1
|
Wang Y, Li R, Yin T, He Z, Lu Z, Shao Z, Long Y. Prevalence of Tick Infection with Bartonella in China: A Review and Meta-analysis. Acta Parasitol 2024:10.1007/s11686-024-00893-0. [PMID: 39240447 DOI: 10.1007/s11686-024-00893-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024]
Abstract
OBJECTIVE Bartonellosis is a global vector-borne zoonosis caused by Bartonella, a genus of intracellular Gram-negative bacteria. It is one of 14 emerging infectious diseases that have recently been identified in China, and the prevalence varies by region. A more in-depth understanding is needed regarding the role and influencing factors of ticks in the transmission of Bartonella, including the infection rate of ticks with Bartonella in different regions. This study explored the prevalence of Bartonella in ticks and the factors that influence it. METHODS Databases (PubMed, Embase, Elsevier ScienceDirect, Cochrane Library, Web of Science, CNKI, VIP, CBM, and WanFang) were searched to review the preliminary research on Bartonella-carrying ticks in China. RESULTS We identified and included 22 articles. Bartonella infection rates in ticks varied from 0 to 22.79% examined by the included studies. Our meta-analysis revealed that the prevalence of Bartonella in ticks was 3.15% (95% CI: 1.22 - 5.82%); the prevalence was higher in parasitic ticks (4.90%; 95% CI: 1.39 -10.14%) than ticks seeking hosts (1.42%; 95% CI: 0.62 - 2.50%) (P = 0.047). CONCLUSION The prevalence of Bartonella in the southern region of China (6.45%) was higher than that in the northern region (1.28%) (P = 0.030). Knowledge of ticks' vectors and reservoir competence is crucial to reduce the disease burden.
Collapse
Affiliation(s)
- Yuhua Wang
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, Shaanxi, China
| | - Ruishan Li
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, Shaanxi, China
| | - Ting Yin
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, Shaanxi, China
| | - Zhen He
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, Shaanxi, China
| | - Zhenhua Lu
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, Shaanxi, China
| | - Zhongjun Shao
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yong Long
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Mifsud JCO, Lytras S, Oliver MR, Toon K, Costa VA, Holmes EC, Grove J. Mapping glycoprotein structure reveals Flaviviridae evolutionary history. Nature 2024; 633:695-703. [PMID: 39232167 PMCID: PMC11410658 DOI: 10.1038/s41586-024-07899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 08/01/2024] [Indexed: 09/06/2024]
Abstract
Viral glycoproteins drive membrane fusion in enveloped viruses and determine host range, tissue tropism and pathogenesis1. Despite their importance, there is a fragmentary understanding of glycoproteins within the Flaviviridae2, a large virus family that include pathogens such as hepatitis C, dengue and Zika viruses, and numerous other human, animal and emergent viruses. For many flaviviruses the glycoproteins have not yet been identified, for others, such as the hepaciviruses, the molecular mechanisms of membrane fusion remain uncharacterized3. Here we combine phylogenetic analyses with protein structure prediction to survey glycoproteins across the entire Flaviviridae. We find class II fusion systems, homologous to the Orthoflavivirus E glycoprotein in most species, including highly divergent jingmenviruses and large genome flaviviruses. However, the E1E2 glycoproteins of the hepaciviruses, pegiviruses and pestiviruses are structurally distinct, may represent a novel class of fusion mechanism, and are strictly associated with infection of vertebrate hosts. By mapping glycoprotein distribution onto the underlying phylogeny, we reveal a complex evolutionary history marked by the capture of bacterial genes and potentially inter-genus recombination. These insights, made possible through protein structure prediction, refine our understanding of viral fusion mechanisms and reveal the events that have shaped the diverse virology and ecology of the Flaviviridae.
Collapse
Affiliation(s)
- Jonathon C O Mifsud
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Spyros Lytras
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Michael R Oliver
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Kamilla Toon
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Vincenzo A Costa
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
| | - Joe Grove
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
| |
Collapse
|
3
|
Yan Y, Shi Z, Wang C, Jin Z, Yin J, Zhu G. Viral Diversity and Ecological Impact of DNA Viruses in Dominant Tick Species in China. Microorganisms 2024; 12:1736. [PMID: 39203578 PMCID: PMC11357538 DOI: 10.3390/microorganisms12081736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Ticks are blood-feeding ectoparasites that also transmit various pathogens, posing severe risks to human and animal health. DNA viruses play a crucial role in the microbial ecology of ticks, but their distribution and ecological significance remain largely undetermined. Here, we assembled an extensive catalog encompassing 4320 viral operational taxonomic units (vOTUs) from six main dominant tick species in China, of which 94.8% have not been found in any other environment. To bridge the knowledge gap in tick DNA virus research and provide a crucial resource platform, we developed the Tick DNA Virus Database. This database includes the vOTUs that are known to cause diseases. Most of the predicted vOTUs are associated with dominant bacterial and archaeal phyla. We identified 105 virus-encoded putative auxiliary metabolic genes (AMGs) that are involved in host metabolism and environmental adaptation, potentially influencing ticks through both top-down and bottom-up mechanisms. The identification of microbial communities and antibiotic resistance in wild tick species suggests that wild ticks are reservoirs of antibiotic resistance and potential spreaders of antibiotic resistance. These findings reveal the potential role of tick viruses in ecosystems, highlighting the importance of monitoring tick microbiomes to address global public health challenges.
Collapse
Affiliation(s)
- Yueyang Yan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun 130062, China; (Y.Y.); (C.W.); (J.Y.)
- Institute of Zoonosis, Jilin University, Changchun 130062, China;
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zhangpeng Shi
- Institute of Zoonosis, Jilin University, Changchun 130062, China;
| | - Cunmin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun 130062, China; (Y.Y.); (C.W.); (J.Y.)
- Institute of Zoonosis, Jilin University, Changchun 130062, China;
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zi Jin
- Hangzhou Medical College, Hangzhou 310059, China;
| | - Jigang Yin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun 130062, China; (Y.Y.); (C.W.); (J.Y.)
- Institute of Zoonosis, Jilin University, Changchun 130062, China;
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guan Zhu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun 130062, China; (Y.Y.); (C.W.); (J.Y.)
- Institute of Zoonosis, Jilin University, Changchun 130062, China;
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
4
|
MATSUMURA R, KOBAYASHI D, ITOYAMA K, ISAWA H. Detection of novel coltivirus-related sequences in Haemaphysalis megaspinosa ticks collected from Kanagawa Prefecture, Japan. J Vet Med Sci 2024; 86:866-871. [PMID: 38880612 PMCID: PMC11300128 DOI: 10.1292/jvms.24-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/01/2024] [Indexed: 06/18/2024] Open
Abstract
Coltiviruses, belonging to the genus Coltivirus within the family Spinareoviridae, are predominantly tick-borne viruses. Some of these species have been implicated in human diseases; however, their diversity, geographical distribution, and evolutionary dynamics remain inadequately. Therefore, this study was undertaken to explore the phylogenetic evolution of coltiviruses and related viruses. Our results revealed the detection of novel coltivirus-related sequences in adult female Haemaphysalis megaspinosa ticks collected from Kanagawa Prefecture, Japan. Molecular phylogenetic analysis revealed a close association between the sequences and the genome sequences of known coltivirus-related viruses, namely Qinghe tick reovirus and Fennes virus. The putative coltivirus-related virus was tentatively designated the Nakatsu tick virus. This study provides insights into the phylogenetic evolution of coltiviruses and related viruses.
Collapse
Affiliation(s)
- Ryo MATSUMURA
- Graduate School of Agriculture, Meiji University, Kanagawa,
Japan
- Department of Medical Entomology, National Institute of
Infectious Diseases, Tokyo, Japan
| | - Daisuke KOBAYASHI
- Department of Medical Entomology, National Institute of
Infectious Diseases, Tokyo, Japan
- Management Department of Biosafety, Laboratory Animal, and
Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kyo ITOYAMA
- Graduate School of Agriculture, Meiji University, Kanagawa,
Japan
| | - Haruhiko ISAWA
- Department of Medical Entomology, National Institute of
Infectious Diseases, Tokyo, Japan
| |
Collapse
|
5
|
Wang LL, Cheng Q, Newton ND, Wolfinger MT, Morgan MS, Slonchak A, Khromykh AA, Cheng TY, Parry RH. Xinyang flavivirus, from Haemaphysalis flava ticks in Henan Province, China, defines a basal, likely tick-only Orthoflavivirus clade. J Gen Virol 2024; 105:001991. [PMID: 38809251 PMCID: PMC11165663 DOI: 10.1099/jgv.0.001991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024] Open
Abstract
Tick-borne orthoflaviviruses (TBFs) are classified into three conventional groups based on genetics and ecology: mammalian, seabird and probable-TBF group. Recently, a fourth basal group has been identified in Rhipicephalus ticks from Africa: Mpulungu flavivirus (MPFV) in Zambia and Ngoye virus (NGOV) in Senegal. Despite attempts, isolating these viruses in vertebrate and invertebrate cell lines or intracerebral injection of newborn mice with virus-containing homogenates has remained unsuccessful. In this study, we report the discovery of Xinyang flavivirus (XiFV) in Haemaphysalis flava ticks from Xìnyáng, Henan Province, China. Phylogenetic analysis shows that XiFV was most closely related to MPFV and NGOV, marking the first identification of this tick orthoflavivirus group in Asia. We developed a reverse transcriptase quantitative PCR assay to screen wild-collected ticks and egg clutches, with absolute infection rates of 20.75 % in adult females and 15.19 % in egg clutches, suggesting that XiFV could be potentially spread through transovarial transmission. To examine potential host range, dinucleotide composition analyses revealed that XiFV, MPFV and NGOV share a closer composition to classical insect-specific orthoflaviviruses than to vertebrate-infecting TBFs, suggesting that XiFV could be a tick-only orthoflavivirus. Additionally, both XiFV and MPFV lack a furin cleavage site in the prM protein, unlike other TBFs, suggesting these viruses might exist towards a biased immature particle state. To examine this, chimeric Binjari virus with XIFV-prME (bXiFV) was generated, purified and analysed by SDS-PAGE and negative-stain transmission electron microscopy, suggesting prototypical orthoflavivirus size (~50 nm) and bias towards uncleaved prM. In silico structural analyses of the 3'-untranslated regions show that XiFV forms up to five pseudo-knot-containing stem-loops and a prototypical orthoflavivirus dumbbell element, suggesting the potential for multiple exoribonuclease-resistant RNA structures.
Collapse
Affiliation(s)
- Lan-Lan Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, PR China
| | - Qia Cheng
- Children’s Medical Center, Hunan Provincial People’s Hospital, Changsha, PR China
| | - Natalee D. Newton
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Michael T. Wolfinger
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria
- Research Group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- RNA Forecast e.U., Vienna, Austria
| | - Mahali S. Morgan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Andrii Slonchak
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- GVN Center of Excellence, Australian Infectious Diseases Research Centre, Brisbane, QLD, Australia
| | - Tian-Yin Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, PR China
| | - Rhys H. Parry
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Mbiri P, Matomola OC, Muleya W, Mhuulu L, Diegaardt A, Noden BH, Changula K, Chimwamurombe P, Matos C, Weiss S, Nepolo E, Chitanga S. Molecular Detection and Characterization of Rickettsia Species in Ixodid Ticks from Selected Regions of Namibia. Microorganisms 2024; 12:912. [PMID: 38792739 PMCID: PMC11124484 DOI: 10.3390/microorganisms12050912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Rickettsial pathogens are among the emerging and re-emerging vector-borne zoonoses of public health importance. Reports indicate human exposure to Rickettsial pathogens in Namibia through serological surveys, but there is a lack of data on infection rates in tick vectors, hindering the assessment of the relative risk to humans. Our study sought to screen Ixodid ticks collected from livestock for the presence of Rickettsia species in order to determine infection rates in ticks and to determine the Rickettsia species circulating in the country. We collected and pooled Hyalomma and Rhipicephalus ticks from two adjacent regions of Namibia (Khomas and Otjozondjupa) and observed an overall minimum Rickettsia infection rate of 8.6% (26/304), with an estimated overall pooled prevalence of 9.94% (95% CI: 6.5-14.3). There were no statistically significant differences in the estimated pooled prevalence between the two regions or tick genera. Based on the nucleotide sequence similarity and phylogenetic analysis of the outer membrane protein A (n = 9) and citrate synthase (n = 12) genes, BLAST analysis revealed similarity between Rickettsia africae (n = 2) and Rickettsia aeschlimannii (n = 11), with sequence identities ranging from 98.46 to 100%. Our initial study in Namibia indicates that both zoonotic R. africae and R. aeschlimannii are in circulation in the country, with R. aeschlimannii being the predominant species.
Collapse
Affiliation(s)
- Pricilla Mbiri
- Department of Production Animal Studies, School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Private Bag 13301, Windhoek 10005, Namibia;
| | - Ophelia Chuma Matomola
- Department of Preclinical Studies, School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Private Bag 13301, Windhoek 10005, Namibia;
| | - Walter Muleya
- Department of Preclinical Studies, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia;
| | - Lusia Mhuulu
- Department of Human Biology and Translational Medicine, School of Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Private Bag 13301, Windhoek 10005, Namibia; (L.M.); (A.D.); (E.N.)
| | - Azaria Diegaardt
- Department of Human Biology and Translational Medicine, School of Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Private Bag 13301, Windhoek 10005, Namibia; (L.M.); (A.D.); (E.N.)
| | - Bruce Howard Noden
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Katendi Changula
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia;
| | - Percy Chimwamurombe
- Department of Natural and Applied Sciences, Namibia University of Science & Technology, Windhoek 10005, Namibia;
| | - Carolina Matos
- Centre for International Health Protection, Robert Koch Institute, 13353 Berlin, Germany; (C.M.); (S.W.)
| | - Sabrina Weiss
- Centre for International Health Protection, Robert Koch Institute, 13353 Berlin, Germany; (C.M.); (S.W.)
| | - Emmanuel Nepolo
- Department of Human Biology and Translational Medicine, School of Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Private Bag 13301, Windhoek 10005, Namibia; (L.M.); (A.D.); (E.N.)
| | - Simbarashe Chitanga
- Department of Preclinical Studies, School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Private Bag 13301, Windhoek 10005, Namibia;
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, P.O. Box 50110, Lusaka 10101, Zambia
| |
Collapse
|
7
|
Ma R, Li C, Gao A, Jiang N, Li J, Hu W, Feng X. Tick species diversity and potential distribution alternation of dominant ticks under different climate scenarios in Xinjiang, China. PLoS Negl Trop Dis 2024; 18:e0012108. [PMID: 38683839 PMCID: PMC11081513 DOI: 10.1371/journal.pntd.0012108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/09/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024] Open
Abstract
Ticks are a hematophagous parasite and a vector of pathogens for numerous human and animal diseases of significant importance. The expansion of tick distribution and the increased risk of tick-borne diseases due to global climate change necessitates further study of the spatial distribution trend of ticks and their potential influencing factors. This study constructed a dataset of tick species distribution in Xinjiang for 60 years based on literature database retrieval and historical data collection (January 1963-January 2023). The distribution data were extracted, corrected, and deduplicated. The dominant tick species were selected for analysis using the MaxEnt model to assess their potential distribution in different periods under the current and BCC-CSM2.MR mode scenarios. The results indicated that there are eight genera and 48 species of ticks in 108 cities and counties of Xinjiang, with Hyalomma asiaticum, Rhipicephalus turanicus, Dermacentor marginatus, and Haemaphysalis punctatus being the top four dominant species. The MaxEnt model analysis revealed that the suitability areas of the four dominant ticks were mainly distributed in the north of Xinjiang, in areas such as Altay and Tacheng Prefecture. Over the next four periods, the medium and high suitable areas within the potential distribution range of the four tick species will expand towards the northwest. Additionally, new suitability areas will emerge in Altay, Changji Hui Autonomous Prefecture, and other local areas. The 60-year tick dataset in this study provides a map of preliminary tick distribution in Xinjiang, with a diverse array of tick species and distribution patterns throughout the area. In addition, the MaxEnt model revealed the spatial change characteristics and future distribution trend of ticks in Xinjiang, which can provide an instrumental data reference for tick monitoring and tick-borne disease risk prediction not only in the region but also in other countries participating in the Belt and Road Initiative.
Collapse
Affiliation(s)
- Rui Ma
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Chunfu Li
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Ai Gao
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Na Jiang
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jian Li
- College of Life Sciences, Inner Mongolia University, Hohhot, China
- Basic Medical College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Wei Hu
- College of Life Sciences, Inner Mongolia University, Hohhot, China
- Department of Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xinyu Feng
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, China
| |
Collapse
|
8
|
Duan L, Zhang L, Hou X, Bao Z, Zeng Y, He L, Liu Z, Zhou H, Hao Q, Dong A. Surveillance of tick-borne bacteria infection in ticks and forestry populations in Inner Mongolia, China. Front Public Health 2024; 12:1302133. [PMID: 38487180 PMCID: PMC10938913 DOI: 10.3389/fpubh.2024.1302133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
Ticks are one of the most important vectors that can transmit pathogens to animals and human beings. This study investigated the dominant tick-borne bacteria carried by ticks and tick-borne infections in forestry populations in Arxan, Inner Mongolia, China. Ticks were collected by flagging from May 2020 to May 2021, and blood samples were collected from individuals at high risk of acquiring tick-borne diseases from March 2022 to August 2023. The pooled DNA samples of ticks were analyzed to reveal the presence of tick-borne bacteria using high-throughput sequencing of the 16S rDNA V3-V4 region, and species-specific polymerase chain reaction (PCR) related to sequencing was performed to confirm the presence of pathogenic bacteria in individual ticks and human blood samples. All sera samples were examined for anti-SFGR using ELISA and anti-B. burgdorferi using IFA and WB. A total of 295 ticks (282 Ixodes persulcatus and 13 Dermacentor silvarum) and 245 human blood samples were collected. Rickettsia, Anaplasma, Borrelia miyamotoi, and Coxiella endosymbiont were identified in I. persulcatus by high-throughput sequencing, while Candidatus R. tarasevichiae (89.00%, 89/100), B. garinii (17.00%, 17/100), B. afzelii (7.00%, 7/100), and B. miyamotoi (7.00%, 7/100) were detected in I. persulcatus, as well the dual co-infection with Candidatus R. tarasevichiae and B. garinii were detected in 13.00% (13/100) of I. persulcatus. Of the 245 individuals, B. garinii (4.90%, 12/245), R. slovaca (0.82%, 2/245), and C. burnetii (0.41%, 1/245) were detected by PCR, and the sequences of the target genes of B. garinii detected in humans were identical to those detected in I. persulcatus. The seroprevalence of anti-SFGR and anti-B. burgdorferi was 5.71% and 13.47%, respectively. This study demonstrated that Candidatus R. tarasevichiae and B. garinii were the dominant tick-borne bacteria in I. persulcatus from Arxan, and that dual co-infection with Candidatus R. tarasevichiae and B. garinii was frequent. This is the first time that B. miyamotoi has been identified in ticks from Arxan and R. solvaca has been detected in humans from Inner Mongolia. More importantly, this study demonstrated the transmission of B. garinii from ticks to humans in Arxan, suggesting that long-term monitoring of tick-borne pathogens in ticks and humans is important for the prevention and control of tick-borne diseases.
Collapse
Affiliation(s)
- Like Duan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Lin Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Xuexia Hou
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Zihao Bao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Yu Zeng
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Lijuan He
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Zeliang Liu
- Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Haijian Zhou
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Qin Hao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Aiying Dong
- Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| |
Collapse
|
9
|
Lin Y, Pascall DJ. Characterisation of putative novel tick viruses and zoonotic risk prediction. Ecol Evol 2024; 14:e10814. [PMID: 38259958 PMCID: PMC10800298 DOI: 10.1002/ece3.10814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 01/24/2024] Open
Abstract
Tick-associated viruses remain a substantial zoonotic risk worldwide, so knowledge of the diversity of tick viruses has potential health consequences. Despite their importance, large amounts of sequences in public data sets from tick meta-genomic and -transcriptomic projects remain unannotated, sequence data that could contain undocumented viruses. Through data mining and bioinformatic analysis of more than 37,800 public meta-genomic and -transcriptomic data sets, we found 83 unannotated contigs exhibiting high identity with known tick viruses. These putative viral contigs were classified into three RNA viral families (Alphatetraviridae, Orthomyxoviridae and Chuviridae) and one DNA viral family (Asfarviridae). After manual checking of quality and dissimilarity towards other sequences in the data set, these 83 contigs were reduced to five contigs in the Alphatetraviridae from four putative viruses, four in the Orthomyxoviridae from two putative viruses and one in the Chuviridae which clustered with known tick-associated viruses, forming a separate clade within the viral families. We further attempted to assess which previously known tick viruses likely represent zoonotic risks and thus deserve further investigation. We ranked the human infection potential of 133 known tick-associated viruses using a genome composition-based machine learning model. We found five high-risk tick-associated viruses (Langat virus, Lonestar tick chuvirus 1, Grotenhout virus, Taggert virus and Johnston Atoll virus) that have not been known to infect human and two viral families (Nairoviridae and Phenuiviridae) that contain a large proportion of potential zoonotic tick-associated viruses. This adds to the knowledge of tick virus diversity and highlights the importance of surveillance of newly emerging tick-associated diseases.
Collapse
Affiliation(s)
- Yuting Lin
- MRC Biostatistics UnitUniversity of CambridgeCambridgeUK
- Royal Veterinary CollegeUniversity of LondonLondonUK
| | | |
Collapse
|
10
|
Wang R, Liu S, Sun H, Xu C, Wen Y, Wu X, Zhang W, Nie K, Li F, Fu S, Yin Q, He Y, Xu S, Liang G, Deng L, Wei Q, Wang H. Metatranscriptomics Reveals the RNA Virome of Ixodes Persulcatus in the China-North Korea Border, 2017. Viruses 2023; 16:62. [PMID: 38257762 PMCID: PMC10819109 DOI: 10.3390/v16010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
In recent years, numerous viruses have been identified from ticks, and some have been linked to clinical cases of emerging tick-borne diseases. Chinese northeast frontier is tick infested. However, there is a notable lack of systematic monitoring efforts to assess the viral composition in the area, leaving the ecological landscape of viruses carried by ticks not clear enough. Between April and June 2017, 7101 ticks were collected to perform virus surveillance on the China-North Korea border, specifically in Tonghua, Baishan, and Yanbian. A total of 2127 Ixodes persulcatus were identified. Further investigation revealed the diversity of tick-borne viruses by transcriptome sequencing of Ixodes persulcatus. All ticks tested negative for tick-borne encephalitis virus. Transcriptome sequencing expanded 121 genomic sequence data of 12 different virus species from Ixodes persulcatus. Notably, a new segmented flavivirus, named Baishan Forest Tick Virus, were identified, closely related to Alongshan virus and Harz mountain virus. Therefore, this new virus may pose a potential threat to humans. Furthermore, the study revealed the existence of seven emerging tick-borne viruses dating back to 2017. These previously identified viruses included Mudanjiang phlebovirus, Onega tick phlebovirus, Sara tick phlebovirus, Yichun mivirus, and three unnamed viruses (one belonging to the Peribunyaviridae family and the other two belonging to the Phenuiviridae family). The existence of these emerging tick-borne viruses in tick samples collected in 2017 suggests that their history may extend further than previously recognized. This study provides invaluable insights into the virome of Ixodes persulcatus in the China-North Korea border region, enhancing our ongoing efforts to manage the risks associated with tick-borne viruses.
Collapse
Affiliation(s)
- Ruichen Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Shenghui Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Hongliang Sun
- Changchun Institute of Biological Products Co., Ltd., Changchun 130012, China; (H.S.); (X.W.)
| | - Chongxiao Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Yanhan Wen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Xiwen Wu
- Changchun Institute of Biological Products Co., Ltd., Changchun 130012, China; (H.S.); (X.W.)
| | - Weijia Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Kai Nie
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Fan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Shihong Fu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Qikai Yin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Ying He
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Songtao Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Guodong Liang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Liquan Deng
- School of Public Health, Jilin University, Changchun 130021, China
| | - Qiang Wei
- National Pathogen Resource Center, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Huanyu Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| |
Collapse
|
11
|
Stegmüller S, Qi W, Torgerson PR, Fraefel C, Kubacki J. Hazard potential of Swiss Ixodes ricinus ticks: Virome composition and presence of selected bacterial and protozoan pathogens. PLoS One 2023; 18:e0290942. [PMID: 37956168 PMCID: PMC10642849 DOI: 10.1371/journal.pone.0290942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Ticks play an important role in transmitting many different emerging zoonotic pathogens that pose a significant threat to human and animal health. In Switzerland and abroad, the number of tick-borne diseases, in particular tick-borne encephalitis (TBE), has been increasing over the last few years. Thus, it remains essential to investigate the pathogen spectrum of ticks to rapidly detect emerging pathogens and initiate the necessary measures. To assess the risk of tick-borne diseases in different regions of Switzerland, we collected a total of 10'286 ticks from rural and urban areas in ten cantons in 2021 and 2022. Ticks were pooled according to species, developmental stage, gender, and collection site, and analyzed using next generation sequencing (NGS) and quantitative polymerase chain reaction (qPCR). The metagenomic analysis revealed for the first time the presence of Alongshan virus (ALSV) in Swiss ticks. Interestingly, the pool-prevalence of ALSV was higher than that of tick-borne encephalitis virus (TBEV). Furthermore, several TBEV foci have been identified and pool prevalence of selected non-viral pathogens determined.
Collapse
Affiliation(s)
- Stefanie Stegmüller
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Weihong Qi
- Functional Genomics Center Zurich, Zurich, Switzerland
| | - Paul R. Torgerson
- Section of Epidemiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Cornel Fraefel
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Jakub Kubacki
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
de la Fuente J, Estrada-Peña A, Rafael M, Almazán C, Bermúdez S, Abdelbaset AE, Kasaija PD, Kabi F, Akande FA, Ajagbe DO, Bamgbose T, Ghosh S, Palavesam A, Hamid PH, Oskam CL, Egan SL, Duarte-Barbosa A, Hekimoğlu O, Szabó MPJ, Labruna MB, Dahal A. Perception of Ticks and Tick-Borne Diseases Worldwide. Pathogens 2023; 12:1258. [PMID: 37887774 PMCID: PMC10610181 DOI: 10.3390/pathogens12101258] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
In this comprehensive review study, we addressed the challenge posed by ticks and tick-borne diseases (TBDs) with growing incidence affecting human and animal health worldwide. Data and perspectives were collected from different countries and regions worldwide, including America, Europe, Africa, Asia, and Oceania. The results updated the current situation with ticks and TBD and how it is perceived by society with information bias and gaps. The study reinforces the importance of multidisciplinary and international collaborations to advance in the surveillance, communication and proposed future directions to address these challenges.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain;
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Agustín Estrada-Peña
- Department of Animal Health, Faculty of Veterinary Medicine, University of Zaragoza, 50013 Zaragoza, Spain
- Research Group in Emerging Zoonoses, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain
| | - Marta Rafael
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain;
| | - Consuelo Almazán
- Facultad de Ciencias Naturales, Universidad Autonóma de Querétaro, Avenida de las Ciencias S/N Juriquilla, Querétaro 76230, Mexico;
| | - Sergio Bermúdez
- Medical Entomology Research Department, Gorgas Memorial Institute for Health Research, Panama City 0816-02593, Panama;
| | - Abdelbaset E. Abdelbaset
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Sapporo 060-0818, Hokkaido, Japan;
| | - Paul D. Kasaija
- National Livestock Resources Research Institute (NaLIRRI/NARO), Kampala P.O. Box 5704, Uganda; (P.D.K.); (F.K.)
| | - Fredrick Kabi
- National Livestock Resources Research Institute (NaLIRRI/NARO), Kampala P.O. Box 5704, Uganda; (P.D.K.); (F.K.)
| | - Foluke Adedayo Akande
- Department of Veterinary Parasitology and Entomology, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta 111101, Ogun State, Nigeria;
| | - Dorcas Oluwakemi Ajagbe
- Department of Pure and Applied Zoology, College of Biological Sciences, Federal University of Agriculture, Abeokuta 111101, Ogun State, Nigeria;
| | - Timothy Bamgbose
- Department of Biological Sciences, Microbiology Unit, Faculty of Science, Kings University, Ode-Omu City 221102, Osun State, Nigeria;
| | - Srikant Ghosh
- Entomology Laboratory, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India;
- IVRI-Eastern Regional Station, 37, Belgachia Road, Kolkata 700037, West Bengal, India
| | - Azhahianambi Palavesam
- Translational Research Platform for Veterinary Biologicals, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600051, Tamil Nadu, India;
| | - Penny H. Hamid
- Department of Animal Science, Universitas Sebelas Maret, Surakarta 57126, Indonesia;
| | - Charlotte L. Oskam
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA 6150, Australia; (C.L.O.); (S.L.E.)
- Centre for One Health and Biosecurity, Harry Butler Institute, Murdoch University, Perth, WA 6150, Australia;
| | - Siobhon L. Egan
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA 6150, Australia; (C.L.O.); (S.L.E.)
- Centre for One Health and Biosecurity, Harry Butler Institute, Murdoch University, Perth, WA 6150, Australia;
| | - Amanda Duarte-Barbosa
- Centre for One Health and Biosecurity, Harry Butler Institute, Murdoch University, Perth, WA 6150, Australia;
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia
| | - Olcay Hekimoğlu
- Division of Ecology, Faculty of Science, Hacettepe University, Beytepe, Ankara 06800, Turkey;
| | - Matias P. J. Szabó
- Laboratório de Ixodologia, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Av. Pará, 1720/Campus Umuarama-Bloco 2T, Uberlândia 38400-902, Brazil;
| | - Marcelo B. Labruna
- Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Sao Paulo 05508-220, Brazil;
| | - Ananta Dahal
- Department of Microbiology and Parasitology, Faculty of Animal Science, Veterinary Science and Fisheries, Agriculture and Forestry University, Chitwan 44200, Nepal;
| |
Collapse
|
13
|
Ma R, Li C, Tian H, Zhang Y, Feng X, Li J, Hu W. The current distribution of tick species in Inner Mongolia and inferring potential suitability areas for dominant tick species based on the MaxEnt model. Parasit Vectors 2023; 16:286. [PMID: 37587525 PMCID: PMC10428659 DOI: 10.1186/s13071-023-05870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/04/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Ticks are known to transmit a wide range of diseases, including those caused by bacteria, viruses, and protozoa. The expansion of tick habitats has been intensified in recent years due to various factors such as global warming, alterations in microclimate, and human activities. Consequently, the probability of human exposure to diseases transmitted by ticks has increased, leading to a higher degree of risk associated with such diseases. METHODS In this study, we conducted a comprehensive review of domestic and international literature databases to determine the current distribution of tick species in Inner Mongolia. Next, we employed the MaxEnt model to analyze vital climatic and environmental factors influencing dominant tick distribution. Subsequently, we predicted the potential suitability areas of these dominant tick species under the near current conditions and the BCC-CSM2.MR model SSP245 scenario for the future periods of 2021-2040, 2041-2060, 2061-2080, and 2081-2100. RESULTS Our study revealed the presence of 23 tick species from six genera in Inner Mongolia, including four dominant tick species (Dermacentor nuttalli, Ixodes persulcatus, Dermacentor silvarum, and Hyalomma asiaticum). Dermacentor nuttalli, D. silvarum, and I. persulcatus are predominantly found in regions such as Xilin Gol and Hulunbuir. Temperature seasonality (Bio4), elevation (elev), and precipitation seasonality (Bio15) were the primary variables impacting the distribution of three tick species. In contrast, H. asiaticum is mainly distributed in Alxa and Bayannur and demonstrates heightened sensitivity to precipitation and other climatic factors. Our modeling results suggested that the potential suitability areas of these tick species would experience fluctuations over the four future periods (2021-2040, 2041-2060, 2061-2080, and 2081-2100). Specifically, by 2081-2100, the centroid of suitable habitat for D. nuttalli, H. asiaticum, and I. persulcatus was predicted to shift westward, with new suitability areas emerging in regions such as Chifeng and Xilin Gol. The centroid of suitable habitat for H. asiaticum will move northeastward, and new suitability areas are likely to appear in areas such as Ordos and Bayannur. CONCLUSIONS This study provided a comprehensive overview of the tick species distribution patterns in Inner Mongolia. Our research has revealed a significant diversity of tick species in the region, exhibiting a wide distribution but with notable regional disparities. Our modeling results suggested that the dominant tick species' suitable habitats will significantly expand in the future compared to their existing distribution under the near current conditions. Temperature and precipitation are the primary variables influencing these shifts in distribution. These findings can provide a valuable reference for future research on tick distribution and the surveillance of tick-borne diseases in the region.
Collapse
Affiliation(s)
- Rui Ma
- College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Chunfu Li
- College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Haoqiang Tian
- College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yan Zhang
- College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Xinyu Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-Host Interaction, Chinese Center for Disease Control and Prevention, Fudan University, Shanghai, 200025, China.
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 20025, China.
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 20025, China.
| | - Jian Li
- College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
- Basic Medical College, Guangxi Traditional Chinese Medical University, Nanning, 530005, Guangxi, China.
| | - Wei Hu
- College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-Host Interaction, Chinese Center for Disease Control and Prevention, Fudan University, Shanghai, 200025, China.
- Department of Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
14
|
Leonova GN, Somova LM, Abramova SA, Pustovalov EV. Study of Viral Coinfection of the Ixodes persulcatus Ticks Feeding on Humans in a Natural Focus of the South of the Far East. Microorganisms 2023; 11:1791. [PMID: 37512963 PMCID: PMC10383858 DOI: 10.3390/microorganisms11071791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The phenomenon of pathogen co-infection detected in a half-fed Ixodes persulcatus tick taken from a human in the south of the Far East was studied. Research was carried out on PEK, Vero, and Vero-E6 cell lines, outbred mice, and chicken embryos using ELISA, PCR, IMFA, plaque formation, and electron microscopy. The tick contained an antigen and a genetic marker of the tick-borne encephalitis virus (TBEV). The patient had post-vaccination antibodies in a titer of 1:200, as a result of which, obviously, an antibody-dependent elimination of TBEV occurred. The tick-borne co-isolate also contained an unknown pathogen (Kiparis-144 virus), which, in our opinion, was a trigger for the activation of chronic infection in suckling white mice. In the laboratory co-isolate, ectromelia virus was present, as evidenced by paw edema during the intradermal infection of mice, characteristic rashes on the chorioallantoic envelope of chicken embryos, and typical plaques on Vero-E6. The Kiparis-144 virus was not pathogenic for white mice and chicken embryos, but it successfully multiplied in the PEK, Vero, and Vero-E6 lines. Viral co-infection was confirmed by electron microscopy. Passaging on mice contributed to an increase in the virulence of the co-isolate, whose titer increased by 10,000 times by the fifth passage, which poses an epidemiological danger.
Collapse
Affiliation(s)
- Galina N Leonova
- G.P. Somov Research Institute of Epidemiology and Microbiology, Rospotrebnadzor, 690087 Vladivostok, Russia
| | - Larisa M Somova
- G.P. Somov Research Institute of Epidemiology and Microbiology, Rospotrebnadzor, 690087 Vladivostok, Russia
| | - Svetlana A Abramova
- G.P. Somov Research Institute of Epidemiology and Microbiology, Rospotrebnadzor, 690087 Vladivostok, Russia
| | - Evgeniy V Pustovalov
- G.P. Somov Research Institute of Epidemiology and Microbiology, Rospotrebnadzor, 690087 Vladivostok, Russia
- Department of Information and Computer Systems, Far Eastern Federal University, 690922 Vladivostok, Russia
| |
Collapse
|
15
|
Zhang G, Wang P, Jiang L, Kong Y, Wang S, Li Y, Zhang S. Evaluation of the immunogenicity of a Crimean-Congo hemorrhagic fever virus vaccine candidate in mice developed based on a baculovirus Zera nanoparticle delivery system. Front Vet Sci 2023; 10:1126785. [PMID: 37323845 PMCID: PMC10267325 DOI: 10.3389/fvets.2023.1126785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a zoonotic disease caused by Crimean-Congo hemorrhagic fever virus (CCHFV), which can cause severe clinical disease and even death in humans. In recent years, the disease has spread to a wider area, posing a major public health threat to China as well as the Middle East, Europe and Africa, and there is no safe and effective vaccine to prevent the disease. Recently, it has been shown that using the Zera fusion to target proteins can enhance immunogenicity and improve the potential for developing viral vaccines. Based on this finding, in this study, two vaccine candidates, Zera-Gn and Zera-Np, were prepared using an insect baculovirus system expressing CCHFV glycoprotein (Gn) and nucleocapsid protein (Np) fused with Zera tags, and evaluated for immunogenicity in BALB/c mice. The obtainedresults showed that both Zera-Gn and Zera-Np recombinant nanoparticles were successfully expressed, and Zera-Gn had good induction of humoral and cellular immunity in mice, and its immunogenicity was significantly higher than that of Zera-Np. The results indicated that Zera-Gn self-assembled nanoparticles prepared by fusing Zera tags with CCHFV spike-in protein Gn have the potential to be a candidate vaccine for CCHF, and this study provides a reference for the development of Zera self-assembled nanoparticle vaccine for CCHF.
Collapse
Affiliation(s)
- Gang Zhang
- School of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Pu Wang
- School of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Lingling Jiang
- School of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Yunyi Kong
- School of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Sheng Wang
- School of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Yong Li
- School of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Sinong Zhang
- School of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| |
Collapse
|
16
|
Zhang G, Wang P, Jiang L, Wang S, Zhang S, Li Y. Evaluation of the immunogenicity of vaccine candidates developed using a baculovirus surface display system for Crimean-Congo hemorrhagic fever virus in mice. Front Microbiol 2023; 14:1107874. [PMID: 37007525 PMCID: PMC10061074 DOI: 10.3389/fmicb.2023.1107874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF), which has a fatality rate of 20–30%, is widely prevalent in several regions in Asia, Europe, and Africa and has spread to a wider range of areas in recent years. At present, there is a lack of safe and effective vaccines for the prevention of CCHF. In this study, we prepared three vaccine candidates, rvAc-Gn, rvAc-Np, and rvAc-Gn-Np, that encoded the CCHF virus (CCHFV) glycoprotein Gn and the nucleocapsid protein (Np) on the surface of baculovirus using an insect baculovirus vector expression system (BVES) and evaluated their immunogenicity in BALB/c mice. The experimental results showed that both CCHFV Gn and Np were expressed by the respective recombinant baculoviruses and anchored to the viral envelope. BALB/c mice were immunized, and all three recombinant baculoviruses showed significant humoral immunity. At the cellular level, the level of immunity in the rvAc-Gn group was significantly higher than that in the rvAc-Np and rvAc-Gn-Np groups, and the rvAc-Gn-Np coexpression group exhibited the lowest level of cellular immunity. In conclusion, the strategy of coexpressing Gn and Np in the baculovirus surface display system did not result in improvements in immunogenicity, whereas the recombinant baculovirus displaying Gn alone could induce significant humoral and cellular immunity in mice, indicating that rvAc-Gn has potential as a CCHF vaccine candidate. This study thus provides new ideas for the development of a CCHF baculovirus vaccine.
Collapse
Affiliation(s)
- Gang Zhang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Pu Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Lingling Jiang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Sheng Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Sinong Zhang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
- School of Life Sciences, Ningxia University, Yinchuan, China
- Sinong Zhang,
| | - Yong Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
- School of Life Sciences, Ningxia University, Yinchuan, China
- *Correspondence: Yong Li,
| |
Collapse
|
17
|
A Search for Tick-Associated, Bronnoya-like Virus Spillover into Sheep. Microorganisms 2023; 11:microorganisms11010209. [PMID: 36677501 PMCID: PMC9865699 DOI: 10.3390/microorganisms11010209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Tick-borne diseases are responsible for many vector-borne diseases within Europe. Recently, novel viruses belonging to a new viral family of the order Bunyavirales were discovered in numerous tick species. In this study, we used metatranscriptomics to detect the virome, including novel viruses, associated with Ixodes ricinus collected from Romania and France. A bunyavirus-like virus related to the Bronnoya virus was identified for the first time in these regions. It presents a high level of amino-acid conservation with Bronnoya-related viruses identified in I. ricinus ticks from Norway and Croatia and with the Ixodes scapularis bunyavirus isolated from a tick cell line in Japan in 2014. Phylogenetic analyses revealed that the Bronnoya viruses' sub-clade is distinct from several Bunyavirales families, suggesting that it could constitute a novel family within the order. To determine if Bronnoya viruses could constitute novel tick-borne arboviruses, a Luciferase immunoprecipitation assay for detecting antibodies in the viral glycoprotein of the Romanian Bronnoya virus was used to screen sera from small ruminants exposed to tick bites. No positive serum was detected, suggesting that this virus is probably not able to infect small ruminants. This study represents the first serological investigation of mammalian infections with a Bronnoya-like virus and an initial step in the identification of potential new emergences of tick-borne arboviruses.
Collapse
|