1
|
Kim DH, Seo H, Jung S, Kim BJ. Global prevalence of Mycobacterium massiliense strains with recombinant rpoB genes (Rec-Mas) horizontally transferred from Mycobacterium abscessus: two major types, dominant circulating clone 7 and MLST ST46 sequence type. Microbiol Spectr 2024:e0193524. [PMID: 39431893 DOI: 10.1128/spectrum.01935-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Mycobacterium abscessus is a group of emerging antimicrobial-resistant nontuberculous mycobacteria that causes severe lung disease in infected patients globally. Recently, molecular epidemiology studies have indicated that horizontal gene transfer (HGT) events in the rpoB gene are prevalent between M. abscessus subspecies. To determine the global prevalence of M. abscessus strains subjected to rpoB HGT, we performed phylogenetic inference using a 711-bp rpoB sequence extracted from 1,786 M. abscessus isolates for which the whole-genome sequence was publicly available. Our data showed that a total of 74 isolates (4.1%) from 1,786 strains are subject to rpoB HGT, which is more prevalent than strains with hsp65 HGT (19 isolates from 1,786, 1.1%). Most of these (69 isolates) belong to two major groups of Mycobacterium massiliense, of which the rpoB gene is horizontally transferred from M. abscessus (Rec-mas), dominant circulating clone 7 (DCC7) (44 isolates) and ST46 type by multilocus sequence typing (25 isolates). The Rec-mas strains of the two groups have distinct geographical patient distributions, of which the former is mainly distributed in the United States, while the latter is prevalent in Asia. Our further genome-based analysis indicated that the ST46 type is a novel DCC candidate of M. massiliense that is responsible for dissemination between noncystic fibrosis patients in Asia. In conclusion, our global phylogenetic analysis revealed two major Rec-mas clones with distinct geographical distributions, namely, DCC7 and ST46. This study provides insights into the genetic clustering and person-to-person transmission of globally dominant and area-specific strains harboring the HGT rpoB gene. IMPORTANCE Horizontal gene transfer (HGT) events play a pivotal role in the evolution of Mycobacterium abscessus into dominant circulating clones (DCCs), which is capable of causing patient-to-patient transmission. In particular, HGT of the rpoB gene between strains of different subspecies of M. abscessus could also compromise differentiation between strains of M. abscessus. Here, for the first time, using 1,786 M. abscessus genome sequences, we evaluated the global prevalence of M. abscessus strains subjected to rpoB HGT. We found a greater prevalence of M. abscessus subjected to rpoB HGT than to those subjected to hsp65 HGT, which is mainly due to two Rec-mas clones, dominant circulating clone 7 and ST46, which are responsible for dissemination between non-CF patients in Asia. Our data highlight the importance of rpoB HGT in the evolution of M. abscessus, particularly Mycobacterium massiliense, into virulent DCC clones.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
| | - Hyejun Seo
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Seoul National University Medical Research Center (SNUMRC), Seoul, South Korea
| | - Sangkwon Jung
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Seoul National University Medical Research Center (SNUMRC), Seoul, South Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
2
|
Yamatani I, Aono A, Fujiwara K, Asami T, Kamada K, Morishige Y, Igarashi Y, Chikamatsu K, Murase Y, Yamada H, Takaki A, Komiya K, Mitarai S. In vitro effects of the new oral β-lactamase inhibitor xeruborbactam in combination with oral β-lactams against clinical Mycobacterium abscessus isolates. Microbiol Spectr 2024; 12:e0008424. [PMID: 38842354 PMCID: PMC11218443 DOI: 10.1128/spectrum.00084-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
Non-tuberculosis mycobacteria (NTM), particularly Mycobacterium abscessus subsp. abscessus (M. abscessus), are increasingly being recognized as etiological agents of NTM pulmonary disease. However, treatment options for M. abscessus are limited owing to their natural resistance to most antibiotics, including β-lactams. M. abscessus produces a class A β-lactamase, whose activity is inhibited by cyclic boronic acid β-lactamase inhibitors. We aimed to evaluate the in vitro effects of xeruborbactam, a cyclic boronic acid β-lactamase inhibitor, against M. abscessus when combined with five β-lactams (amoxicillin, tebipenem, cefdinir, cefuroxime, and cefoxitin). The drug susceptibilities of 43 M. abscessus clinical isolates obtained from 43 patients between August 2005 and May 2014 were tested. The MIC results for each β-lactam with or without 4 µg/mL xeruborbactam were examined. Xeruborbactam lowered the MIC90 values of tebipenem, amoxicillin, cefuroxime, and cefdinir by 5, ≥4, 3, and 3 dilutions, respectively. The MIC90 values of cefoxitin without xeruborbactam were 32 µg/mL and did not change upon the addition of xeruborbactam. The lowest MIC90 value was obtained for tebipenem with xeruborbactam. Almost all isolates had an MIC of 4 µg/mL; one isolate had an MIC of 2 µg/mL. With respect to the susceptibility to the same family drug, the number of susceptible isolates increased from 1/43 (2%) to 43/43 (100%) for tebipenem with xeruborbactam. Combining tebipenem and xeruborbactam could be considered an effective all-oral regimen that benefits outpatient treatment of M. abscessus pulmonary disease. IMPORTANCE Mycobacterium abscessus subsp. abscessus (M. abscessus) disease is treated in two phases; injectable drugs for initial followed by others for continuation. There is a need to develop all-oral treatment methods for M. abscessus infection, especially in the continuation phase. However, treatment options for M. abscessus are limited owing to their natural resistance to most antibiotics. This is the first report to evaluate the in vitro effects of xeruborbactam, a cyclic boronic acid β-lactamase inhibitor capable of inhibiting the class A β-lactamase produced by M. abscessus, against 43 M. abscessus clinical isolates when combined with five β-lactam antibiotics. Xeruborbactam lowered the MIC90 values of tebipenem by five dilutions, and the number of susceptible isolates increased from 1/43 (2%) to 43/43 (100%). We showed that the tebipenem-xeruborbactam combination might be of interest to explore further as a potentially effective oral regimen for outpatient treatment of M. abscessus pulmonary disease.
Collapse
Affiliation(s)
- Izumi Yamatani
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
- Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, Oita, Japan
| | - Akio Aono
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Keiji Fujiwara
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Takahiro Asami
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Keisuke Kamada
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Yuta Morishige
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Yuriko Igarashi
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Kinuyo Chikamatsu
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Yoshiro Murase
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Hiroyuki Yamada
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Akiko Takaki
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
- Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, Oita, Japan
- Department of Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kosaku Komiya
- Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, Oita, Japan
| | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
- Department of Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
3
|
Cristancho-Rojas C, Varley CD, Lara SC, Kherabi Y, Henkle E, Winthrop KL. Epidemiology of Mycobacterium abscessus. Clin Microbiol Infect 2024; 30:712-717. [PMID: 37778416 DOI: 10.1016/j.cmi.2023.08.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Nontuberculous mycobacteria (NTM) are highly abundant in soil, dust, and water sources, making human-pathogen contact frequent and recurrent. NTM represents over 200 species/subspecies; some are considered strict or opportunistic pathogens. Mycobacterium abscessus, often regarded as one of the most antibiotic-resistant mycobacteria, is the second most frequent NTM pulmonary disease pathogen. OBJECTIVES To describe the epidemiology of M. abscessus through a literature review focusing on clinical aspects. SOURCES We conducted searches on PubMed and Web of Knowledge for articles published from 2010 to the present using the keywords 'Mycobacterium abscessus', 'Nontuberculous mycobacteria', and 'epidemiology'. Our search prioritized original reports on the occurrence of NTM and M. abscessus infection/disease. CONTENT Advanced molecular and genetic diagnostic techniques have refined the M. abscessus complex (MABC) microbiological classification over the last few decades. MABC can adhere to surfaces and form a biofilm. This characteristic and its resistance to common disinfectants allow these microorganisms to persist in the water distribution systems, becoming a constant reservoir. The frequency and manifestation of NTM species vary geographically because of environmental conditions and population susceptibility differences. MABC lung disease, the most frequent site of NTM infection in humans, is often seen in patients with underlying lung diseases such as bronchiectasis, whereas MABC disseminated disease is related to immunosuppression. Skin and soft tissue infections are associated with surgical or injection procedures. Epidemiological evidence suggests an overall increase in MABC infection and disease in the last decade. IMPLICATIONS Establishing the burden of this disease is challenging because of varying measures of incidence and prevalence, referral bias, and differences in medical practices and reporting. Furthermore, environmental and structural determinants, infection routes, and MABC pulmonary disease mechanisms require additional investigation. This review contributes to a better understanding of the epidemiology of MABC, which could inform clinical practice and future research.
Collapse
Affiliation(s)
- Cesar Cristancho-Rojas
- School of Public Health, Oregon Health & Science University-Portland State University, Portland, OR, USA
| | - Cara D Varley
- School of Public Health, Oregon Health & Science University-Portland State University, Portland, OR, USA; Department of Medicine, Division of Infectious Diseases, Oregon Health & Science University, Portland, OR, USA
| | - Sofia Chapela Lara
- School of Public Health, Oregon Health & Science University-Portland State University, Portland, OR, USA
| | - Yousra Kherabi
- Department of Infectious Diseases, Bichat-Claude Bernard Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Emily Henkle
- School of Public Health, Oregon Health & Science University-Portland State University, Portland, OR, USA
| | - Kevin L Winthrop
- School of Public Health, Oregon Health & Science University-Portland State University, Portland, OR, USA; Department of Medicine, Division of Infectious Diseases, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
4
|
Burke A, Carter R, Tolson C, Congdon J, Duplancic C, Bursle E, Bell SC, Roberts JA, Thomson R. In vitro susceptibility testing of imipenem-relebactam and tedizolid against 102 Mycobacterium abscessus isolates. Int J Antimicrob Agents 2023; 62:106938. [PMID: 37517624 DOI: 10.1016/j.ijantimicag.2023.106938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/15/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVES Mycobacterium abscessus is an emerging infection in people living with lung diseases, including cystic fibrosis (CF) and bronchiectasis, and it has limited treatment options and low cure rates. The off-label use of novel antibiotics developed for other bacterial pathogens offers potential new therapeutic options. We aimed to describe the in vitro activity of imipenem, imipenem-relebactam and tedizolid against comparator antibiotics in M. abscessus isolates from Australian patients with and without CF. METHODS We performed susceptibility testing for imipenem-relebactam, tedizolid and comparator antibiotics by Clinical and Laboratory Standards Institute (CLSI) criteria against 102 clinical M. abscessus isolates, including 46 from people with CF. RESULTS In this study, the minimum inhibitory concentration (MICs) of imipenem-relebactam was one-fold dilution less than of imipenem alone. The MIC50 and MIC90 of imipenem-relebactam were 8 and 16 mg/L, respectively, whereas for imipenem they were 16 and 32 mg/L. Tedizolid had an MIC50 and MIC90 of 2 and 4 mg/L, respectively. Forty non-CF isolates had linezolid susceptibility performed, with MIC50 and MIC90 values of 16 and 32 mg/L, respectively, measured. CONCLUSIONS This study shows lower MICs for imipenem-relebactam and tedizolid compared to other more commonly used antibiotics and supports their consideration in clinical trials for M. abscessus treatment.
Collapse
Affiliation(s)
- Andrew Burke
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia; The Prince Charles Hospital, Brisbane, Australia.
| | - Robyn Carter
- Faculty of Medicine, The University of Queensland School of Medicine School of Medicine, Australia; Gallipoli Medical Research Institute, Brisbane, Australia
| | - Carla Tolson
- Gallipoli Medical Research Institute, Brisbane, Australia
| | - Jacob Congdon
- Gallipoli Medical Research Institute, Brisbane, Australia
| | - Christine Duplancic
- Faculty of Medicine, The University of Queensland School of Medicine School of Medicine, Australia
| | - Evan Bursle
- Faculty of Medicine, The University of Queensland School of Medicine School of Medicine, Australia; Sullivan and Nicolaides Pathology, Brisbane, Australia
| | - Scott C Bell
- The Prince Charles Hospital, Brisbane, Australia; Faculty of Medicine, The University of Queensland School of Medicine School of Medicine, Australia; Translational Research Institute, Brisbane, Australia
| | - Jason A Roberts
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia; Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Rachel Thomson
- The Prince Charles Hospital, Brisbane, Australia; Faculty of Medicine, The University of Queensland School of Medicine School of Medicine, Australia; Gallipoli Medical Research Institute, Brisbane, Australia
| |
Collapse
|
5
|
Komiya K, Yoshida M, Uchida S, Takikawa S, Yamasue M, Matsumoto T, Morishige Y, Aono A, Hiramatsu K, Yamaoka Y, Nishizono A, Ato M, Kadota JI, Mitarai S. Massive and Lengthy Clonal Nosocomial Expansion of Mycobacterium abscessus subsp. massiliense among Patients Who Are Ventilator Dependent without Cystic Fibrosis. Microbiol Spectr 2023; 11:e0490822. [PMID: 37314340 PMCID: PMC10433864 DOI: 10.1128/spectrum.04908-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/30/2023] [Indexed: 06/15/2023] Open
Abstract
Nontuberculous mycobacterial infections are generally believed to be independently acquired from the environment. Although person-to-person transmission of nontuberculous mycobacteria, especially Mycobacterium abscessus subsp. massiliense, is a serious concern among individuals with cystic fibrosis (CF), evidence of its spread among patients without CF has never been established. We unexpectedly found a number of M. abscessus subsp. massiliense cases among patients without CF in a hospital. This study aimed to define the mechanism of M. abscessus subsp. massiliense infection among patients who were ventilator dependent and without CF who had progressive neurodegenerative diseases in our long-term care wards from 2014 to 2018 during suspected nosocomial outbreaks. We conducted whole-genome sequencing of M. abscessus subsp. massiliense isolates from 52 patients and environmental samples. Potential opportunities for in-hospital transmission were analyzed using epidemiological data. M. abscessus subsp. massiliense was isolated from one air sample obtained near a patient without CF who was colonized with M. abscessus subsp. massiliense but not from other potential sources. Phylogenetic analysis of the strains from these patients and the environmental isolate revealed clonal expansion of near-identical M. abscessus subsp. massiliense isolates, with the isolates generally differing by fewer than 22 single nucleotide polymorphisms (SNPs). Approximately half of the isolates differed by fewer than nine SNPs, indicating interpatient transmission. Whole-genome sequencing revealed a potential nosocomial outbreak among patients who were ventilator dependent and without CF. IMPORTANCE The isolation of M. abscessus subsp. massiliense from the air, but not from environmental fluid samples, may suggest airborne transmission. This was the first report to demonstrate person-to-person transmission of M. abscessus subsp. massiliense, even among patients without CF. M. abscessus subsp. massiliense may spread among patients who are ventilator dependent without CF through direct or indirect in-hospital transmission. The current infection control measures should address potential transmission among patients without CF, particularly in facilities that treat patients who are ventilator dependent and patients with preexisting chronic pulmonary diseases, such as CF.
Collapse
Affiliation(s)
- Kosaku Komiya
- Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, Yufu, Oita, Japan
- Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Mitsunori Yoshida
- Department of Mycobacteriology, Leprosy Research Centre, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Sonoe Uchida
- Internal Medicine, National Hospital Organization Nishi-Beppu Hospital, Beppu, Oita, Japan
- Respiratory Medicine, Bungoono City Hospital, Bungoono, Oita, Japan
| | - Shuichi Takikawa
- Internal Medicine, National Hospital Organization Nishi-Beppu Hospital, Beppu, Oita, Japan
| | - Mari Yamasue
- Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, Yufu, Oita, Japan
- Internal Medicine, National Hospital Organization Nishi-Beppu Hospital, Beppu, Oita, Japan
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Yuta Morishige
- Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| | - Akio Aono
- Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| | - Kazufumi Hiramatsu
- Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, Yufu, Oita, Japan
- Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Yoshio Yamaoka
- Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University Faculty of Medicine, Yufu, Oita, Japan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Akira Nishizono
- Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University Faculty of Medicine, Yufu, Oita, Japan
- Department of Microbiology, Oita University Faculty of Medicine, Oita, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Centre, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Jun-ichi Kadota
- Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| |
Collapse
|
6
|
Kaji M, Namkoong H, Nagao G, Azekawa S, Nakagawara K, Tanaka H, Morita A, Asakura T, Kamata H, Uwamino Y, Yoshida M, Fukunaga K, Hasegawa N. Nasopharyngeal Mycobacterium abscessus Infection: A Case Report and Literature Review. Infect Drug Resist 2023; 16:3955-3963. [PMID: 37361939 PMCID: PMC10290463 DOI: 10.2147/idr.s415197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Background Mycobacterium abscessus (M. abscessus) is a rapidly growing bacterium (RGM) that causes refractory pulmonary and extrapulmonary infections. However, studies investigating pharyngeal and laryngeal M. abscessus infections are limited. Case Presentation A 41-year-old immunocompetent woman complaining of bloody sputum was referred to our hospital. Although her sputum culture tested positive for M. abscessus subsp. abscessus, radiological findings were not indicative of pulmonary infection or sinusitis. Further diagnostic workup, including laryngeal endoscopy and positron emission tomography/computed tomography (PET/CT), confirmed the presence of nasopharyngeal M. abscessus infection. The patient was initially treated with intravenous amikacin, imipenem/cilastatin, azithromycin, and clofazimine for 28 days, after which the patient was provided with amikacin, azithromycin, clofazimine, and sitafloxacin for four months. After the completion of antibiotic therapy, the patient showed negative results on sputum smear and culture and normal findings on PET/CT and laryngeal endoscopy. Whole-genome sequencing of this strain revealed that it belonged to the ABS-GL4 cluster, which has a functional erythromycin ribosomal methylase gene, although it is not a major lineage in non-cystic fibrosis (CF) patients in Japan and Taiwan and in CF patients in European countries. We conducted a literature review and identified seven patients who developed pharyngeal/laryngeal non-tuberculous mycobacterium (NTM) infection. Four of the eight patients had a history of immunosuppressant use, including steroids. Seven of the eight patients responded well to their treatment regimens. Conclusion Patients whose sputum culture tests are positive for NTM and who meet the diagnostic criteria for NTM infection but do not have intrapulmonary lesions should be evaluated for otorhinolaryngological infections. Our case series revealed that immunosuppressant use is a risk factor for pharyngeal/laryngeal NTM infection and that patients with pharyngeal/laryngeal NTM infections respond relatively well to antibiotic therapy.
Collapse
Affiliation(s)
- Masanori Kaji
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ho Namkoong
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Genta Nagao
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shuhei Azekawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kensuke Nakagawara
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiromu Tanaka
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Atsuho Morita
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Asakura
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Clinical Medicine (Laboratory of Bioregulatory Medicine), Kitasato University School of Pharmacy, Tokyo, Japan
- Department of Respiratory Medicine, Kitasato University, Kitasato Institute Hospital, Tokyo, Japan
| | - Hirofumi Kamata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yoshifumi Uwamino
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Mitsunori Yoshida
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Fujiwara K, Aono A, Asami T, Morimoto K, Kamada K, Morishige Y, Igarashi Y, Chikamatsu K, Murase Y, Yamada H, Takaki A, Mitarai S. In Vitro Synergistic Effects of Omadacycline with Other Antimicrobial Agents against Mycobacterium abscessus. Antimicrob Agents Chemother 2023; 67:e0157922. [PMID: 37154742 PMCID: PMC10269086 DOI: 10.1128/aac.01579-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/17/2023] [Indexed: 05/10/2023] Open
Abstract
The clinical importance of Mycobacterium abscessus species (MABS) infections has been increasing. However, the standard treatment regimens recommended in the current guidelines often result in unfavorable outcomes. Therefore, we investigated the in vitro activity of omadacycline (OMC), a novel tetracycline, against MABS to explore its potential as a novel therapeutic option. The drug susceptibilities of 40 Mycobacterium abscessus subsp. abscessus (Mab) clinical strains obtained from the sputum of 40 patients from January 2005 to May 2014 were investigated. The MIC results for OMC, amikacin (AMK), clarithromycin (CLR), clofazimine (CLO), imipenem (IPM), rifabutin (RFB), and tedizolid (TZD) alone and their combined effects (with OMC) were examined using the checkerboard method. Additionally, we studied the differences in the effectiveness of the antibiotic combinations based on the colony morphotype of Mab. The MIC50 and MIC90 of OMC alone were 2 and 4 μg/mL, respectively. The combinations of OMC with AMK, CLR, CLO, IPM, RFB, and TZD showed synergy against 17.5%, 75.8%, 25.0%, 21.1%, 76.9%, and 34.4% of the strains, respectively. Additionally, OMC combined with CLO (47.1% versus 9.5%, P = 0.023) or TZD (60.0% versus 12.5%, P = 0.009) showed significantly higher synergy against strains with rough morphotypes than those with smooth morphotypes. In conclusion, the checkerboard analyses revealed that the synergistic effects of OMC were observed most frequently with RFB, followed by CLR, TZD, CLO, IPM, and AMK. Furthermore, OMC tended to be more effective against rough-morphotype Mab strains.
Collapse
Affiliation(s)
- Keiji Fujiwara
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
- Department of Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akio Aono
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Takahiro Asami
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Kozo Morimoto
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
- Department of Clinical Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Division of Clinical Research, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Keisuke Kamada
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Yuta Morishige
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Yuriko Igarashi
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Kinuyo Chikamatsu
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Yoshiro Murase
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Hiroyuki Yamada
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Akiko Takaki
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
- Department of Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
8
|
Daley CL, Hasan N. Transmission of Mycobacterium avium complex in healthcare settings: from environment, person to person, or both? Eur Respir J 2023; 61:61/4/2300308. [PMID: 37080577 DOI: 10.1183/13993003.00308-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/04/2023] [Indexed: 04/22/2023]
Affiliation(s)
- Charles L Daley
- Department of Medicine, National Jewish Health, Denver, CO, USA
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nabeeh Hasan
- Department of Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| |
Collapse
|
9
|
Jin P, Dai J, Guo Y, Wang X, Lu J, Zhu Y, Yu F. Genomic Analysis of Mycobacterium abscessus Complex Isolates from Patients with Pulmonary Infection in China. Microbiol Spectr 2022; 10:e0011822. [PMID: 35863029 PMCID: PMC9430165 DOI: 10.1128/spectrum.00118-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/19/2022] [Indexed: 11/20/2022] Open
Abstract
Members of the Mycobacterium abscessus complex (MABC) are multidrug-resistant nontuberculous mycobacteria and increasingly cause opportunistic pulmonary infections. However, the genetic typing of MABC isolates remains largely unclear in China. Genomic analyses were conducted for 69 MABC clinical isolates obtained from patients with lower respiratory tract infections in Shanghai Pulmonary Hospital between 2014 and 2016. The draft genomes of the 69 clinical strains were assembled, with a total length of 4.5 to 5.6 Mb, a percent GC content (GC%) ranging from 63.9 to 68.1%, and 4,492 to 5,404 genes per genome. Susceptibility test shows that most isolates are resistant to many antimicrobials, including clarithromycin, but susceptible to tigecycline. Analyses revealed the presence of genes conferring resistance to antibiotics, including macrolides, aminoglycosides, rifampicin, and tetracyclines. Furthermore, 80 to 114 virulence genes were identified per genome, including those related to the invasion of macrophages, iron incorporation, and avoidance of immune clearance. Mobile genetic elements, including insertion sequences, transposons, and genomic islands, were discovered in the genomes. Phylogenetic analyses of all MABC isolates with another 41 complete MABC genomes identified three clades; 46 isolates were clustered in clade I, corresponding to M. abscessus subsp. abscessus, and 25 strains belonged to existing clonal complexes. Overall, this is the first comparative genomic analysis of MABC clinical isolates in China. These results show significant intraspecies variations in genetic determinants encoding antimicrobial resistance, virulence, and mobile elements and controversial subspecies classification using current marker gene combinations. This information will be useful in understanding the evolution, antimicrobial resistance, and pathogenesis of MABC strains and facilitating future vaccine development and drug design. IMPORTANCE Over the past decade, infections by Mycobacterium abscessus complex (MABC) isolates have been increasingly reported worldwide. MABC strains often show a high incidence in cystic fibrosis (CF) patients, whereas in Asia, these strains are frequently recovered from non-CF patients with significant genomic diversity. The present work involves analyses of the antimicrobial resistance, virulence, and phylogeny of 69 selected MABC isolates from non-CF pulmonary patients in Shanghai Pulmonary Hospital by whole-genome sequencing; it represents the first comprehensive investigation of MABC strains in China at the genomic level. These findings highlight the diversity of this group of nontuberculous mycobacteria and provide a mechanistic understanding of evolution and pathogenesis, which is valuable for the development of novel and effective antimicrobial therapies for deadly MABC infections in China.
Collapse
Affiliation(s)
- Peipei Jin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Dai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinjuan Guo
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Lu
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria, Australia
| | - Yan Zhu
- Immunity and Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Fangyou Yu
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|