1
|
Lauzon J, Caron D, Lazar CS. The Saint-Leonard Urban Glaciotectonic Cave Harbors Rich and Diverse Planktonic and Sedimentary Microbial Communities. Microorganisms 2024; 12:1791. [PMID: 39338466 PMCID: PMC11434022 DOI: 10.3390/microorganisms12091791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The terrestrial subsurface harbors unique microbial communities that play important biogeochemical roles and allow for studying a yet unknown fraction of the Earth's biodiversity. The Saint-Leonard cave in Montreal City (Canada) is of glaciotectonic origin. Its speleogenesis traces back to the withdrawal of the Laurentide Ice Sheet 13,000 years ago, during which the moving glacier dislocated the sedimentary rock layers. Our study is the first to investigate the microbial communities of the Saint-Leonard cave. By using amplicon sequencing, we analyzed the taxonomic diversity and composition of bacterial, archaeal and eukaryote communities living in the groundwater (0.1 µm- and 0.2 µm-filtered water), in the sediments and in surface soils. We identified a microbial biodiversity typical of cave ecosystems. Communities were mainly shaped by habitat type and harbored taxa associated with a wide variety of lifestyles and metabolic capacities. Although we found evidence of a geochemical connection between the above soils and the cave's galleries, our results suggest that the community assembly dynamics are driven by habitat selection rather than dispersal. Furthermore, we found that the cave's groundwater, in addition to being generally richer in microbial taxa than sediments, contained a considerable diversity of ultra-small bacteria and archaea.
Collapse
Affiliation(s)
- Jocelyn Lauzon
- Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada
| | | | - Cassandre Sara Lazar
- Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada
| |
Collapse
|
2
|
Mao J, Zheng Z, Ma L, Wang H, Wang X, Zhu F, Xue S, Srivastava P, Sapsford DJ. Polymetallic contamination drives indigenous microbial community assembly dominated by stochastic processes at Pb-Zn smelting sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174575. [PMID: 38977087 DOI: 10.1016/j.scitotenv.2024.174575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/14/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Indigenous microbial communities in smelting areas are crucial for maintaining fragile ecosystem functions. However, the community assembly process and their responses to polymetallic pollution are poorly understood, especially the taxa in each bin from the amplicons that contributed to the assembly process. Herein, microbial diversity, co-occurrence patterns, assembly process and the intrinsic mechanisms across contamination gradients at a typical PbZn smelting site were systematically unravelled by high-throughput sequencing. The results showed a consistent compositional profile among the indigenous communities across sampling sites, wherein genera KD4-96 from Chloroflexi and Sphingomonas from Proteobacteria emerged as the most abundant taxa. Network modularity of the high- and middle-contaminated communities at Pb and Zn smelting sites was >0.44, indicating that community populations were clustered into modules to resist high heavy metal stress. Stochastic processes dominated the community assembly, with the greatest contribution from drift (DR), which was significantly correlated with Pb, Zn, Cr and Cu contents. What's particular was that the DR-controlled bins were dominated by Proteobacteria (typical r-strategists), while the HoS-controlled bins were by Chloroflexi (typical K-strategists). Furthermore, the proportion of DR in the bins dominated by Sphingomonadaceae (phylum Proteobacteria) increased gradually with the increase of heavy metal contents. These discoveries provide essential insights for community control in restoring and mitigating soil degradation at PbZn smelting sites.
Collapse
Affiliation(s)
- Jialing Mao
- Institute of Geological Survey, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Zikui Zheng
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Liyuan Ma
- Institute of Geological Survey, China University of Geosciences, Wuhan 430074, Hubei, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; School of Engineering, Cardiff University, Cardiff CF243AA, United Kingdom.
| | - Hongmei Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Xingjie Wang
- Institute of Geological Survey, China University of Geosciences, Wuhan 430074, Hubei, China; School of Engineering, Cardiff University, Cardiff CF243AA, United Kingdom
| | - Feng Zhu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | | | - Devin J Sapsford
- School of Engineering, Cardiff University, Cardiff CF243AA, United Kingdom
| |
Collapse
|
3
|
Ghezzi D, Jiménez-Morillo NT, Foschi L, Donini E, Chiarini V, De Waele J, Miller AZ, Cappelletti M. The microbiota characterizing huge carbonatic moonmilk structures and its correlation with preserved organic matter. ENVIRONMENTAL MICROBIOME 2024; 19:25. [PMID: 38659019 PMCID: PMC11040949 DOI: 10.1186/s40793-024-00562-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/13/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Moonmilk represents complex secondary structures and model systems to investigate the interaction between microorganisms and carbonatic rocks. Grotta Nera is characterized by numerous moonmilk speleothems of exceptional size hanging from the ceiling, reaching over two meters in length. In this work we combined microbiological analyses with analytical pyrolysis and carbon stable isotope data to determine the molecular composition of these complex moonmilk structures as well as the composition of the associated microbiota. RESULTS Three moonmilk structures were dissected into the apical, lateral, and core parts, which shared similar values of microbial abundance, richness, and carbon isotopes but different water content, microbiota composition, and organic matter. Moonmilk parts/niches showed higher values of microbial biomass and biodiversity compared to the bedrock (not showing moonmilk development signs) and the waters (collected below dripping moonmilk), indicating the presence of more complex microbial communities linked to carbonate rock interactions and biomineralization processes. Although each moonmilk niche was characterized by a specific microbiota as well as a distinct organic carbon profile, statistical analyses clustered the samples in two main groups, one including the moonmilk lateral part and the bedrock and the other including the core and apical parts of the speleothem. The organic matter profile of both these groups showed two well-differentiated organic carbon groups, one from cave microbial activity and the other from the leaching of vascular plant litter above the cave. Correlation between organic matter composition and microbial taxa in the different moonmilk niches were found, linking the presence of condensed organic compounds in the apical part with the orders Nitrospirales and Nitrosopumilales, while different taxa were correlated with aromatic, lignin, and polysaccharides in the moonmilk core. These findings are in line with the metabolic potential of these microbial taxa suggesting how the molecular composition of the preserved organic matter drives the microbiota colonizing the different moonmilk niches. Furthermore, distinct bacterial and archaeal taxa known to be involved in the metabolism of inorganic nitrogen and C1 gases (CO2 and CH4) (Nitrospira, Nitrosopumilaceae, Nitrosomonadaceae, Nitrosococcaceae, and novel taxa of Methylomirabilota and Methanomassiliicoccales) were enriched in the core and apical parts of the moonmilk, probably in association with their contribution to biogeochemical cycles in Grotta Nera ecosystem and moonmilk development. CONCLUSIONS The moonmilk deposits can be divided into diverse niches following oxygen and water gradients, which are characterized by specific microbial taxa and organic matter composition originating from microbial activities or deriving from soil and vegetation above the cave. The metabolic capacities allowing the biodegradation of complex polymers from the vegetation above the cave and the use of inorganic nitrogen and atmospheric gases might have fueled the development of complex microbial communities that, by interacting with the carbonatic rock, led to the formation of these massive moonmilk speleothems in Grotta Nera.
Collapse
Affiliation(s)
- Daniele Ghezzi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, Bologna, 40126, Italy
| | - Nicasio Tomás Jiménez-Morillo
- MED-Mediterranean Institute for Agriculture, Environment and Development, University of Évora, Pólo da Mitra Apartado 94, Évora, 7006-554, Portugal
- Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Av. de la Reina Mercedes, 10, Sevilla, 41012, Spain
| | - Lisa Foschi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, Bologna, 40126, Italy
| | - Eva Donini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, Bologna, 40126, Italy
| | - Veronica Chiarini
- Department of Geosciences, University of Padova, via Gradenigo 6, Padua, 35131, Italy
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Via Zamboni 67, Bologna, 40126, Italy
| | - Jo De Waele
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Via Zamboni 67, Bologna, 40126, Italy
| | - Ana Zélia Miller
- Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Av. de la Reina Mercedes, 10, Sevilla, 41012, Spain.
- HERCULES Laboratory, University of Évora, Largo dos Colegiais 2, Évora, 7004-516, Portugal.
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, Bologna, 40126, Italy.
| |
Collapse
|
4
|
Turrini P, Chebbi A, Riggio FP, Visca P. The geomicrobiology of limestone, sulfuric acid speleogenetic, and volcanic caves: basic concepts and future perspectives. Front Microbiol 2024; 15:1370520. [PMID: 38572233 PMCID: PMC10987966 DOI: 10.3389/fmicb.2024.1370520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Caves are ubiquitous subterranean voids, accounting for a still largely unexplored surface of the Earth underground. Due to the absence of sunlight and physical segregation, caves are naturally colonized by microorganisms that have developed distinctive capabilities to thrive under extreme conditions of darkness and oligotrophy. Here, the microbiomes colonizing three frequently studied cave types, i.e., limestone, sulfuric acid speleogenetic (SAS), and lava tubes among volcanic caves, have comparatively been reviewed. Geological configurations, nutrient availability, and energy flows in caves are key ecological drivers shaping cave microbiomes through photic, twilight, transient, and deep cave zones. Chemoheterotrophic microbial communities, whose sustenance depends on nutrients supplied from outside, are prevalent in limestone and volcanic caves, while elevated inorganic chemical energy is available in SAS caves, enabling primary production through chemolithoautotrophy. The 16S rRNA-based metataxonomic profiles of cave microbiomes were retrieved from previous studies employing the Illumina platform for sequencing the prokaryotic V3-V4 hypervariable region to compare the microbial community structures from different cave systems and environmental samples. Limestone caves and lava tubes are colonized by largely overlapping bacterial phyla, with the prevalence of Pseudomonadota and Actinomycetota, whereas the co-dominance of Pseudomonadota and Campylobacterota members characterizes SAS caves. Most of the metataxonomic profiling data have so far been collected from the twilight and transient zones, while deep cave zones remain elusive, deserving further exploration. Integrative approaches for future geomicrobiology studies are suggested to gain comprehensive insights into the different cave types and zones. This review also poses novel research questions for unveiling the metabolic and genomic capabilities of cave microorganisms, paving the way for their potential biotechnological applications.
Collapse
Affiliation(s)
- Paolo Turrini
- Department of Science, Roma Tre University, Rome, Italy
| | - Alif Chebbi
- Department of Science, Roma Tre University, Rome, Italy
| | | | - Paolo Visca
- Department of Science, Roma Tre University, Rome, Italy
- National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
5
|
Palma V, González-Pimentel JL, Jimenez-Morillo NT, Sauro F, Gutiérrez-Patricio S, De la Rosa JM, Tomasi I, Massironi M, Onac BP, Tiago I, González-Pérez JA, Laiz L, Caldeira AT, Cubero B, Miller AZ. Connecting molecular biomarkers, mineralogical composition, and microbial diversity from Mars analog lava tubes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169583. [PMID: 38154629 DOI: 10.1016/j.scitotenv.2023.169583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Lanzarote (Canary Islands, Spain) is one of the best terrestrial analogs to Martian volcanology. Particularly, Lanzarote lava tubes may offer access to recognizably preserved chemical and morphological biosignatures valuable for astrobiology. By combining microbiological, mineralogical, and organic geochemistry tools, an in-depth characterization of speleothems and associated microbial communities in lava tubes of Lanzarote is provided. The aim is to untangle the underlying factors influencing microbial colonization in Earth's subsurface to gain insight into the possibility of similar subsurface microbial habitats on Mars and to identify biosignatures preserved in lava tubes unequivocally. The microbial communities with relevant representativeness comprise chemoorganotrophic, halophiles, and/or halotolerant bacteria that have evolved as a result of the surrounding oceanic environmental conditions. Many of these bacteria have a fundamental role in reshaping cave deposits due to their carbonatogenic ability, leaving behind an organic record that can provide evidence of past or present life. Based on functional profiling, we infer that Crossiella is involved in fluorapatite precipitation via urea hydrolysis and propose its Ca-rich precipitates as compelling biosignatures valuable for astrobiology. In this sense, analytical pyrolysis, stable isotope analysis, and chemometrics were conducted to characterize the complex organic fraction preserved in the speleothems and find relationships among organic families, microbial taxa, and precipitated minerals. We relate organic compounds with subsurface microbial taxa, showing that organic families drive the microbiota of Lanzarote lava tubes. Our data indicate that bacterial communities are important contributors to biomarker records in volcanic-hosted speleothems. Within them, the lipid fraction primarily consists of low molecular weight n-alkanes, α-alkenes, and branched-alkenes, providing further evidence that microorganisms serve as the origin of organic matter in these formations. The ongoing research in Lanzarote's lava tubes will help develop protocols, routines, and predictive models that could provide guidance on choosing locations and methodologies for searching potential biosignatures on Mars.
Collapse
Affiliation(s)
- Vera Palma
- HERCULES Laboratory, University of Évora, Évora, Portugal
| | | | | | - Francesco Sauro
- Department of Earth Sciences and Environmental Geology, University of Bologna, Italy
| | | | - José M De la Rosa
- Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Sevilla, Spain
| | - Ilaria Tomasi
- Geosciences Department, University of Padova, Padova, Italy
| | | | - Bogdan P Onac
- Karst Research Group, School of Geosciences, University of South Florida, Tampa, FL, USA; Emil G. Racoviță Institute, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Igor Tiago
- CFE-Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - José A González-Pérez
- Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Sevilla, Spain
| | - Leonila Laiz
- Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Sevilla, Spain
| | - Ana T Caldeira
- HERCULES Laboratory, University of Évora, Évora, Portugal
| | - Beatriz Cubero
- Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Sevilla, Spain
| | - Ana Z Miller
- HERCULES Laboratory, University of Évora, Évora, Portugal; Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Sevilla, Spain.
| |
Collapse
|
6
|
Cuevas M, Francisco I, Díaz-González F, Diaz M, Quatrini R, Beamud G, Pedrozo F, Temporetti P. Nutrient structure dynamics and microbial communities at the water-sediment interface in an extremely acidic lake in northern Patagonia. Front Microbiol 2024; 15:1335978. [PMID: 38410393 PMCID: PMC10895001 DOI: 10.3389/fmicb.2024.1335978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
Lake Caviahue (37° 50 'S and 71° 06' W; Patagonia, Argentina) is an extreme case of a glacial, naturally acidic, aquatic environment (pH ~ 3). Knowledge of the bacterial communities in the water column of this lake, is incipient, with a basal quantification of the bacterioplankton abundance distribution in the North and South Basins of Lake Caviahue, and the described the presence of sulfur and iron oxidizing bacteria in the lake sediments. The role that bacterioplankton plays in nutrient utilization and recycling in this environment, especially in the phosphorus cycle, has not been studied. In this work, we explore this aspect in further depth by assessing the diversity of pelagic, littoral and sediment bacteria, using state of the art molecular methods and identifying the differences and commonalties in the composition of the cognate communities. Also, we investigate the interactions between the sediments of Lake Caviahue and the microbial communities present in both sediments, pore water and the water column, to comprehend the ecological relationships driving nutrient structure and fluxes, with a special focus on carbon, nitrogen, and phosphorus. Two major environmental patterns were observed: (a) one distinguishing the surface water samples due to temperature, Fe2+, and electrical conductivity, and (b) another distinguishing winter and summer samples due to the high pH and increasing concentrations of N-NH4+, DOC and SO42-, from autumn and spring samples with high soluble reactive phosphorus (SRP) and iron concentrations. The largest bacterial abundance was found in autumn, alongside higher levels of dissolved phosphorus, iron forms, and increased conductivity. The highest values of bacterial biomass were found in the bottom strata of the lake, which is also where the greatest diversity in microbial communities was found. The experiments using continuous flow column microcosms showed that microbial growth over time, in both the test and control columns, was accompanied by a decrease in the concentration of dissolved nutrients (SRP and N-NH4+), providing proof that sediment microorganisms are active and contribute significantly to nutrient utilization/mobilization.
Collapse
Affiliation(s)
- Mayra Cuevas
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Centro Regional Universitario Bariloche-UNComahue, CCT-Patagonia Norte, CONICET, San Carlos de Bariloche, Argentina
| | - Issotta Francisco
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Department of Molecular Genetics and Microbiology, School of Biological Sciences, P. Universidad Católica de Chile, Santiago, Chile
| | - Fernando Díaz-González
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Mónica Diaz
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Centro Regional Universitario Bariloche-UNComahue, CCT-Patagonia Norte, CONICET, San Carlos de Bariloche, Argentina
| | - Raquel Quatrini
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Guadalupe Beamud
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Centro Regional Universitario Bariloche-UNComahue, CCT-Patagonia Norte, CONICET, San Carlos de Bariloche, Argentina
| | - Fernando Pedrozo
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Centro Regional Universitario Bariloche-UNComahue, CCT-Patagonia Norte, CONICET, San Carlos de Bariloche, Argentina
| | - Pedro Temporetti
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Centro Regional Universitario Bariloche-UNComahue, CCT-Patagonia Norte, CONICET, San Carlos de Bariloche, Argentina
| |
Collapse
|
7
|
Lange-Enyedi NT, Borsodi AK, Németh P, Czuppon G, Kovács I, Leél-Őssy S, Dobosy P, Felföldi T, Demény A, Makk J. Habitat-related variability in the morphological and taxonomic diversity of microbial communities in two Hungarian epigenic karst caves. FEMS Microbiol Ecol 2023; 99:fiad161. [PMID: 38066687 DOI: 10.1093/femsec/fiad161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/13/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023] Open
Abstract
The physical and chemical characteristics of the bedrock, along with the geological and hydrological conditions of karst caves may influence the taxonomic and functional diversity of prokaryotes. Most studies so far have focused on microbial communities of caves including only a few samples and have ignored the chemical heterogeneity of different habitat types such as sampling sites, dripping water, carbonate precipitates, cave walls, cave sediment and surface soils connected to the caves. The aim of the present study was to compare the morphology, the composition and physiology of the microbiota in caves with similar environmental parameters (temperature, host rock, elemental and mineral composition of speleothems) but located in different epigenic karst systems. Csodabogyós Cave and Baradla Cave (Hungary) were selected for the analysis of bacterial and archaeal communities using electron microscopy, amplicon sequencing, X-ray diffraction, and mass spectroscopic techniques. The microbial communities belonged to the phyla Pseudomonadota, Acidobacteriota, Nitrospirota and Nitrososphaerota, and they showed site-specific variation in composition and diversity. The results indicate that morphological and physiological adaptations provide survival for microorganisms according to the environment. In epigenic karst caves, prokaryotes are prone to increase their adsorption surface, cooperate in biofilms, and implement chemolithoautotrophic growth with different electron-donors and acceptors available in the microhabitats.
Collapse
Affiliation(s)
- Nóra Tünde Lange-Enyedi
- Institute for Geological and Geochemical Research, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, H-1112 Budapest, Hungary
- Department of Microbiology, Institute of Biology, Faculty of Science, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary
| | - Andrea K Borsodi
- Department of Microbiology, Institute of Biology, Faculty of Science, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29, H-1113 Budapest, Hungary
| | - Péter Németh
- Institute for Geological and Geochemical Research, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, H-1112 Budapest, Hungary
- Research Institute of Biomolecular and Chemical Engineering, Nanolab, University of Pannonia, Egyetem út 10, H-8200 Veszprém, Hungary
| | - György Czuppon
- Institute for Geological and Geochemical Research, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, H-1112 Budapest, Hungary
| | - Ivett Kovács
- Institute for Geological and Geochemical Research, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, H-1112 Budapest, Hungary
| | - Szabolcs Leél-Őssy
- Department of Physical and Applied Geology, Faculty of Science, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary
| | - Péter Dobosy
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29, H-1113 Budapest, Hungary
| | - Tamás Felföldi
- Department of Microbiology, Institute of Biology, Faculty of Science, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29, H-1113 Budapest, Hungary
| | - Attila Demény
- Institute for Geological and Geochemical Research, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, H-1112 Budapest, Hungary
| | - Judit Makk
- Department of Microbiology, Institute of Biology, Faculty of Science, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary
| |
Collapse
|
8
|
Zhang Q, Kong G, Zhao G, Liu J, Jin H, Li Z, Zhang G, Liu T. Microbial and enzymatic changes in cigar tobacco leaves during air-curing and fermentation. Appl Microbiol Biotechnol 2023; 107:5789-5801. [PMID: 37458766 PMCID: PMC10439857 DOI: 10.1007/s00253-023-12663-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 08/20/2023]
Abstract
Metabolic enzyme activity and microbial composition of the air-curing and fermentation processes determine the quality of cigar tobacco leaves (CTLs). In this study, we reveal the evolution of the dominant microorganisms and microbial community structure at different stages of the air-curing and fermentation processes of CTLs. The results showed that the changes in metabolic enzymes occurred mainly during the air-curing phase, with polyphenol oxidase (PPO) being the most active at the browning phase. Pseudomonas, Bacteroides, Vibrio, Monographella, Bipolaris, and Aspergillus were the key microorganisms in the air-curing and fermentation processes. Principal coordinate analysis revealed significant separation of microbial communities between the air-curing and fermentation phases. Redundancy analysis showed that bacteria such as Proteobacteria, Firmicutes, Bacteroidota, and Acidobacteriota and fungi such as Ascomycota and Basidiomycota were correlated with enzyme activity and temperature and humidity. Bacteria mainly act in sugar metabolism, lipid metabolism, and amino acid metabolism, while fungi mainly degrade lignin, cellulose, and pectin through saprophytic action. Spearman correlation network analysis showed that Firmicutes, Proteobacteria, and Actinobacteria were the key bacterial taxa, while Dothideomycetes, Sordariomycetes, and Eurotiomycetes were the key fungal taxa. This research provides the basis for improving the quality of cigars by improving the air-curing and fermentation processes. KEY POINTS: • Changes in POD and PPO activity control the color change of CTLs at the air-curing stage. • Monographella, Aspergillus, Pseudomonas, and Vibrio play an important role in air-curing and fermentation. • Environmental temperature and humidity mainly affect the fermentation process, whereas bacteria such as Proteobacteria, Firmicutes, Bacteroidota, and Acidobacteriota and fungi such as Ascomycota and Basidiomycota are associated with enzyme activity and temperature and humidity.
Collapse
Affiliation(s)
- Qing Zhang
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Guanghui Kong
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China
| | - Gaokun Zhao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China
| | - Jun Liu
- Raw Materials Department of HongYun HongHe Tobacco (Group) Limited Liability Company, Kunming, 650221, Yunnan, China
| | - Honggang Jin
- Raw Materials Department of HongYun HongHe Tobacco (Group) Limited Liability Company, Kunming, 650221, Yunnan, China
| | - Zhihua Li
- Raw Materials Department of HongYun HongHe Tobacco (Group) Limited Liability Company, Kunming, 650221, Yunnan, China
| | - Guanghai Zhang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China.
| | - Tao Liu
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
9
|
Piano E, Biagioli F, Nicolosi G, Coleine C, Poli A, Prigione V, Zanellati A, Addesso R, Varese GC, Selbmann L, Isaia M. Tourism affects microbial assemblages in show caves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162106. [PMID: 36764528 DOI: 10.1016/j.scitotenv.2023.162106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Anthropogenic disturbance on natural ecosystems is growing in frequency and magnitude affecting all ecosystems components. Understanding the response of different types of biocoenosis to human disturbance is urgently needed and it can be achieved by adopting a metacommunity framework. With the aid of advanced molecular techniques, we investigated sediment communities of Fungi, Bacteria and Archaea in four Italian show caves, aiming to disentangle the effects induced by tourism on their diversity and to highlight changes in the driving forces that shape their community composition. We modelled diversity measures against proxies of tourism pressure. With this approach we demonstrate that the cave tourism has a direct effect on the community of Bacteria and an indirect influence on Fungi and Archaea. By analysing the main driving forces influencing the community composition of the three microbial groups, we highlighted that stochastic factors override dispersal-related processes and environmental selection in show caves compared to undisturbed areas. Thanks to this approach, we provide new perspectives on the dynamics of microbial communities under human disturbance suggesting that a proper understanding of the underlying selective mechanisms requires a comprehensive and multi-taxonomic approach.
Collapse
Affiliation(s)
- Elena Piano
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy
| | - Federico Biagioli
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Giuseppe Nicolosi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy
| | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Anna Poli
- Mycotheca Universitatis Taurinensis, Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125 Torino, Italy
| | - Valeria Prigione
- Mycotheca Universitatis Taurinensis, Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125 Torino, Italy
| | - Andrea Zanellati
- Mycotheca Universitatis Taurinensis, Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125 Torino, Italy
| | - Rosangela Addesso
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Giovanna Cristina Varese
- Mycotheca Universitatis Taurinensis, Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125 Torino, Italy
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Marco Isaia
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| |
Collapse
|
10
|
Bontemps Z, Prigent-Combaret C, Guillmot A, Hugoni M, Moënne-Loccoz Y. Dark-zone alterations expand throughout Paleolithic Lascaux Cave despite spatial heterogeneity of the cave microbiome. ENVIRONMENTAL MICROBIOME 2023; 18:31. [PMID: 37032363 PMCID: PMC10084675 DOI: 10.1186/s40793-023-00488-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Cave anthropization related to rock art tourism can lead to cave microbiota imbalance and microbial alterations threatening Paleolithic artwork, but the underpinning microbial changes are poorly understood. Caves can be microbiologically heterogeneous and certain rock wall alterations may develop in different rooms despite probable spatial heterogeneity of the cave microbiome, suggesting that a same surface alteration might involve a subset of cosmopolitan taxa widespread in each cave room. We tested this hypothesis in Lascaux, by comparing recent alterations (dark zones) and nearby unmarked surfaces in nine locations within the cave. RESULTS Illumina MiSeq metabarcoding of unmarked surfaces confirmed microbiome heterogeneity of the cave. Against this background, the microbial communities of unmarked and altered surfaces differed at each location. The use of a decision matrix showed that microbiota changes in relation to dark zone formation could differ according to location, but dark zones from different locations displayed microbial similarities. Thus, dark zones harbor bacterial and fungal taxa that are cosmopolitan at the scale of Lascaux, as well as dark zone-specific taxa present (i) at all locations in the cave (i.e. the six bacterial genera Microbacterium, Actinophytocola, Lactobacillus, Bosea, Neochlamydia and Tsukamurella) or (ii) only at particular locations within Lascaux. Scanning electron microscopy observations and most qPCR data evidenced microbial proliferation in dark zones. CONCLUSION Findings point to the proliferation of different types of taxa in dark zones, i.e. Lascaux-cosmopolitan bacteria and fungi, dark zone-specific bacteria present at all locations, and dark zone-specific bacteria and fungi present at certain locations only. This probably explains why dark zones could form in various areas of the cave and suggests that the spread of these alterations might continue according to the area of distribution of key widespread taxa.
Collapse
Affiliation(s)
- Zélia Bontemps
- CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, University of Lyon, Université Claude Bernard Lyon 1, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Claire Prigent-Combaret
- CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, University of Lyon, Université Claude Bernard Lyon 1, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Alice Guillmot
- CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, University of Lyon, Université Claude Bernard Lyon 1, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Mylène Hugoni
- CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, University of Lyon, Université Claude Bernard Lyon 1, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
- CNRS, INSA de Lyon, UMR Microbiologie Adaptation et Pathogénie, University of Lyon, Université Claude Bernard Lyon 1, 69622, Villeurbanne, France
- Institut Universitaire de France (IUF), Paris, France
| | - Yvan Moënne-Loccoz
- CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, University of Lyon, Université Claude Bernard Lyon 1, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France.
| |
Collapse
|
11
|
Jiang C, Sun X, Liu Y, Zhu S, Wu K, Li H, Shui W. Karst tiankeng shapes the differential composition and structure of bacterial and fungal communities in karst land. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32573-32584. [PMID: 36469271 DOI: 10.1007/s11356-022-24229-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Karst tiankeng are important biodiversity conservation reservoirs. However, the unique habitats of karst tiankeng affect microbial community structure remained poorly understood. In this study, we collected soil samples from karst tiankeng (TK) and karst land (KL) and subjected to high-throughput sequencing. Based on the classification of the total, abundance, and rare taxa for bacteria and fungi, a multivariate statistical analysis was carried out. The results revealed that bacterial community Shannon diversity and Pielou's evenness were highest in TK. The rare taxa were ubiquitous in all soil samples, while the higher Shannon diversity of the abundant taxa of TK may be related to the habitat preferences of species and niche differentiation. The community composition of bacterial and fungal sub-communities exhibited significant dissimilarity between TK and KL. The redundancy analysis further demonstrated that abundant taxa were environmentally more constrained than rare taxa. The bacterial and fungal networks of KL were more complex than TK. The keystones of the network transforms may suggest their significant role in the ecological function of the karst tiankeng ecosystem. This study represents the first reports of the characteristics of bacterial and fungal communities in karst tiankeng.
Collapse
Affiliation(s)
- Cong Jiang
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, People's Republic of China
| | - Xiang Sun
- College of Environment and Safety Engineering, Fujian Province, Fuzhou University, Fuzhou University Town, No. 2 Wulongjiang North Avenue, Fuzhou City, People's Republic of China
| | - Yuanmeng Liu
- College of Environment and Safety Engineering, Fujian Province, Fuzhou University, Fuzhou University Town, No. 2 Wulongjiang North Avenue, Fuzhou City, People's Republic of China
| | - Sufeng Zhu
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100871, People's Republic of China
| | - Kexing Wu
- College of Environment and Safety Engineering, Fujian Province, Fuzhou University, Fuzhou University Town, No. 2 Wulongjiang North Avenue, Fuzhou City, People's Republic of China
| | - Hui Li
- College of Environment and Safety Engineering, Fujian Province, Fuzhou University, Fuzhou University Town, No. 2 Wulongjiang North Avenue, Fuzhou City, People's Republic of China
| | - Wei Shui
- College of Environment and Safety Engineering, Fujian Province, Fuzhou University, Fuzhou University Town, No. 2 Wulongjiang North Avenue, Fuzhou City, People's Republic of China.
| |
Collapse
|
12
|
Jiang C, Zeng H. Unique Habitat of Karst Tiankengs Changes the Taxonomy and Potential Metabolism of Soil Microbial Communities. Microbiol Spectr 2023; 11:e0231622. [PMID: 36648219 PMCID: PMC9927240 DOI: 10.1128/spectrum.02316-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Microbial communities in karst ecosystems have been extensively studied. However, in a class of deep-lying habitats with unique climates (karst tiankeng), the structure and ecological functions of microorganisms receive little attention, which is essential for understanding the biogeochemistry of karst tiankeng. Herein, microorganisms from inside (ITK) and outside (OTK) karst tiankengs were analyzed by high-throughput sequencing and multivariate statistical analysis. The results showed that the structure and function of soil bacterial communities inside and outside karst tiankengs were significantly different. The ITK microbial communities presented significantly higher Shannon diversity due to the abundant nutrients in karst tiankeng soil. Random molecular ecological network analysis revealed that the ITK network was simpler and more vulnerable and may be susceptible to environmental changes. More positive links within the network indicate that microorganisms adapt to the karst tiankeng through synergies. The keystones in karst tiankeng were mainly involved in the decomposition of soil organic matter and carbon/nitrogen cycles. Although soil total phosphorus and available potassium regulate microbial community structure variation, dispersal limitation is the predominant ecological process within the microbial community in karst tiankeng. In addition, the functional profiles of the microbial communities reveal that some human diseases (such as infectious diseases) exist in OTK. Collectively, these findings have enhanced our understanding of microbial interactions, ecological functions, and community composition processes in karst tiankeng ecosystems. IMPORTANCE Constrained by the trapped terrain, a unique ecosystem has formed in karst tiankeng. Soil microorganisms are essential for the formation and maintenance of ecosystems, but soil microbial ecology research in karst tiankeng is still lacking. In this study, representative habitats inside and outside karst tiankeng were selected to study the taxonomy and potential metabolism of soil microbial communities. The results show that the unique habitat of karst tiankeng reshapes the composition, structure, and function of soil microbial communities. Our results contribute to enhancing our understanding of sustainable recovery strategies in fragile ecosystems and understanding the biodiversity value of karst tiankeng under climate change.
Collapse
Affiliation(s)
- Cong Jiang
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Hui Zeng
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Peking University, Shenzhen, China
| |
Collapse
|
13
|
Liu X, Wang H, Wang W, Cheng X, Wang Y, Li Q, Li L, Ma L, Lu X, Tuovinen OH. Nitrate determines the bacterial habitat specialization and impacts microbial functions in a subsurface karst cave. Front Microbiol 2023; 14:1115449. [PMID: 36846803 PMCID: PMC9947541 DOI: 10.3389/fmicb.2023.1115449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Karst caves are usually considered as natural laboratories to study pristine microbiomes in subsurface biosphere. However, effects of the increasingly detected nitrate in underground karst ecosystem due to the acid rain impact on microbiota and their functions in subsurface karst caves have remained largely unknown. In this study, samples of weathered rocks and sediments were collected from the Chang Cave, Hubei province and subjected to high-throughput sequencing of 16S rRNA genes. The results showed that nitrate significantly impacted bacterial compositions, interactions, and functions in different habitats. Bacterial communities clustered according to their habitats with distinguished indicator groups identified for each individual habitat. Nitrate shaped the overall bacterial communities across two habitats with a contribution of 27.2%, whereas the pH and TOC, respectively, structured bacterial communities in weathered rocks and sediments. Alpha and beta diversities of bacterial communities increased with nitrate concentration in both habitats, with nitrate directly affecting alpha diversity in sediments, but indirectly on weathered rocks by lowering pH. Nitrate impacted more on bacterial communities in weathered rocks at the genus level than in sediments because more genera significantly correlated with nitrate concentration in weathered rocks. Diverse keystone taxa involved in nitrogen cycling were identified in the co-occurrence networks such as nitrate reducers, ammonium-oxidizers, and N2-fixers. Tax4Fun2 analysis further confirmed the dominance of genes involved in nitrogen cycling. Genes of methane metabolism and carbon fixation were also dominant. The dominance of dissimilatory and assimilatory nitrate reduction in nitrogen cycling substantiated nitrate impact on bacterial functions. Our results for the first time revealed the impact of nitrate on subsurface karst ecosystem in terms of bacterial compositions, interactions, and functions, providing an important reference for further deciphering the disturbance of human activities on the subsurface biosphere.
Collapse
Affiliation(s)
- Xiaoyan Liu
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Hongmei Wang
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Weiqi Wang
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Xiaoyu Cheng
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yiheng Wang
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Qing Li
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Lu Li
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Liyuan Ma
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Xiaolu Lu
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Olli H. Tuovinen
- Department of Microbiology, Ohio State University, Columbus, OH, United States
| |
Collapse
|
14
|
Cheng X, Xiang X, Yun Y, Wang W, Wang H, Bodelier PLE. Archaea and their interactions with bacteria in a karst ecosystem. Front Microbiol 2023; 14:1068595. [PMID: 36814573 PMCID: PMC9939782 DOI: 10.3389/fmicb.2023.1068595] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
Karst ecosystems are widely distributed around the world, accounting for 15-20% of the global land area. However, knowledge on microbial ecology of these systems does not match with their global importance. To close this knowledge gap, we sampled three niches including weathered rock, sediment, and drip water inside the Heshang Cave and three types of soils overlying the cave (forest soil, farmland soil, and pristine karst soil). All these samples were subjected to high-throughput sequencing of V4-V5 region of 16S rRNA gene and analyzed with multivariate statistical analysis. Overall, archaeal communities were dominated by Thaumarchaeota, whereas Actinobacteria dominated bacterial communities. Thermoplasmata, Nitrosopumilaceae, Aenigmarchaeales, Crossiella, Acidothermus, and Solirubrobacter were the important predictor groups inside the Heshang Cave, which were correlated to NH4 + availability. In contrast, Candidatus Nitrososphaera, Candidatus Nitrocosmicus, Thaumarchaeota Group 1.1c, and Pseudonocardiaceae were the predictors outside the cave, whose distribution was correlated with pH, Ca2+, and NO2 -. Tighter network structures were found in archaeal communities than those of bacteria, whereas the topological properties of bacterial networks were more similar to those of total prokaryotic networks. Both chemolithoautotrophic archaea (Candidatus Methanoperedens and Nitrosopumilaceae) and bacteria (subgroup 7 of Acidobacteria and Rokubacteriales) were the dominant keystone taxa within the co-occurrence networks, potentially playing fundamental roles in obtaining energy under oligotrophic conditions and thus maintaining the stability of the cave ecosystem. To be noted, all the keystone taxa of karst ecosystems were related to nitrogen cycling, which needs further investigation, particularly the role of archaea. The predicted ecological functions in karst soils mainly related to carbohydrate metabolism, biotin metabolism, and synthesis of fatty acid. Our results offer new insights into archaeal ecology, their potential functions, and archaeal interactions with bacteria, which enhance our understanding about the microbial dark matter in the subsurface karst ecosystems.
Collapse
Affiliation(s)
- Xiaoyu Cheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Xing Xiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- College of Life Science, Shangrao Normal University, Shangrao, China
| | - Yuan Yun
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Weiqi Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Paul L. E. Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| |
Collapse
|
15
|
Cheng X, Wang H, Zeng Z, Li L, Zhao R, Bodelier PLE, Wang Y, Liu X, Su C, Liu S. Niche differentiation of atmospheric methane-oxidizing bacteria and their community assembly in subsurface karst caves. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:886-896. [PMID: 35925016 DOI: 10.1111/1758-2229.13112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 06/17/2023]
Abstract
Karst caves are recently proposed as atmospheric methane sinks in terrestrial ecosystems. Despite of the detection of atmospheric methane-oxidizing bacteria (atmMOB) in caves, we still know little about their ecology and potential ability of methane oxidation in this ecosystem. To understand atmMOB ecology and their potential in methane consumption, we collected weathered rocks and sediments from three different caves in southwestern China. We determined the potential methane oxidization rates in the range of 1.25 ± 0.08 to 1.87 ± 0.41 ng CH4 g-1 DW h-1 , which are comparable to those reported in forest and grassland soils. Results showed that alkaline oligotrophic caves harbour high numbers of atmMOB, particularly upland soil cluster (USC), which significantly correlated with temperature, CH4 and CO2 concentrations. The absolute abundance of USCγ was higher than that of USCα. USCγ-OPS (open patch soil) and USCγ-SS (subsurface soil) dominated in most samples, whereas USCα-BFS (boreal forest soil) only predominated in the sediments near cave entrances, indicating niche differentiation of atmMOB in caves. Overwhelming dominance of homogenous selection in community assembly resulted in convergence of atmMOB communities. Collectively, our results demonstrated the niche differentiation of USC in subsurface alkaline caves and their non-negligible methane-oxidizing potential, providing brand-new knowledge about atmMOB ecology in subsurface biosphere.
Collapse
Affiliation(s)
- Xiaoyu Cheng
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, P. R. China
- School of Environmental Studies, China University of Geosciences, Wuhan, P. R. China
| | - Hongmei Wang
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, P. R. China
- School of Environmental Studies, China University of Geosciences, Wuhan, P. R. China
| | - Zhilin Zeng
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, P. R. China
- School of Environmental Studies, China University of Geosciences, Wuhan, P. R. China
| | - Lu Li
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, P. R. China
- School of Environmental Studies, China University of Geosciences, Wuhan, P. R. China
| | - Rui Zhao
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Paul L E Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Yiheng Wang
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, P. R. China
- School of Environmental Studies, China University of Geosciences, Wuhan, P. R. China
| | - Xiaoyan Liu
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, P. R. China
- School of Environmental Studies, China University of Geosciences, Wuhan, P. R. China
| | - Chuntian Su
- CAGS/Key Laboratory of Karst Dynamics, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, P. R. China
| | - Shuangjiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
16
|
Ghezzi D, Foschi L, Firrincieli A, Hong PY, Vergara F, De Waele J, Sauro F, Cappelletti M. Insights into the microbial life in silica-rich subterranean environments: microbial communities and ecological interactions in an orthoquartzite cave (Imawarì Yeuta, Auyan Tepui, Venezuela). Front Microbiol 2022; 13:930302. [PMID: 36212823 PMCID: PMC9537377 DOI: 10.3389/fmicb.2022.930302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/25/2022] [Indexed: 11/19/2022] Open
Abstract
Microbial communities inhabiting caves in quartz-rich rocks are still underexplored, despite their possible role in the silica cycle. The world’s longest orthoquartzite cave, Imawarì Yeuta, represents a perfect arena for the investigation of the interactions between microorganisms and silica in non-thermal environments due to the presence of extraordinary amounts of amorphous silica speleothems of different kinds. In this work, the microbial diversity of Imawarì Yeuta was dissected by analyzing nineteen samples collected from different locations representative of different silica amorphization phases and types of samples. Specifically, we investigated the major ecological patterns in cave biodiversity, specific taxa enrichment, and the main ecological clusters through co-occurrence network analysis. Water content greatly contributed to the microbial communities’ composition and structures in the cave leading to the sample clustering into three groups DRY, WET, and WATER. Each of these groups was enriched in members of Actinobacteriota, Acidobacteriota, and Gammaproteobacteria, respectively. Alpha diversity analysis showed the highest value of diversity and richness for the WET samples, while the DRY group had the lowest. This was accompanied by the presence of correlation patterns including either orders belonging to various phyla from WET samples or orders belonging to the Actinobacteriota and Firmicutes phyla from DRY group samples. The phylogenetic analysis of the dominant species in WET and DRY samples showed that Acidobacteriota and Actinobacteriota strains were affiliated with uncultured bacteria retrieved from various oligotrophic and silica/quartz-rich environments, not only associated with subterranean sites. Our results suggest that the water content greatly contributes to shaping the microbial diversity within a subterranean quartzite environment. Further, the phylogenetic affiliation between Imawarì Yeuta dominant microbes and reference strains retrieved from both surface and subsurface silica- and/or CO2/CO-rich environments, underlines the selective pressure applied by quartz as rock substrate. Oligotrophy probably in association with the geochemistry of silica/quartz low pH buffering activity and alternative energy sources led to the colonization of specific silica-associated microorganisms. This study provides clues for a better comprehension of the poorly known microbial life in subsurface and surface quartz-dominated environments.
Collapse
Affiliation(s)
- Daniele Ghezzi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Laboratory of NanoBiotechnology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- *Correspondence: Daniele Ghezzi,
| | - Lisa Foschi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Andrea Firrincieli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Pei-Ying Hong
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Freddy Vergara
- Teraphosa Exploring Team, Puerto Ordaz, Venezuela
- La Venta Geographic Explorations Association, Treviso, Italy
| | - Jo De Waele
- La Venta Geographic Explorations Association, Treviso, Italy
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Francesco Sauro
- Teraphosa Exploring Team, Puerto Ordaz, Venezuela
- La Venta Geographic Explorations Association, Treviso, Italy
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Martina Cappelletti,
| |
Collapse
|
17
|
Martin-Pozas T, Cuezva S, Fernandez-Cortes A, Cañaveras JC, Benavente D, Jurado V, Saiz-Jimenez C, Janssens I, Seijas N, Sanchez-Moral S. Role of subterranean microbiota in the carbon cycle and greenhouse gas dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154921. [PMID: 35364174 DOI: 10.1016/j.scitotenv.2022.154921] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/15/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Subterranean ecosystems play an active role in the global carbon cycle, yet only a few studies using indirect methods have focused on the role of the cave microbiota in this critical cycle. Here we present pioneering research based on in situ real-time monitoring of CO2 and CH4 diffusive fluxes and concurrent δ13C geochemical tracing in caves, combined with 16S microbiome analysis. Our findings show that cave sediments are promoting continuous CH4 consumption from cave atmosphere, resulting in a significant removal of 65% to 90%. This research reveals the most effective taxa and metabolic pathways in consumption and uptake of greenhouse gases. Methanotrophic bacteria were the most effective group involved in CH4 consumption, namely within the families Methylomonaceae, Methylomirabilaceae and Methylacidiphilaceae. In addition, Crossiella and Nitrosococcaceae wb1-P19 could be one of the main responsible of CO2 uptake, which occurs via the Calvin-Benson-Bassham cycle and reversible hydration of CO2. Thus, syntrophic relationships exist between Crossiella and nitrifying bacteria that capture CO2, consume inorganic N produced by heterotrophic ammonification in the surface of sediments, and induce moonmilk formation. Moonmilk is found as the most evolved phase of the microbial processes in cave sediments that fixes CO2 as calcite and intensifies CH4 oxidation. From an ecological perspective, cave sediments act qualitatively as soils, providing fundamental ecosystem services (e.g. nutrient cycling and carbon sequestration) with direct influence on greenhouse gas emissions.
Collapse
Affiliation(s)
- Tamara Martin-Pozas
- Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006 Madrid, Spain.
| | - Soledad Cuezva
- Department of Geology, Geography and Environment, University of Alcalá, Scientific Technological Campus, 28802 Alcalá de Henares, Spain; Plants and Ecosystems, Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium.
| | | | - Juan Carlos Cañaveras
- Department of Environmental and Earth Sciences, University of Alicante, San Vicente del Raspeig Campus, 03690 Alicante, Spain.
| | - David Benavente
- Department of Environmental and Earth Sciences, University of Alicante, San Vicente del Raspeig Campus, 03690 Alicante, Spain.
| | - Valme Jurado
- Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Institute of Natural Resources and Agricultural Biology (IRNAS-CSIC), 41012 Seville, Spain.
| | - Cesareo Saiz-Jimenez
- Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Institute of Natural Resources and Agricultural Biology (IRNAS-CSIC), 41012 Seville, Spain.
| | - Ivan Janssens
- Plants and Ecosystems, Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium.
| | - Naomi Seijas
- Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006 Madrid, Spain.
| | - Sergio Sanchez-Moral
- Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006 Madrid, Spain.
| |
Collapse
|
18
|
Wang Y, Cheng X, Wang H, Zhou J, Liu X, Tuovinen OH. The Characterization of Microbiome and Interactions on Weathered Rocks in a Subsurface Karst Cave, Central China. Front Microbiol 2022; 13:909494. [PMID: 35847118 PMCID: PMC9277220 DOI: 10.3389/fmicb.2022.909494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Karst caves are a natural oligotrophic subsurface biosphere widely distributed in southern China. Despite the progress in bacterial and fungal diversity, the knowledge about interactions between bacteria, fungi, and minerals is still limited in caves. Hence, for the first time, we investigated the interaction between bacteria and fungi living on weathered rocks in the Heshang Cave via high-throughput sequencing of 16S rRNA and ITS1 genes, and co-occurrence analysis. The mineral compositions of weathered rocks were analyzed by X-ray diffraction. Bacterial communities were dominated by Actinobacteria (33.68%), followed by Alphaproteobacteria (8.78%), and Planctomycetia (8.73%). In contrast, fungal communities were dominated by Sordariomycetes (21.08%) and Dothideomycetes (14.06%). Mineral substrata, particularly phosphorus-bearing minerals, significantly impacted bacterial (hydroxyapatite) and fungal (fluorapatite) communities as indicated by the redundancy analysis. In comparison with fungi, the development of bacterial communities was more controlled by the environmental selection indicated by the overwhelming contribution of deterministic processes. Co-occurrence network analysis showed that all nodes were positively linked, indicating ubiquitous cooperation within bacterial groups and fungal groups, as well as between bacteria and fungi under oligotrophic conditions in the subsurface biosphere. In total, 19 bacterial ASVs and 34 fungal OTUs were identified as keystone taxa, suggesting the fundamental role of fungi in maintaining the microbial ecosystem on weathered rocks. Ascomycota was most dominant in keystone taxa, accounting for 26.42%, followed by Actinobacteria in bacteria (24.53%). Collectively, our results confirmed the highly diverse bacterial and fungal communities on weathered rocks, and their close cooperation to sustain the subsurface ecosystem. Phosphorus-bearing minerals were of significance in shaping epipetreous bacterial and fungal communities. These observations provide new knowledge about microbial interactions between bacteria, fungi, and minerals in the subterranean biosphere.
Collapse
Affiliation(s)
- Yiheng Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.,School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Xiaoyu Cheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.,School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.,School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Jianping Zhou
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Xiaoyan Liu
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Olli H Tuovinen
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|