide. Colistin has regained importance as a last-resort treatment against multi-drug-resistant Gram-negative bacteria. However, colistin resistance has been reported in various Enterobacteriaceae species isolated from several sources. The 2015 discovery of the plasmid-mediated mcr-1 (mobile colistin resistance) gene conferring resistance to colistin was a major concern within the scientific community worldwide. The global spread of this plasmid - as well as the subsequent identification of 10 MCR-family genes and their variants that catalyse the addition of phosphoethanolamine to the phosphate group of lipid A - underscores the urgent need to regulate the use of colistin, particularly in animal production. This review traces the history of colistin resistance and mcr-like gene identification, and examines the impact of policy changes regarding the use of colistin on the prevalence of mcr-1-positive Escherichia coli and colistin-resistant E. coli from a One Health perspective. The withdrawal of colistin as a livestock growth promoter in several countries reduced the prevalence of colistin-resistant bacteria and its resistance determinants (e.g. mcr-1 gene) in farm animals, humans and the environment. This reduction was certainly favoured by the significant fitness cost associated with acquisition and expression of the mcr-1 gene in enterobacterial species. The success of this One Health intervention could be used to accelerate regulation of other important antimicrobials, especially those associated with bacterial resistance mechanisms linked to high fitness cost. The development of global collaborations and the implementation of sustainable solutions like the One Health approach are essential to manage AMR.
Collapse
Affiliation(s)
- Mohamed Rhouma
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada; Groupe de Recherche et d'Enseignement en Salubrité Alimentaire, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada; Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes - Agence Nationale de Sécurité Sanitaire, Université de Lyon, Lyon, France
| | - Ramanan Laxminarayan
- One Health Trust, Washington, DC 20005, Princeton University, Princeton NJ 08544, USA
| |
Collapse
|
19
|
Xiao C, Li X, Huang L, Cao H, Han L, Ni Y, Xia H, Yang Z. Prevalence and molecular characteristics of polymyxin-resistant Enterobacterales in a Chinese tertiary teaching hospital. Front Cell Infect Microbiol 2023; 13:1118122. [PMID: 37143741 PMCID: PMC10151768 DOI: 10.3389/fcimb.2023.1118122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Polymyxin-resistant Enterobacterales poses a significant threat to public health globally, but its prevalence and genomic diversity within a sole hospital is less well known. In this study, the prevalence of polymyxin-resistant Enterobacterales in a Chinese teaching hospital was investigated with deciphering of their genetic determinants of drug resistance. Methods Polymyxin-resistant Enterobacterales isolates identified by matrix-assisted laser desorption were collected in Ruijin Hospital from May to December in 2021. Both the VITEK 2 Compact and broth dilution methods were used to determine polymyxin B (PMB) susceptibility. Polymyxin-resistant isolates were further characterized by molecular typing using PCR, multi-locus sequence typing, and sequencing of the whole genome. Results Of the 1,216 isolates collected, 32 (2.6%) across 12 wards were polymyxin-resistant (minimum inhibitory concentration (MIC) range, PMB 4-256 mg/ml, and colistin 4 ≥ 16 mg/ ml). A total of 28 (87.5%) of the polymyxin-resistant isolates had reduced susceptibility to imipenem and meropenem (MIC ≥ 16 mg/ml). Of the 32 patients, 15 patients received PMB treatment and 20 survived before discharge. The phylogenetic tree of these isolates showed they belonged to different clones and had multiple origins. The polymyxin-resistant Klebsiella pneumoniae isolates belonged to ST-11 (85.72%), ST-15 (10.71%), and ST-65 (3.57%), and the polymyxin-resistant Escherichia coli belonged to four different sequence types, namely, ST-69 (25.00%), ST-38 (25.00%), ST-648 (25.00%), and ST-1193 (25.00%). In addition, six mgrB specific mutations (snp_ALT c.323T>C and amino acid change p.Val8Ala) were identified in 15.6% (5/32) of the isolates. mcr-1, a plasmid-mediated polymyxin-resistant gene, was found in three isolates, and non-synonymous mutations including T157P, A246T, G53V, and I44L were also observed. Discussion In our study, a low prevalence of polymyxin-resistant Enterobacterales was observed, but these isolates were also identified as multidrug resistant. Therefore, efficient infection control measures should be implemented to prevent the further spread of resistance to last-line polymyxin therapy.
Collapse
Affiliation(s)
- Chenlu Xiao
- Department of Laboratory Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Microbiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuming Li
- Department of Scientific Affairs, Hugobiotech Co., Ltd., Beijing, China
| | - Lianjiang Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Huiluo Cao
- Department of Microbiology, The University of Hongkong, Hong Kong, Hong Kong SAR, China
| | - Lizhong Han
- Department of Laboratory Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Microbiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxing Ni
- Department of Infection Control, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Xia
- Department of Scientific Affairs, Hugobiotech Co., Ltd., Beijing, China
| | - Zhitao Yang
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhitao Yang,
| |
Collapse
|
20
|
Hoa TTT, Huyen HM, Nakayama T, Minh DTN, Hoang ON, Le Thi H, Thanh PN, Hoai PH, Yamaguchi T, Jinnai M, Do PN, Van CD, Kumeda Y, Hase A. Frequent contamination of edible freshwater fish with colistin-resistant Escherichia coli harbouring the plasmid-mediated mcr-1 gene. MARINE POLLUTION BULLETIN 2022; 184:114108. [PMID: 36166861 DOI: 10.1016/j.marpolbul.2022.114108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/09/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
The threat of antimicrobial resistance is increasing. Microbial food contamination poses a serious public health risk; however, there are only a few studies on the prevalence of colistin-resistant Escherichia coli (COL-E) contamination in freshwater fish. This study aimed to characterise the antibiotic resistance genes and antibiotic susceptibility profiles of COL-E in freshwater fish in Vietnam. In total, 103 fish were collected and 63 COL-E were isolated. COL-E was investigated by genotyping mcr and AmpC/extended-spectrum β-lactamase (ESBL)-related genes. The results show that COL-E and AmpC/ESBL-producing COL-E were confirmed in 24.3 % and 14.6 % of the fish, respectively. Multiplex PCR for mcr-1-9 showed that all 63 COL-E harboured mcr-1, while mcr-3 was detected in 7.9 % of COL-E. The minimum inhibitory concentration of colistin ranged from 2 to 256 μg/mL. Meanwhile, antibiotic susceptibility results show that all COL-E were resistant to ampicillin, streptomycin, and chloramphenicol.
Collapse
Affiliation(s)
| | | | - Tatsuya Nakayama
- Graduate School of Integrated Sciences for Life, Hiroshima University.
| | | | | | - Hien Le Thi
- Institute of Public Health, Ho Chi Minh City, Viet Nam
| | | | | | | | - Michio Jinnai
- Department of Microbiology, Kanagawa Prefectural Institute of Public Health, Japan
| | | | | | - Yuko Kumeda
- Research Center for Microorganism Control, Osaka Prefecture University, Japan
| | - Atsushi Hase
- Faculty of Contemporary Human Life Science, Tezukayama University, Japan
| |
Collapse
|
21
|
Zhou W, Lin R, Zhou Z, Ma J, Lin H, Zheng X, Wang J, Wu J, Dong Y, Jiang H, Yang H, Yang Z, Tang B, Yue M. Antimicrobial resistance and genomic characterization of Escherichia coli from pigs and chickens in Zhejiang, China. Front Microbiol 2022; 13:1018682. [PMID: 36353453 PMCID: PMC9638057 DOI: 10.3389/fmicb.2022.1018682] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli is considered an opportunistic pathogen and an indicator for antimicrobial resistance (AMR) monitoring. Despite many reports on its AMR monitoring, studies based on genome-based analysis of AMR genes are still insufficient. Here, 181 E. coli strains were isolated from anal swab samples collected from pigs and chickens of animal farms located in Eastern China and sequenced through the Illumina platform. The results showed that 87.85% (159/181) of the E. coli isolates were multidrug-resistant (MDR). Ampicillin (AMP)- spectinomycin (SPT)- tetracycline (TET)- florfenicol (FFC)- sulfisoxazole (SF)- trimethoprim/sulfamethoxazole (SXT) was the predominant AMR pattern. By whole-genome sequencing, we found that ST10 (10.49%, 19/181) and ST48 (7.18%, 13/181) were major sequence types. IncFIB and IncX1 were the most prevalent plasmid replicons. The AMR genes bla NDM-5 (1.10%, 2/181), mcr-1 (1.10%, 2/181), tet(X4) (1.10%, 2/181), and cfr (6.08%, 2/181) were also found in these isolates. In addition, among the 169 virulence genes detected, we identified astA (37.02%, 67/181), hlyA (1.66%, 3/181), hlyB (1.66%, 3/181) and hlyD (1.66%, 3/181), which were closely related to heat-stable enterotoxin 1 and α-hemolysin. In addition, there were 33 virulence genes associated with the iron uptake system, and 46 were adhesion-related genes. Our study highlighted the need for routine surveillance of AMR with advanced genomic approaches, providing up-to-date data on the prevalence of AMR for the development and execution of antimicrobial stewardship policy.
Collapse
Affiliation(s)
- Wei Zhou
- Zhejiang Provincial Center for Animal Disease Prevention and Control, Hangzhou, China
| | - Rumeng Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, China
| | - Zhijin Zhou
- Zhejiang Provincial Center for Animal Disease Prevention and Control, Hangzhou, China
| | - Jiangang Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- The Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xue Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jingge Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jing Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuzhi Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, China
| | - Han Jiang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhangnv Yang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Min Yue
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Anyanwu MU, Nwobi OC, Okpala COR, Ezeonu IM. Mobile Tigecycline Resistance: An Emerging Health Catastrophe Requiring Urgent One Health Global Intervention. Front Microbiol 2022; 13:808744. [PMID: 35979498 PMCID: PMC9376449 DOI: 10.3389/fmicb.2022.808744] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/24/2022] [Indexed: 01/13/2023] Open
Abstract
Mobile tigecycline resistance (MTR) threatens the clinical efficacy of the salvage antibiotic, tigecycline (TIG) used in treating deadly infections in humans caused by superbugs (multidrug-, extensively drug-, and pandrug-resistant bacteria), including carbapenem- and colistin-resistant bacteria. Currently, non-mobile tet(X) and mobile plasmid-mediated transmissible tet(X) and resistance-nodulation-division (RND) efflux pump tmexCD-toprJ genes, conferring high-level TIG (HLT) resistance have been detected in humans, animals, and environmental ecosystems. Given the increasing rate of development and spread of plasmid-mediated resistance against the two last-resort antibiotics, colistin (COL) and TIG, there is a need to alert the global community on the emergence and spread of plasmid-mediated HLT resistance and the need for nations, especially developing countries, to increase their antimicrobial stewardship. Justifiably, MTR spread projects One Health ramifications and portends a monumental threat to global public and animal health, which could lead to outrageous health and economic impact due to limited options for therapy. To delve more into this very important subject matter, this current work will discuss why MTR is an emerging health catastrophe requiring urgent One Health global intervention, which has been constructed as follows: (a) antimicrobial activity of TIG; (b) mechanism of TIG resistance; (c) distribution, reservoirs, and traits of MTR gene-harboring isolates; (d) causes of MTR development; (e) possible MTR gene transfer mode and One Health implication; and (f) MTR spread and mitigating strategies.
Collapse
Affiliation(s)
- Madubuike Umunna Anyanwu
- Microbiology Unit, Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Obichukwu Chisom Nwobi
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Charles Odilichukwu R. Okpala
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Ifeoma M. Ezeonu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
23
|
First Report of the Colistin Resistance Gene mcr-10.1 Carried by Inc pA1763-KPC Plasmid pSL12517-mcr10.1 in Enterobacter cloacae in Sierra Leone. Microbiol Spectr 2022; 10:e0112722. [PMID: 35695522 PMCID: PMC9431528 DOI: 10.1128/spectrum.01127-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mobile colistin resistance (mcr) gene mcr-10.1 has been distributed widely since it was initially identified in 2020. The aim of this study was to report the first mcr-10.1 in Africa and the first mcr in Sierra Leone; furthermore, we presented diverse modular structures of mcr-10.1 loci. Here, the complete sequence of one mcr-10.1-carrying plasmid in one clinical Enterobacter cloacae isolate from Sierra Leone was determined. Detailed genetic dissection and comparison were applied to this plasmid, together with a homologous plasmid carrying mcr-10.1 from GenBank. Moreover, a genetic comparison of 19 mcr-10.1 loci was performed. In this study, mcr-10.1 was carried by an IncpA1763-KPC plasmid from one Enterobacter cloacae isolate. A total of 19 mcr-10.1 loci displayed diversification in modular structures through complex transposition and homologous recombination. A site-specific tyrosine recombinase XerC was located upstream of mcr-10.1, and at least one insertion sequence element was inserted adjacent to a conserved xerC-mcr-10.1-orf336-orf177 region. Integration of mcr-10.1 into a different gene context and carried by various Inc plasmids contributed to the wide distribution of mcr-10.1 and enhanced the ability of bacteria to survive under colistin selection pressure. IMPORTANCE Colistin is used as one of the last available choices of antibiotics for patients infected by carbapenem-resistant bacterial strains, but the unrestricted use of colistin aggravated the acquisition and dissemination of mobile colistin resistance (mcr) genes. So far, 10 mcr genes have been reported in four continents around the world. This study presented one mcr-10.1-carrying Enterobacter cloacae isolate from Sierra Leone. The mcr-10.1 gene was identified on an IncpA1763-KPC plasmid. According to the results of genetic comparison of 19 mcr-10.1 loci, the mcr-10.1 gene was found to be located in a conserved xerC-mcr-10.1-orf336-orf177 region, and at least one insertion sequence element was inserted adjacent to this region. To our knowledge, this is the first report of identifying the mcr-10.1 gene in Africa and the mcr gene in Sierra Leone.
Collapse
|