1
|
Silvola J, Gröndahl-Yli-Hannuksela K, Hirvioja T, Rantakokko-Jalava K, Kanerva M, Auranen K, Marttila H, Junnila J, Vuopio J. Increasing trend of antimicrobial resistance among methicillin-resistant Staphylococcus aureus strains in Southwest Finland, 2007-2016: An analysis of shifting strain dynamics and emerging risk factors. J Glob Antimicrob Resist 2024; 40:47-52. [PMID: 39622343 DOI: 10.1016/j.jgar.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/22/2024] Open
Abstract
OBJECTIVE Substantial rise in the annual incidence of methicillin-resistant Staphylococcus aureus (MRSA) was reported in Southwest Finland (12.4-24.9/100,000 people) between 2007 and 2016. To understand the implications of these changes to the management of MRSA, we sought to analyse the antimicrobial resistance (AMR) trends of MRSA in relation with patient characteristics. METHODS Antimicrobial susceptibility was determined for 10 clinically relevant antimicrobials. Strains with resistance to ≥2 antimicrobials were defined multi-resistant. The isolates were spa-typed and clustered. AMR trends and risk factors were identified by associating resistant phenotypes with patient demographics. RESULTS A total of 983 new MRSA cases were identified between 2007 and 2016. After 2011, significant increasing trends were observed in the proportion of isolates resistant to clindamycin (13.9%-31.5%, P < 0.001), erythromycin (19.4%-35.4%, P < 0.001) and tetracycline (16.7%-32%, P < 0.001). The proportion of multi-resistant isolates more than doubled from 14.8% to 39.2%. The increasing AMR trend was reflected in the increase of new strain types and the decrease of previously dominant, non-multi-resistant strains. Patient risk factors associated with (P< 0.001) the acquisition of multi-resistant strains included community acquisition, livestock contact, hospital care abroad and immigrant status. CONCLUSIONS Notable increasing AMR trends among MRSA isolates were observed in Southwest Finland, 2007-2016. The shift in patient demographics to younger age groups and community acquisition contributed to the increase in multi-resistant strains. Immigration, contact with hospital environment abroad and contact with livestock were identified as essential risk factors of multi-resistance. The increased level of co-resistance has persisted after 2016.
Collapse
Affiliation(s)
- Jaakko Silvola
- Institute of Biomedicine, University of Turku, Turku, Finland.
| | | | - Tiina Hirvioja
- Department of Hospital Hygiene & Infection Control, Turku University Hospital, Turku, Finland
| | | | - Mari Kanerva
- Department of Hospital Hygiene & Infection Control, Turku University Hospital, Turku, Finland
| | - Kari Auranen
- Department of Mathematics and Statistics and Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Harri Marttila
- Department of Hospital Hygiene & Infection Control, Turku University Hospital, Turku, Finland
| | - Jenna Junnila
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jaana Vuopio
- Institute of Biomedicine, University of Turku, Turku, Finland; Clinical Microbiology Laboratory, Turku University Hospital, Turku, Finland; Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
2
|
Abdank L, Loncaric I, Braun SD, Müller E, Monecke S, Ehricht R, Krametter-Frötscher R. Characterizing Methicillin-Resistant Staphylococcus spp. and Extended-Spectrum Cephalosporin-Resistant Escherichia coli in Cattle. Animals (Basel) 2024; 14:3383. [PMID: 39682349 DOI: 10.3390/ani14233383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
In the field of cattle medicine in Austria, to date, few studies have investigated the presence of methicillin-resistant Staphylococcus aureus and extended-spectrum β-lactamase-producing Escherichia coli in Austria. For this reason, milk and nasal samples were examined for the presence of methicillin-resistant Staphylococcus aureus as well as fecal samples for extended-spectrum cephalosporin-resistant Escherichia coli. The nasal and fecal swabs were collected during the veterinary treatment of calf pneumonia and calf diarrhea. For the milk samples, the first milk jets were milked into a pre-milking cup and then the teats were cleaned and disinfected before the samples were taken. The cows were selected during the veterinary visits to the farms when treatment was necessary due to mastitis. Depending on the severity of the mastitis (acute mastitis or subclinical mastitis), antibiotics and non-steroidal anti-inflammatory drugs were given immediately (acute disease) or after completion of the antibiogram (subclinical disease). Isolates were characterized by a polyphasic approach including susceptibility pheno- and genotyping and microarray-based assays. No methicillin-resistant Staphylococcus aureus was found in the milk samples, but one nasal swab was positive for methicillin-resistant Staphylococcus aureus. Twenty-two Escherichia coli isolates were detected among the fecal samples. All the Escherichia coli isolates were resistant to ceftazidime. In all the Escherichia coli isolates, genes from the blaCTX family were detected with other bla genes or alone; the most frequently observed β-lactamase gene was blaCTX-M-1/15 (n = 20). In total, 63.6% (n = 14) of the isolates exhibited a multidrug-resistant phenotype and one E. coli isolate (4.5%) harbored the AmpC gene. Precisely because the presence of data regarding extended-spectrum cephalosporin-resistant Escherichia coli and methicillin-resistant Staphylococcus aureus in calves and cows in Austria is rare, this study further expands our understanding of antimicrobial resistance in Austrian cattle, which is highly relevant for successful antibiotic therapy in sick cattle.
Collapse
Affiliation(s)
- Lisa Abdank
- Clinical Centre for Ruminant and Camelid Medicine, University of Veterinary Medicine, 1210 Vienna, Austria
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Igor Loncaric
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Sascha D Braun
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Elke Müller
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute of Physical Chemistry, Friedrich-Schiller University, 07743 Jena, Germany
| | | |
Collapse
|
3
|
Silva V, Silva A, Barbero R, Romero M, del Campo R, Caniça M, Cordeiro R, Igrejas G, Poeta P. Resistome, Virulome, and Clonal Variation in Methicillin-Resistant Staphylococcus aureus (MRSA) in Healthy Swine Populations: A Cross-Sectional Study. Genes (Basel) 2024; 15:532. [PMID: 38790161 PMCID: PMC11121583 DOI: 10.3390/genes15050532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
This cross-sectional study investigates the methicillin-resistant Staphylococcus aureus (MRSA): its prevalence, antimicrobial resistance, and molecular characteristics in healthy swine populations in central Portugal. A total of 213 samples were collected from pigs on twelve farms, and MRSA prevalence was assessed using selective agar plates and confirmed via molecular methods. Antimicrobial susceptibility testing and whole genome sequencing (WGS) were performed to characterize resistance profiles and genetic determinants. Among the 107 MRSA-positive samples (83.1% prevalence), fattening pigs and breeding sows exhibited notably high carriage rates. The genome of 20 isolates revealed the predominance of the ST398 clonal complex, with diverse spa types identified. Antimicrobial susceptibility testing demonstrated resistance to multiple antimicrobial agents, including penicillin, cefoxitin, and tetracycline. WGS analysis identified a diverse array of resistance genes, highlighting the genetic basis of antimicrobial resistance. Moreover, virulence gene profiling revealed the presence of genes associated with pathogenicity. These findings underscore the significant prevalence of MRSA in swine populations and emphasize the need for enhanced surveillance and control measures to mitigate zoonotic transmission risks. Implementation of prudent antimicrobial use practices and targeted intervention strategies is essential to reducing MRSA prevalence and safeguarding public health. Continued research efforts are warranted to elucidate transmission dynamics and virulence potential, ultimately ensuring food safety and public health protection.
Collapse
Affiliation(s)
- Vanessa Silva
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Adriana Silva
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Raquel Barbero
- Department of Microbiology, University Hospital Ramón y Cajal and IRYCIS, 28034 Madrid, Spain (M.R.); (R.d.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28034 Madrid, Spain
| | - Mario Romero
- Department of Microbiology, University Hospital Ramón y Cajal and IRYCIS, 28034 Madrid, Spain (M.R.); (R.d.C.)
| | - Rosa del Campo
- Department of Microbiology, University Hospital Ramón y Cajal and IRYCIS, 28034 Madrid, Spain (M.R.); (R.d.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28034 Madrid, Spain
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Rui Cordeiro
- Intergados, SA, Av. de Olivença, S/N, 2870-108 Montijo, Portugal
| | - Gilberto Igrejas
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Patricia Poeta
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Caparica, Portugal
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
4
|
Huang L, Zhu L, Yan J, Lin Y, Ding D, He L, Li Y, Ying Y, Shen L, Jiang Y, Cai H, Jiang T. Genomic characterization and outbreak investigations of methicillin-resistant Staphylococcus aureus in a county-level hospital in China. Front Microbiol 2024; 15:1387855. [PMID: 38638904 PMCID: PMC11025083 DOI: 10.3389/fmicb.2024.1387855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a common pathogen contributing to healthcare-associated infections, which can result in multiple sites infections. The epidemiological characteristics of MRSA exhibit variability among distinct regions and healthcare facilities. The aim of this study was to investigate the molecular epidemiology and nosocomial outbreak characteristics of MRSA in a county-level hospital in China. A total of 130 non-repetitive MRSA strains were collected from December 2020 to November 2021. Whole-genome sequencing (WGS) was performed to identify antimicrobial resistance and virulence factors. Phylogenetic analysis was conducted to ascertain genetic diversity and phylogenetic relationships. Independent transmission scenarios were determined by the phylogeny derived from single nucleotide polymorphisms (SNPs) within the core genome. All the MRSA isolates were collected from the intensive care unit (30.00%, 39/130), the department of otorhinolaryngology (10.00%, 13/130) and the department of burn unit (9.23%, 12/130). The clinical samples mainly included phlegm (53.85%, 70/130), purulent fluid (24.62%, 32/130), and secretions (8.46%, 11/130). The resistance rates to erythromycin, clindamycin and ciprofloxacin were 75.38, 40.00, and 39.23%, respectively. All the isolates belonged to 11 clonal complexes (CCs), with the major prevalent types were CC5, CC59, and CC398, accounting for 30.00% (39/130), 29.23% (38/130), and 16.92% (22/130), respectively. Twenty sequence types (STs) were identified, and ST59 (25.38%, 33/130) was the dominant lineage, followed by ST5 (23.84%, 31/130) and ST398 (16.92%, 22/130). Three different SCCmec types were investigated, most of isolates were type IV (33.85%, 44/130), followed by type II (27.69%, 36/130) and type III (0.77%, 1/130). The common clonal structures included CC5-ST5-t2460-SCCmec IIa, CC59-ST59-t437-SCCmec IV and CC398-ST398-t034-SCCmec (-), with rates of 16.92% (22/130), 14.62% (19/130), and 13.84% (18/130), respectively. Only 12 panton-valentine leucocidin (PVL) positive strains were identified. Two independent clonal outbreaks were detected, one consisting of 22 PVL-negative strains belongs to CC5-ST5-t2460-SCCmec IIa and the other consisting of 8 PVL-negative strains belongs to CC5-ST5-t311-SCCmec IIa. Overall, our study indicated that the CC5 lineage emerged as the predominant epidemic clone of MRSA, responsible for nosocomial outbreaks and transmission within a county-level hospital in China, highlighting the necessity to strengthen infection control measures for MRSA in such healthcare facilities.
Collapse
Affiliation(s)
- Linyao Huang
- Department of Clinical Laboratory, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, China
| | - Liangrong Zhu
- Department of Pharmacy, Wenling Hospital of Traditional Chinese Medicine, Affiliated Wenling Traditional Chinese Medicine Hospital, Zhejiang Chinese Medical University, Wenling, China
| | - Jianxin Yan
- Department of Clinical Laboratory, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, China
| | - Yajing Lin
- Department of Clinical Laboratory, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, China
| | - Ding Ding
- Department of Clinical Laboratory, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, China
| | - Long He
- Department of Clinical Laboratory, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, China
| | - Yexuzi Li
- Department of Critical Care Medicine, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, China
| | - Yi Ying
- Department of Traditional Chinese Medicine, The Affiliated Xianju’s Hospital, Hangzhou Medical College, Xianju, China
| | - Lijiong Shen
- Department of Clinical Laboratory, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, China
| | - Yuhan Jiang
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Haijun Cai
- Burn Unit, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, China
| | - Tian Jiang
- Department of Clinical Laboratory, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, China
| |
Collapse
|
5
|
Cuny C, Layer-Nicolaou F, Werner G, Witte W. A look at staphylococci from the one health perspective. Int J Med Microbiol 2024; 314:151604. [PMID: 38367509 DOI: 10.1016/j.ijmm.2024.151604] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/19/2024] Open
Abstract
Staphylococcus aureus and other staphylococcal species are resident and transient multihost colonizers as well as conditional pathogens. Especially S. aureus represents an excellent model bacterium for the "One Health" concept because of its dynamics at the human-animal interface and versatility with respect to host adaptation. The development of antimicrobial resistance plays another integral part. This overview will focus on studies at the human-animal interface with respect to livestock farming and to companion animals, as well as on staphylococci in wildlife. In this context transmissions of staphylococci and of antimicrobial resistance genes between animals and humans are of particular significance.
Collapse
Affiliation(s)
- Christiane Cuny
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, National Reference Centre for Staphylococci and Enterococci, Wernigerode Branch, 38855 Wernigerode, Germany.
| | - Franziska Layer-Nicolaou
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, National Reference Centre for Staphylococci and Enterococci, Wernigerode Branch, 38855 Wernigerode, Germany
| | - Guido Werner
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, National Reference Centre for Staphylococci and Enterococci, Wernigerode Branch, 38855 Wernigerode, Germany
| | | |
Collapse
|
6
|
Zheng L, Jiang Z, Wang Z, Li Y, Jiao X, Li Q, Tang Y. The prevalence of Staphylococcus aureus and the emergence of livestock-associated MRSA CC398 in pig production in eastern China. Front Microbiol 2023; 14:1267885. [PMID: 38163065 PMCID: PMC10755019 DOI: 10.3389/fmicb.2023.1267885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024] Open
Abstract
Livestock-associated Staphylococcus aureus (LA-MRSA) has been of increasing concern due to its potential risk to humans. This study investigated the prevalence of MRSA in pig production in Eastern China and determined the genomic characteristics of pig-associated MRSA isolates by whole-genome sequencing (WGS). A total of 1,318 samples were collected from pig farms and pig slaughterhouses, and 150 S. aureus were identified, including 63 MRSA isolates and 87 MSSA isolates. MRSA was detected in all pig farms and pig slaughterhouses. The antimicrobial susceptibility test revealed that all MRSA isolates were multidrug-resistant. The WGS and MLST analysis demonstrated that 56 MRSA isolates belonged to clonal complex (CC) 398, and seven MRSA isolates belonged to CC9. All LA-MRSA isolates were absent of phiSa3 phage containing immune evasion cluster (IEC) and possessed an intact hlb gene. In addition, genes associated with Panton-Valentine leukocidin, typically indicative of human adaptation, were not detected. The analysis of antibiotic resistance genes (ARGs) demonstrated that all MRSA isolates contained multiple ARGs. All MRSA isolates had Plthe mecA gene and at least one tetracycline resistance gene. Both tetM and tetK were detected in all MRSA CC398 isolates, while tetL was detected in all MRSA CC9 isolates. The phenicol resistance gene fexA was detected in 51 MRSA isolates, while the linezolid resistance gene cfr was detected in 60 MRSA isolates. The emergence of LA-MRSA CC398 in four pig farms and one slaughterhouse in this study indicates the spread of this clonal complex in the pig production sector in Eastern China. Further investigations are required to understand the potential transmission routes of LA-MRSA CC398 within the pork production chain in China and to assess the potential risks to humans.
Collapse
Affiliation(s)
- Lina Zheng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhongyi Jiang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhenyu Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yang Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qiuchun Li
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuanyue Tang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
7
|
Schwarz L, Hamar F, Bernreiter-Hofer T, Loncaric I, Arnold M, Voglmayr T, Ladinig A. Bleeding skin lesions in gestating sows of a piglet producing farm in Austria. Porcine Health Manag 2023; 9:52. [PMID: 37964382 PMCID: PMC10647148 DOI: 10.1186/s40813-023-00348-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/04/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Stomoxys calcitrans, the stable fly, occurs in pig producing countries worldwide. While in cattle the impact of this blood sucking insect is quite well described, its role in pig production is poorly investigated. Here we describe a case of a massive stable fly overpopulation in the gestation unit of a piglet producing farm in Austria that resulted in bleeding skin lesions in bitten sows. CASE PRESENTATION In October 2021, the responsible herd veterinarian of the case farm reported of sows in the gestation area presenting with bloody crusts on the whole skin surface of the body and of bleeding skin lesions. 33/55 sows were affected by moderate to severe skin lesions. Reproductive performance decreased during the time of massive stable fly overpopulation. Sows in the gestation unit showed defensive behaviour and at a certain time point resigned and accepted being bitten by stable flies. After controlling the fly population, reproductive performance improved and even exceeded the performance before the massive overgrowth of the stable fly population. CONCLUSIONS Stable flies are a serious harm to pigs and should be kept in mind for improved animal health and welfare. Knowledge about the determination of Stomoxys calcitrans and early recognition of an increasing stable fly population in pig farming systems followed by proper insect control measures have to be performed to reduce losses caused by this harming insect.
Collapse
Affiliation(s)
- Lukas Schwarz
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria.
| | - Flora Hamar
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Tanja Bernreiter-Hofer
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Tierarztpraxis an der Nordbahn, Strasshof, Austria
| | - Igor Loncaric
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mirjam Arnold
- Clinic for Swine, Department for Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute for Animal Health I, Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | | | - Andrea Ladinig
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|