1
|
Yang W, Zhang L, Yang Y, Xiang H, Yang P. Plant secondary metabolites-mediated plant defense against bacteria and fungi pathogens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109224. [PMID: 39437667 DOI: 10.1016/j.plaphy.2024.109224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/30/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Plant diseases caused by pathogenic bacteria and fungi are major threats to both wild plants and crops. To counteract these threats, plants have evolved various defense mechanisms, including the production of plant secondary metabolites (PSMs). These compounds, such as terpenoids, phenolics, alkaloids, and glucosinolates, offer a versatile, efficient, and cost-effective means of pathogen resistance. The traditional pathogen management methods relying on synthetic microbicides are often environment unfriendly. In contrast, PSMs provide promising alternative way due to their high efficiency and environmental benefits. This article reviews the categories, biosynthetic pathways, mechanisms of actions, and the commercialization of the PSMs to enhance our understanding of their pathogen resistance capabilities. The goal is to develop sustainable disease management strategies using PSM-based bactericides and fungicides.
Collapse
Affiliation(s)
- Wenjuan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lu Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Haibo Xiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
2
|
Deng YJ, Chen Z, Chen YP, Wang JP, Xiao RF, Wang X, Liu B, Chen MC, He J. Lipopeptide C 17 Fengycin B Exhibits a Novel Antifungal Mechanism by Triggering Metacaspase-Dependent Apoptosis in Fusarium oxysporum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7943-7953. [PMID: 38529919 DOI: 10.1021/acs.jafc.4c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Fusarium wilt is a worldwide soil-borne fungal disease caused by Fusarium oxysporum that causes serious damage to agricultural products. Therefore, preventing and treating fusarium wilt is of great significance. In this study, we purified ten single lipopeptide fengycin components from Bacillus subtilis FAJT-4 and found that C17 fengycin B inhibited the growth of F. oxysporum FJAT-31362. We observed early apoptosis hallmarks, including reactive oxygen species accumulation, mitochondrial dysfunction, and phosphatidylserine externalization in C17 fengycin B-treated F. oxysporum cells. Further data showed that C17 fengycin B induces cell apoptosis in a metacaspase-dependent manner. Importantly, we found that the expression of autophagy-related genes in the TOR signaling pathway was significantly upregulated; simultaneously, the accumulation of acidic autophagy vacuoles in F. oxysporum cell indicated that the autophagy pathway was activated during apoptosis induced by C17 fengycin B. Therefore, this study provides new insights into the antifungal mechanism of fengycin.
Collapse
Affiliation(s)
- Ying-Jie Deng
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430000, China
| | - Zheng Chen
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Yan-Ping Chen
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Jie-Ping Wang
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Rong-Feng Xiao
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Xun Wang
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430000, China
| | - Bo Liu
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Mei-Chun Chen
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Jin He
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430000, China
| |
Collapse
|
3
|
Wang G, Zhao H, Zou J, Liang W, Zhao Z, Li D. Role of BcSfb3, the subunit of COPII vesicles, in fungal development and pathogenicity, ER-phagy and autophagy in the gray mold fungus Botrytis cinerea. Int J Biol Macromol 2024; 263:130379. [PMID: 38403214 DOI: 10.1016/j.ijbiomac.2024.130379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Cytoplasmic coat protein complex II (COPII) plays a multifunctional role in the transport of newly synthesized proteins, autophagosome formation, and endoplasmic reticulum (ER)-ER-phagy. However, the molecular mechanisms of the COPII subunit in ER-phagy in plant pathogens remain unknown. Here, we identified the subunit of COPII vesicles (BcSfb3) and explored the importance of BcSfb3 in Botrytis cinerea. BcSfb3 deletion affected vegetative growth, conidiation, conidial morphology, and plasma membrane integrity. We confirmed that the increase in infectious hyphal growth was delayed in the ΔBcSfb3 mutant, reducing its pathogenicity in the host plant. Furthermore, the ΔBcSfb3 mutant was sensitive to ER stress, which caused massive ER expansion and induced the formation of ER whorls that were taken up into the vacuole. Further examination demonstrated that BcSfb3 deletion caused ER stress initiated by unfolded protein response, and which led to the promotion of ER-phagy and autophagy that participate in sclerotia formation. In conclusion, these results demonstrate that BcSfb3 plays an important role in fungal development, pathogenesis, ER-phagy and autophagy in B. cinerea.
Collapse
Affiliation(s)
- Guanbo Wang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, China
| | - Haonan Zhao
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, China
| | - Jian Zou
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, China
| | - Wenxing Liang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, China
| | - Zhijian Zhao
- Industrial Crops Institute, Yunnan Academy of Agricultural Sciences, Kunming 650203, China.
| | - Delong Li
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, China; Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|