1
|
Agnivesh PK, Roy A, Sau S, Kumar S, Kalia NP. Advancements and challenges in tuberculosis drug discovery: A comprehensive overview. Microb Pathog 2025; 198:107074. [PMID: 39521155 DOI: 10.1016/j.micpath.2024.107074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Tuberculosis continues to pose a health challenge causing the loss of millions of lives despite the existence of multiple drugs, for treatment. The emergence of drug-resistant strains has made the situation more complex making it increasingly difficult to fight against this disease. This review outlines the challenges associated with TB drug discovery, the nature of Mycobacterium tuberculosis shedding light on the mechanisms that lead to treatment failure and antibiotic resistance. We explore promising drug targets, encompassing inhibition of mycolyarabinogalactan peptidoglycan (MAGP) assembly, mycolic acid biosynthesis, DNA replication, transcription, translation, protein synthesis, and bioenergetics/metabolism pathways. A comprehensive overview of the global pipeline of anti-tuberculosis drugs at various stages of clinical trials, the diverse strategies being pursued to tackle this complex disease. By gaining an understanding of the mechanisms that contribute to resistance development and identifying suitable targets, we can pave the way for more effective treatments and contribute to global efforts to combat drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Puja Kumari Agnivesh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Arnab Roy
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Shashikanta Sau
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Sunil Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Nitin Pal Kalia
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
2
|
Aragaw WW, Gebresilase TT, Negatu DA, Dartois V, Dick T. Multidrug tolerance conferred by loss-of-function mutations in anti-sigma factor RshA of Mycobacterium abscessus. Antimicrob Agents Chemother 2024; 68:e0105124. [PMID: 39470195 PMCID: PMC11619451 DOI: 10.1128/aac.01051-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/29/2024] [Indexed: 10/30/2024] Open
Abstract
Low-level drug resistance in noncanonical pathways can constitute steppingstones toward acquisition of high-level on-target resistance mutations in the clinic. To capture these intermediate steps in Mycobacterium abscessus (Mab), we performed classic mutant selection experiments with moxifloxacin at twofold its minimum inhibitory concentration (MIC) on solid medium. We found that low-level resistance emerged reproducibly as loss-of-function mutations in RshA (MAB_3542c), an anti-sigma factor that negatively regulates activity of SigH, which orchestrates a response to oxidative stress in mycobacteria. Since oxidative stress is generated in response to many antibiotics, we went on to show that deletion of rshA confers low to moderate resistance-by measure of MIC-to a dozen agents recommended or evaluated for the treatment of Mab pulmonary infections. Interestingly, this moderate resistance was associated with a wide range of drug tolerance, up to 1,000-fold increased survival of a ΔrshA Mab mutant upon exposure to several β-lactams and DNA gyrase inhibitors. Consistent with the putative involvement of the SigH regulon, we showed that addition of the transcription inhibitor rifabutin (RBT) abrogated the high-tolerance phenotype of ΔrshA to representatives of the β-lactam and DNA gyrase inhibitor classes. In a survey of 10,000 whole Mab genome sequences, we identified several loss-of-function mutations in rshA as well as non-synonymous polymorphisms in two cysteine residues critical for interactions with SigH. Thus, the multidrug multiform resistance phenotype we have uncovered may not only constitute a step toward canonical resistance acquisition during treatment but also contribute directly to treatment failure.
Collapse
Affiliation(s)
- Wassihun Wedajo Aragaw
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Tewodros T. Gebresilase
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Dereje A. Negatu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, Addis Ababa, Ethiopia
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
3
|
Butler MS, Vollmer W, Goodall ECA, Capon RJ, Henderson IR, Blaskovich MAT. A Review of Antibacterial Candidates with New Modes of Action. ACS Infect Dis 2024; 10:3440-3474. [PMID: 39018341 PMCID: PMC11474978 DOI: 10.1021/acsinfecdis.4c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/19/2024]
Abstract
There is a lack of new antibiotics to combat drug-resistant bacterial infections that increasingly threaten global health. The current pipeline of clinical-stage antimicrobials is primarily populated by "new and improved" versions of existing antibiotic classes, supplemented by several novel chemical scaffolds that act on traditional targets. The lack of fresh chemotypes acting on previously unexploited targets (the "holy grail" for new antimicrobials due to their scarcity) is particularly unfortunate as these offer the greatest opportunity for innovative breakthroughs to overcome existing resistance. In recognition of their potential, this review focuses on this subset of high value antibiotics, providing chemical structures where available. This review focuses on candidates that have progressed to clinical trials, as well as selected examples of promising pioneering approaches in advanced stages of development, in order to stimulate additional research aimed at combating drug-resistant infections.
Collapse
Affiliation(s)
- Mark S. Butler
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Waldemar Vollmer
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Emily C. A. Goodall
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Robert J. Capon
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Ian R. Henderson
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Mark A. T. Blaskovich
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
4
|
Cotroneo N, Stokes SS, Pucci MJ, Rubio A, Hamed KA, Critchley IA. Efficacy of SPR720 in murine models of non-tuberculous mycobacterial pulmonary infection. J Antimicrob Chemother 2024; 79:875-882. [PMID: 38394463 PMCID: PMC10984946 DOI: 10.1093/jac/dkae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Non-tuberculous mycobacterial pulmonary disease (NTM-PD) is increasing worldwide, with Mycobacterium avium complex (MAC) and Mycobacterium abscessus as the predominant pathogens. Current treatments are poorly tolerated and modestly effective, highlighting the need for new treatments. SPR719, the active moiety of the benzimidazole prodrug SPR720, inhibits the ATPase subunits of DNA gyrase B, a target not exploited by current antibiotics, and therefore, no cross-resistance is expected with standard-of-care (SOC) agents. OBJECTIVES To evaluate the in vitro activity of SPR719 against MAC and M. abscessus clinical isolates, including those resistant to SOC agents, and in vivo efficacy of SPR720 in murine non-tuberculous mycobacteria (NTM) pulmonary infection models. METHODS NTM isolates were tested for susceptibility to SPR719. Chronic C3HeB/FeJ and severe combined immunodeficient murine models of pulmonary infection were used to assess efficacy of SPR720 against MAC and M. abscessus, respectively. RESULTS SPR719 was active against MAC (MIC90, 2 mg/L) and M. abscessus (MIC90, 4 mg/L) clinical isolates. Efficacy of SPR720 was demonstrated against MAC pulmonary infection, both as a monotherapy and in combination with SOC agents. SPR720 monotherapy exhibited dose-dependent reduction in bacterial burden, with the largest reduction observed when combined with clarithromycin and ethambutol. Efficacy of SPR720 was also demonstrated against M. abscessus pulmonary infection where monotherapy exhibited a dose-dependent reduction in bacterial burden with further reductions detected when combined with SOC agents. CONCLUSIONS In vitro activity of SPR720 against common NTM pathogens and efficacy in murine infections warrant the continued clinical evaluation of SPR720 as a new oral option for the treatment of NTM-PD.
Collapse
Affiliation(s)
- Nicole Cotroneo
- Spero Therapeutics, Inc., 675 Massachusetts Avenue, 14th Floor, Cambridge, MA, USA
| | - Suzanne S Stokes
- Spero Therapeutics, Inc., 675 Massachusetts Avenue, 14th Floor, Cambridge, MA, USA
| | - Michael J Pucci
- Spero Therapeutics, Inc., 675 Massachusetts Avenue, 14th Floor, Cambridge, MA, USA
| | - Aileen Rubio
- Spero Therapeutics, Inc., 675 Massachusetts Avenue, 14th Floor, Cambridge, MA, USA
| | - Kamal A Hamed
- Spero Therapeutics, Inc., 675 Massachusetts Avenue, 14th Floor, Cambridge, MA, USA
| | - Ian A Critchley
- Spero Therapeutics, Inc., 675 Massachusetts Avenue, 14th Floor, Cambridge, MA, USA
| |
Collapse
|
5
|
Qiu X, Zhang Q, Li Z, Zhang J, Liu H. Revealing the Interaction Mechanism between Mycobacterium tuberculosis GyrB and Novobiocin, SPR719 through Binding Thermodynamics and Dissociation Kinetics Analysis. Int J Mol Sci 2024; 25:3764. [PMID: 38612573 PMCID: PMC11011931 DOI: 10.3390/ijms25073764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
With the rapid emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb), various levels of resistance against existing anti-tuberculosis (TB) drugs have developed. Consequently, the identification of new anti-TB targets and drugs is critically urgent. DNA gyrase subunit B (GyrB) has been identified as a potential anti-TB target, with novobiocin and SPR719 proposed as inhibitors targeting GyrB. Therefore, elucidating the molecular interactions between GyrB and its inhibitors is crucial for the discovery and design of efficient GyrB inhibitors for combating multidrug-resistant TB. In this study, we revealed the detailed binding mechanisms and dissociation processes of the representative inhibitors, novobiocin and SPR719, with GyrB using classical molecular dynamics (MD) simulations, tau-random acceleration molecular dynamics (τ-RAMD) simulations, and steered molecular dynamics (SMD) simulations. Our simulation results demonstrate that both electrostatic and van der Waals interactions contribute favorably to the inhibitors' binding to GyrB, with Asn52, Asp79, Arg82, Lys108, Tyr114, and Arg141 being key residues for the inhibitors' attachment to GyrB. The τ-RAMD simulations indicate that the inhibitors primarily dissociate from the ATP channel. The SMD simulation results reveal that both inhibitors follow a similar dissociation mechanism, requiring the overcoming of hydrophobic interactions and hydrogen bonding interactions formed with the ATP active site. The binding and dissociation mechanisms of GyrB with inhibitors novobiocin and SPR719 obtained in our work will provide new insights for the development of promising GyrB inhibitors.
Collapse
Affiliation(s)
- Xiaofei Qiu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (X.Q.); (Z.L.); (J.Z.)
| | - Qianqian Zhang
- Faculty of Applied Science, Macao Polytechnic University, Macao SAR, China;
| | - Zhaoguo Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (X.Q.); (Z.L.); (J.Z.)
| | - Juan Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (X.Q.); (Z.L.); (J.Z.)
| | - Huanxiang Liu
- Faculty of Applied Science, Macao Polytechnic University, Macao SAR, China;
| |
Collapse
|
6
|
Nguyen TQ, Heo BE, Jeon S, Ash A, Lee H, Moon C, Jang J. Exploring antibiotic resistance mechanisms in Mycobacterium abscessus for enhanced therapeutic approaches. Front Microbiol 2024; 15:1331508. [PMID: 38380095 PMCID: PMC10877060 DOI: 10.3389/fmicb.2024.1331508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Mycobacterium abscessus, a leading cause of severe lung infections in immunocompromised individuals, poses significant challenges for current therapeutic strategies due to resistance mechanisms. Therefore, understanding the intrinsic and acquired antibiotic resistance of M. abscessus is crucial for effective treatment. This review highlights the mechanisms employed by M. abscessus to sustain antibiotic resistance, encompassing not only conventional drugs but also newly discovered drug candidates. This comprehensive analysis aims to identify novel entities capable of overcoming the notorious resistance exhibited by M. abscessus, providing insights for the development of more effective therapeutic interventions.
Collapse
Affiliation(s)
- Thanh Quang Nguyen
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Bo Eun Heo
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Seunghyeon Jeon
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Anwesha Ash
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Heehyun Lee
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Cheol Moon
- Department of Clinical Laboratory Science, Semyung University, Jecheon, Republic of Korea
| | - Jichan Jang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
7
|
Aragaw WW, Negatu DA, Bungard CJ, Dartois VA, Marrouni AE, Nickbarg EB, Olsen DB, Warrass R, Dick T. Pharmacological validation of dihydrofolate reductase as a drug target in Mycobacterium abscessus. Antimicrob Agents Chemother 2024; 68:e0071723. [PMID: 38018963 PMCID: PMC10777855 DOI: 10.1128/aac.00717-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/13/2023] [Indexed: 11/30/2023] Open
Abstract
The Mycobacterium abscessus drug development pipeline is poorly populated, with particularly few validated target-lead couples to initiate de novo drug discovery. Trimethoprim, an inhibitor of dihydrofolate reductase (DHFR) used for the treatment of a range of bacterial infections, is not active against M. abscessus. Thus, evidence that M. abscessus DHFR is vulnerable to pharmacological intervention with a small molecule inhibitor is lacking. Here, we show that the pyrrolo-quinazoline PQD-1, previously identified as a DHFR inhibitor active against Mycobacterium tuberculosis, exerts whole cell activity against M. abscessus. Enzyme inhibition studies showed that PQD-1, in contrast to trimethoprim, is a potent inhibitor of M. abscessus DHFR and over-expression of DHFR causes resistance to PQD-1, providing biochemical and genetic evidence that DHFR is a vulnerable target and mediates PQD-1's growth inhibitory activity in M. abscessus. As observed in M. tuberculosis, PQD-1 resistant mutations mapped to the folate pathway enzyme thymidylate synthase (TYMS) ThyA. Like trimethoprim in other bacteria, PQD-1 synergizes with the dihydropteroate synthase (DHPS) inhibitor sulfamethoxazole (SMX), offering an opportunity to exploit the successful dual inhibition of the folate pathway and develop similarly potent combinations against M. abscessus. PQD-1 is active against subspecies of M. abscessus and a panel of clinical isolates, providing epidemiological validation of the target-lead couple. Leveraging a series of PQD-1 analogs, we have demonstrated a dynamic structure-activity relationship (SAR). Collectively, the results identify M. abscessus DHFR as an attractive target and PQD-1 as a chemical starting point for the discovery of novel drugs and drug combinations that target the folate pathway in M. abscessus.
Collapse
Affiliation(s)
- Wassihun Wedajo Aragaw
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Dereje A. Negatu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | | | - Véronique A. Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | | | | | | | - Ralf Warrass
- MSD Animal Health Innovation GmbH, Zur Propstei, Schwabenheim, Germany
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, USA
| |
Collapse
|
8
|
Kim DH, Zo S, Kim SY, Jhun BW. In Vitro Activity of Benzimidazole (SPR719) Against Clinical Isolates of Nontuberculous Mycobacteria With and Without Clarithromycin or Amikacin Resistance. Ann Lab Med 2024; 44:92-96. [PMID: 37665290 PMCID: PMC10485866 DOI: 10.3343/alm.2024.44.1.92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/11/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Limited data are available regarding the in vitro activity of SPR719, a derivative of benzimidazole, against diverse nontuberculous mycobacteria (NTM) species. We investigated the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of SPR719 against clinical NTM isolates, including clarithromycin- and amikacin-resistant strains. NTM isolates were obtained from patients with NTM-pulmonary disease caused by various NTM species, including Mycobacterium avium complex, M. abscessus (subspecies abscessus and massiliense), M. kansasii, and M. fortuitum. Regardless of clarithromycin or amikacin resistance, the MIC and MBC values of SPR719 were comparable among these major pathogenic NTM species. In over 70% of the isolates, the MIC values were ≤2 μg/mL with MBC values of ≤4 μg/mL. The MIC and MBC values of M. kansasii were relatively lower than those of the other species with little difference between them, demonstrating the bactericidal properties of SPR719. The in vitro activity of SPR719 against major clinical NTM species suggests that SPR719 can serve as a novel treatment option for NTM-pulmonary disease.
Collapse
Affiliation(s)
- Dae Hun Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sungmin Zo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Su-Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byung Woo Jhun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Piplani P, Kumar A, Kulshreshtha A, Vohra T, Piplani V. Recent Development of DNA Gyrase Inhibitors: An Update. Mini Rev Med Chem 2024; 24:1001-1030. [PMID: 37909434 DOI: 10.2174/0113895575264264230921080718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 11/03/2023]
Abstract
Antibiotic or antimicrobial resistance is an urgent global public health threat that occurs when bacterial or fungal infections do not respond to the drug regimen designed to treat these infections. As a result, these microbes are not evaded and continue to grow. Antibiotic resistance against natural and already-known antibiotics like Ciprofloxacin and Novobiocin can be overcome by developing an agent that can act in different ways. The success of agents like Zodiflodacin and Zenoxacin in clinical trials against DNA gyrase inhibitors that act on different sites of DNA gyrase has resulted in further exploration of this target. However, due to the emergence of bacterial resistance against these targets, there is a great need to design agents that can overcome this resistance and act with greater efficacy. This review provides information on the synthetic and natural DNA gyrase inhibitors that have been developed recently and their promising potential for combating antimicrobial resistance. The review also presents information on molecules that are in clinical trials and their current status. It also analysed the SAR studies and mechanisms of action of enlisted agents.
Collapse
Affiliation(s)
- Poonam Piplani
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160017, India
| | - Ajay Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160017, India
| | - Akanksha Kulshreshtha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160017, India
| | - Tamanna Vohra
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160017, India
| | - Vritti Piplani
- Bhojia Dental College and Hospital, Baddi, 173205, India
| |
Collapse
|
10
|
Verma A, Naik B, Kumar V, Mishra S, Choudhary M, Khan JM, Gupta AK, Pandey P, Rustagi S, Kakati B, Gupta S. Revolutionizing Tuberculosis Treatment: Uncovering New Drugs and Breakthrough Inhibitors to Combat Drug-Resistant Mycobacterium tuberculosis. ACS Infect Dis 2023; 9:2369-2385. [PMID: 37944023 DOI: 10.1021/acsinfecdis.3c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Tuberculosis (TB) is a global health threat that causes significant mortality. This review explores chemotherapeutics that target essential processes in Mycobacterium tuberculosis, such as DNA replication, protein synthesis, cell wall formation, energy metabolism, and proteolysis. We emphasize the need for new drugs to treat drug-resistant strains and shorten the treatment duration. Emerging targets and promising inhibitors were identified by examining the intricate biology of TB. This review provides an overview of recent developments in the search for anti-TB drugs with a focus on newly validated targets and inhibitors. We aimed to contribute to efforts to combat TB and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Ankit Verma
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Bindu Naik
- Department of Food Science and Technology, Graphic Era Deemed to be University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura 281406, UP, India
| | - Megha Choudhary
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Arun Kumar Gupta
- Department of Food Science and Technology, Graphic Era Deemed to be University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchur 788011, Assam, India
| | - Sarvesh Rustagi
- Department of Food Technology, UCALS, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Barnali Kakati
- Department of Microbiology, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, U.K., India
| | - Sanjay Gupta
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| |
Collapse
|
11
|
Negatu DA, Aragaw WW, Dartois V, Dick T. Characterization of In Vitro Resistance to Linezolid in Mycobacterium abscessus. Microbiol Spectr 2023; 11:e0219923. [PMID: 37458588 PMCID: PMC10434030 DOI: 10.1128/spectrum.02199-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 07/22/2023] Open
Abstract
Single-step selection of Mycobacterium abscessus mutants resistant to linezolid yielded high-level resistance at a low frequency that was associated with mutations in 23S rRNA or the ribosomal protein L3. Surprisingly, linezolid-resistant rRNA mutations conferred cross-resistance to several unrelated antibiotics. Low-level linezolid-resistant mutants were isolated at a higher frequency and were due to loss-of-function mutations in the transcriptional regulator MAB_4384, the repressor of the drug efflux pump MmpL5-MmpS5. IMPORTANCE The protein synthesis inhibitor linezolid is used for the treatment of lung disease caused by Mycobacterium abscessus. However, many strains of the bacterium show poor susceptibility to the antibiotic. For most clinical isolates, resistance is not due to mutations in the target of the drug, the ribosome. The mechanism responsible for non-target-related, indirect linezolid resistance is unknown. Here, we analyzed the development of linezolid resistance in the M. abscessus reference strain in vitro. We found, as expected, resistance mutations in the ribosome. In addition, we identified mutations in a system that involves a drug pump, suggesting drug efflux as a mechanism of resistance to linezolid. This finding may inform the analysis of clinical resistance to linezolid. Surprisingly, a subset of linezolid-resistant ribosome mutations conferred cross-resistance to several structurally and mechanistically unrelated drugs, uncovering a novel multidrug resistance mechanism.
Collapse
Affiliation(s)
- Dereje A. Negatu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Center for Innovative Drug Development and Therapeutic Trials for Africa, Addis Ababa University, Addis Ababa, Ethiopia
| | - Wassihun Wedajo Aragaw
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, D.C., USA
| |
Collapse
|
12
|
Butler MS, Henderson IR, Capon RJ, Blaskovich MAT. Antibiotics in the clinical pipeline as of December 2022. J Antibiot (Tokyo) 2023; 76:431-473. [PMID: 37291465 PMCID: PMC10248350 DOI: 10.1038/s41429-023-00629-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 06/10/2023]
Abstract
The need for new antibacterial drugs to treat the increasing global prevalence of drug-resistant bacterial infections has clearly attracted global attention, with a range of existing and upcoming funding, policy, and legislative initiatives designed to revive antibacterial R&D. It is essential to assess whether these programs are having any real-world impact and this review continues our systematic analyses that began in 2011. Direct-acting antibacterials (47), non-traditional small molecule antibacterials (5), and β-lactam/β-lactamase inhibitor combinations (10) under clinical development as of December 2022 are described, as are the three antibacterial drugs launched since 2020. Encouragingly, the increased number of early-stage clinical candidates observed in the 2019 review increased in 2022, although the number of first-time drug approvals from 2020 to 2022 was disappointingly low. It will be critical to monitor how many Phase-I and -II candidates move into Phase-III and beyond in the next few years. There was also an enhanced presence of novel antibacterial pharmacophores in early-stage trials, and at least 18 of the 26 phase-I candidates were targeted to treat Gram-negative bacteria infections. Despite the promising early-stage antibacterial pipeline, it is essential to maintain funding for antibacterial R&D and to ensure that plans to address late-stage pipeline issues succeed.
Collapse
Affiliation(s)
- Mark S Butler
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, 4072, Australia.
| | - Ian R Henderson
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Robert J Capon
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, 4072, Australia.
| |
Collapse
|
13
|
Van N, Degefu YN, Leus PA, Larkins-Ford J, Klickstein J, Maurer FP, Stone D, Poonawala H, Thorpe CM, Smith TC, Aldridge BB. Novel Synergies and Isolate Specificities in the Drug Interaction Landscape of Mycobacterium abscessus. Antimicrob Agents Chemother 2023; 67:e0009023. [PMID: 37278639 PMCID: PMC10353461 DOI: 10.1128/aac.00090-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023] Open
Abstract
Mycobacterium abscessus infections are difficult to treat and are often considered untreatable without tissue resection. Due to the intrinsic drug-resistant nature of the bacteria, combination therapy of three or more antibiotics is recommended. A major challenge in treating M. abscessus infections is the absence of a universal combination therapy with satisfying clinical success rates, leaving clinicians to treat infections using antibiotics lacking efficacy data. We systematically measured drug combinations in M. abscessus to establish a resource of drug interaction data and identify patterns of synergy to help design optimized combination therapies. We measured 191 pairwise drug combination effects among 22 antibacterials and identified 71 synergistic pairs, 54 antagonistic pairs, and 66 potentiator-antibiotic pairs. We found that commonly used drug combinations in the clinic, such as azithromycin and amikacin, are antagonistic in the lab reference strain ATCC 19977, whereas novel combinations, such as azithromycin and rifampicin, are synergistic. Another challenge in developing universally effective multidrug therapies for M. abscessus is the significant variation in drug response between isolates. We measured drug interactions in a focused set of 36 drug pairs across a small panel of clinical isolates with rough and smooth morphotypes. We observed strain-dependent drug interactions that cannot be predicted from single-drug susceptibility profiles or known drug mechanisms of action. Our study demonstrates the immense potential to identify synergistic drug combinations in the vast drug combination space and emphasizes the importance of strain-specific combination measurements for designing improved therapeutic interventions.
Collapse
Affiliation(s)
- Nhi Van
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, USA
| | - Yonatan N. Degefu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, USA
| | - Pathricia A. Leus
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Jonah Larkins-Ford
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Jacob Klickstein
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Florian P. Maurer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - David Stone
- Division of Geographic Medicine and Infectious Diseases, Department of Medicine, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Husain Poonawala
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, USA
- Division of Geographic Medicine and Infectious Diseases, Department of Medicine, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Cheleste M. Thorpe
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, USA
- Division of Geographic Medicine and Infectious Diseases, Department of Medicine, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Trever C. Smith
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, USA
| | - Bree B. Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, Massachusetts, USA
| |
Collapse
|
14
|
Winthrop KL, Flume P, Hamed KA. Nontuberculous mycobacterial pulmonary disease and the potential role of SPR720. Expert Rev Anti Infect Ther 2023; 21:1177-1187. [PMID: 37862563 DOI: 10.1080/14787210.2023.2270158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
INTRODUCTION Nontuberculous mycobacteria infect patients who have structural lung disease or those who are immunocompromised. Nontuberculous mycobacterial pulmonary disease (NTM-PD) is increasing in prevalence. Treatment guidelines for Mycobacterium avium complex (MAC) pulmonary disease involve a three-drug regimen with azithromycin, ethambutol, and rifampin, and those of Mycobacterium abscessus complex (MAB) pulmonary disease involve a combination of three or more antimicrobials including macrolides, amikacin, and a β-lactam or imipenem. However, these regimens are poorly tolerated and generally ineffective. AREAS COVERED SPR720 is a novel therapeutic agent that has demonstrated activity against a range of NTM species, including MAC and MAB. Encouraging in vitro and pre-clinical data demonstrate that SPR720 is active both alone and in combination with standard-of-care agents, with no evidence of cross-resistance to such agents. It is generally well tolerated with mainly gastrointestinal and headache adverse events of mild or moderate severity. EXPERT OPINION Management of NTM-PD is challenging for many reasons including length of therapy, poor efficacy, drug intolerance, recurrence, and resistance development. The current antimicrobial management options for NTM-PD are limited in number and there exists a large unmet need for new treatments. SPR720 has encouraging data that warrant further study in the context of a multidrug regimen.
Collapse
Affiliation(s)
| | - Patrick Flume
- Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kamal A Hamed
- Spero Therapeutics, Inc, Cambridge, Massachusetts, USA
| |
Collapse
|
15
|
Activity of Tricyclic Pyrrolopyrimidine Gyrase B Inhibitor against Mycobacterium abscessus. Antimicrob Agents Chemother 2022; 66:e0066922. [PMID: 36005813 PMCID: PMC9487482 DOI: 10.1128/aac.00669-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tricyclic pyrrolopyrimidines (TPPs) are a new class of antibacterials inhibiting the ATPase of DNA gyrase. TPP8, a representative of this class, is active against Mycobacterium abscessus in vitro. Spontaneous TPP8 resistance mutations mapped to the ATPase domain of M. abscessus DNA gyrase, and the compound inhibited DNA supercoiling activity of recombinant M. abscessus enzyme. Further profiling of TPP8 in macrophage and mouse infection studies demonstrated proof-of-concept activity against M. abscessus ex vivo and in vivo.
Collapse
|