1
|
Liu L, He X, Wang J, Li M, Wei X, Yang J, Cheng G, Du W, Liu Z, Xiao X. Exploring the associations between gut microbiota composition and SARS-CoV-2 inactivated vaccine response in mice with type 2 diabetes mellitus. mSphere 2024; 9:e0038024. [PMID: 39189780 PMCID: PMC11423585 DOI: 10.1128/msphere.00380-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination is crucial for protecting vulnerable individuals, yet individuals with type 2 diabetes mellitus (T2DM) often exhibit impaired vaccine responses. Emerging evidence suggests that the composition of the host microbiota, crucial in immune regulation and development, influences vaccine efficacy. This study aimed to characterize the relationships between the SARS-CoV-2 inactivated vaccine and the host microbiota (specifically, gut and lung microbiota) of C57BL/6 mice with T2DM. Employing 16S rRNA metagenomic sequencing and ultra-high-performance liquid chromatography-mass spectrometry, we observed lower alpha diversity and distinct beta diversity in fecal microbiota before vaccination and in gut microbiota 28 days post-vaccination between T2DM mice and healthy mice. Compared with healthy mice, T2DM mice showed a higher Firmicutes/Bacteroidetes ratio 28 days post-vaccination. Significant alterations in gut microbiota composition were detected following vaccination, while lung microbiota remained unchanged. T2DM was associated with a diminished initial IgG antibody response against the spike protein, which subsequently normalized after 28 days. Notably, the initial IgG response positively correlated with fecal microbiota alpha diversity pre-vaccination. Furthermore, after 28 days, increased relative abundance of gut probiotics (Bifidobacterium and Lactobacillus) and higher levels of the gut bacterial tryptophan metabolite, indole acrylic acid, were positively associated with IgG levels. These findings suggest a potential link between vaccine efficacy and gut microbiota composition. Nonetheless, further research is warranted to elucidate the precise mechanisms underlying the impact of the gut microbiome on vaccine response. Overall, this study enhances our understanding of the intricate relationships among host microbiota, SARS-CoV-2 vaccination, and T2DM, with potential implications for improving vaccine efficacy. IMPORTANCE Over 7 million deaths attributed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by 6 May 2024 underscore the urgent need for effective vaccination strategies. However, individuals with type 2 diabetes mellitus (T2DM) have been identified as particularly vulnerable and display compromised immune responses to vaccines. Concurrently, increasing evidence suggests that the composition and diversity of gut microbiota, crucial regulators of immune function, may influence the efficacy of vaccines. Against this backdrop, our study explores the complex interplay among SARS-CoV-2 inactivated vaccination, T2DM, and host microbiota. We discover that T2DM compromises the initial immune response to the SARS-CoV-2 inactivated vaccine, and this response is positively correlated with specific features of the gut microbiota, such as alpha diversity. We also demonstrate that the vaccination itself induces alterations in the composition and structure of the gut microbiota. These findings illuminate potential links between the gut microbiota and vaccine efficacy in individuals with T2DM, offering valuable insights that could enhance vaccine responses in this high-risk population.
Collapse
Affiliation(s)
- Long Liu
- Department of Pathogen Biology, School of Basic Medical Sciences, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Xianzhen He
- Department of Pathogen Biology, School of Basic Medical Sciences, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Department of Children's Medical Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Jiaqi Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Moran Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiuli Wei
- Department of Pathogen Biology, School of Basic Medical Sciences, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Jing Yang
- Department of Pathogen Biology, School of Basic Medical Sciences, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Weixing Du
- Department of Pathogen Biology, School of Basic Medical Sciences, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| | - Zhixin Liu
- Department of Pathogen Biology, School of Basic Medical Sciences, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Xiao Xiao
- Department of Pathogen Biology, School of Basic Medical Sciences, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
2
|
Gosain TP, Chugh S, Rizvi ZA, Chauhan NK, Kidwai S, Thakur KG, Awasthi A, Singh R. Mycobacterium tuberculosis strain with deletions in menT3 and menT4 is attenuated and confers protection in mice and guinea pigs. Nat Commun 2024; 15:5467. [PMID: 38937463 PMCID: PMC11211403 DOI: 10.1038/s41467-024-49246-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
The genome of Mycobacterium tuberculosis encodes for a large repertoire of toxin-antitoxin systems. In the present study, MenT3 and MenT4 toxins belonging to MenAT subfamily of TA systems have been functionally characterized. We demonstrate that ectopic expression of these toxins inhibits bacterial growth and this is rescued upon co-expression of their cognate antitoxins. Here, we show that simultaneous deletion of menT3 and menT4 results in enhanced susceptibility of M. tuberculosis upon exposure to oxidative stress and attenuated growth in guinea pigs and mice. We observed reduced expression of transcripts encoding for proteins that are essential or required for intracellular growth in mid-log phase cultures of ΔmenT4ΔT3 compared to parental strain. Further, the transcript levels of proteins involved in efficient bacterial clearance were increased in lung tissues of ΔmenT4ΔT3 infected mice relative to parental strain infected mice. We show that immunization of mice and guinea pigs with ΔmenT4ΔT3 confers significant protection against M. tuberculosis infection. Remarkably, immunization of mice with ΔmenT4ΔT3 results in increased antigen-specific TH1 bias and activated memory T cell response. We conclude that MenT3 and MenT4 are important for M. tuberculosis pathogenicity and strains lacking menT3 and menT4 have the potential to be explored further as vaccine candidates.
Collapse
Affiliation(s)
- Tannu Priya Gosain
- Centre for Tuberculosis Research, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Saurabh Chugh
- Centre for Tuberculosis Research, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Zaigham Abbas Rizvi
- Centre for Immunobiology and Immunotherapy, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Neeraj Kumar Chauhan
- Centre for Tuberculosis Research, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Saqib Kidwai
- Centre for Tuberculosis Research, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Krishan Gopal Thakur
- Structural Biology Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, 160036, India
| | - Amit Awasthi
- Centre for Immunobiology and Immunotherapy, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Ramandeep Singh
- Centre for Tuberculosis Research, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India.
| |
Collapse
|
3
|
Xu C, Hao M, Zai X, Song J, Huang Y, Gui S, Chen J. A new perspective on gut-lung axis affected through resident microbiome and their implications on immune response in respiratory diseases. Arch Microbiol 2024; 206:107. [PMID: 38368569 DOI: 10.1007/s00203-024-03843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/19/2024]
Abstract
The highly diverse microbial ecosystem of the human body colonizes the gastrointestinal tract has a profound impact on the host's immune, metabolic, endocrine, and other physiological processes, which are all interconnected. Specifically, gut microbiota has been found to play a crucial role in facilitating the adaptation and initiation of immune regulatory response through the gastrointestinal tract affecting the other distal mucosal sites such as lungs. A tightly regulated lung-gut axis during respiratory ailments may influence the various molecular patterns that instructs priming the disease severity to dysregulate the normal function. This review provides a comprehensive summary of current research on gut microbiota dysbiosis in respiratory diseases including asthma, pneumonia, bronchopneumonia, COPD during infections and cancer. A complex-interaction among gut microbiome, associated metabolites, cytokines, and chemokines regulates the protective immune response activating the mucosal humoral and cellular response. This potential mechanism bridges the regulation patterns through the gut-lung axis. This paper aims to advance the understanding of the crosstalk of gut-lung microbiome during infection, could lead to strategize to modulate the gut microbiome as a treatment plan to improve bad prognosis in various respiratory diseases.
Collapse
Affiliation(s)
- Cong Xu
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Mengqi Hao
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Xiaohu Zai
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Jing Song
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Yuzhe Huang
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, Anhui, China
| | - Shuangying Gui
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, Anhui, China
| | - Juan Chen
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China.
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, Anhui, China.
| |
Collapse
|
4
|
Zhao XC, Ju B, Xiu NN, Sun XY, Meng FJ. When inflammatory stressors dramatically change, disease phenotypes may transform between autoimmune hematopoietic failure and myeloid neoplasms. Front Immunol 2024; 15:1339971. [PMID: 38426096 PMCID: PMC10902444 DOI: 10.3389/fimmu.2024.1339971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Aplastic anemia (AA) and hypoplastic myelodysplastic syndrome are paradigms of autoimmune hematopoietic failure (AHF). Myelodysplastic syndrome and acute myeloid leukemia are unequivocal myeloid neoplasms (MNs). Currently, AA is also known to be a clonal hematological disease. Genetic aberrations typically observed in MNs are detected in approximately one-third of AA patients. In AA patients harboring MN-related genetic aberrations, a poor response to immunosuppressive therapy (IST) and an increased risk of transformation to MNs occurring either naturally or after IST are predicted. Approximately 10%-15% of patients with severe AA transform the disease phenotype to MNs following IST, and in some patients, leukemic transformation emerges during or shortly after IST. Phenotypic transformations between AHF and MNs can occur reciprocally. A fraction of advanced MN patients experience an aplastic crisis during which leukemic blasts are repressed. The switch that shapes the disease phenotype is a change in the strength of extramedullary inflammation. Both AHF and MNs have an immune-active bone marrow (BM) environment (BME). In AHF patients, an inflamed BME can be evoked by infiltrated immune cells targeting neoplastic molecules, which contributes to the BM-specific autoimmune impairment. Autoimmune responses in AHF may represent an antileukemic mechanism, and inflammatory stressors strengthen antileukemic immunity, at least in a significant proportion of patients who have MN-related genetic aberrations. During active inflammatory episodes, normal and leukemic hematopoieses are suppressed, which leads to the occurrence of aplastic cytopenia and leukemic cell regression. The successful treatment of underlying infections mitigates inflammatory stress-related antileukemic activities and promotes the penetration of leukemic hematopoiesis. The effect of IST is similar to that of treating underlying infections. Investigating inflammatory stress-powered antileukemic immunity is highly important in theoretical studies and clinical practice, especially given the wide application of immune-activating agents and immune checkpoint inhibitors in the treatment of hematological neoplasms.
Collapse
Affiliation(s)
- Xi-Chen Zhao
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Bo Ju
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Nuan-Nuan Xiu
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Xiao-Yun Sun
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Fan-Jun Meng
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
5
|
Tibbs-Cortes BW, Rahic-Seggerman FM, Schmitz-Esser S, Boggiatto PM, Olsen S, Putz EJ. Fecal and vaginal microbiota of vaccinated and non-vaccinated pregnant elk challenged with Brucella abortus. Front Vet Sci 2024; 11:1334858. [PMID: 38352039 PMCID: PMC10861794 DOI: 10.3389/fvets.2024.1334858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Brucella abortus is the causative agent of brucellosis in cattle and in humans, resulting in economic losses in the agricultural sector and representing a major threat to public health. Elk populations in the American Northwest are reservoirs for this bacterium and transmit the agent to domestic cattle herds. One potential strategy to mitigate the transmission of brucellosis by elk is vaccination of elk populations against B. abortus; however, elk appear to be immunologically distinct from cattle in their responses to current vaccination strategies. The differences in host response to B. abortus between cattle and elk could be attributed to differences between the cattle and elk innate and adaptive immune responses. Because species-specific interactions between the host microbiome and the immune system are also known to affect immunity, we sought to investigate interactions between the elk microbiome and B. abortus infection and vaccination. Methods We analyzed the fecal and vaginal microbial communities of B. abortus-vaccinated and unvaccinated elk which were challenged with B. abortus during the periparturient period. Results We observed that the elk fecal and vaginal microbiota are similar to those of other ruminants, and these microbial communities were affected both by time of sampling and by vaccination status. Notably, we observed that taxa representing ruminant reproductive tract pathogens tended to increase in abundance in the elk vaginal microbiome following parturition. Furthermore, many of these taxa differed significantly in abundance depending on vaccination status, indicating that vaccination against B. abortus affects the elk vaginal microbiota with potential implications for animal reproductive health. Discussion This study is the first to analyze the vaginal microbiota of any species of the genus Cervus and is also the first to assess the effects of B. abortus vaccination and challenge on the vaginal microbiome.
Collapse
Affiliation(s)
- Bienvenido W. Tibbs-Cortes
- Infectious Bacterial Diseases Research Unit, United States Department of Agriculture, Ames, IA, United States
| | - Faith M. Rahic-Seggerman
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Stephan Schmitz-Esser
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Paola M. Boggiatto
- Infectious Bacterial Diseases Research Unit, United States Department of Agriculture, Ames, IA, United States
| | - Steven Olsen
- Infectious Bacterial Diseases Research Unit, United States Department of Agriculture, Ames, IA, United States
| | - Ellie J. Putz
- Infectious Bacterial Diseases Research Unit, United States Department of Agriculture, Ames, IA, United States
| |
Collapse
|
6
|
Liu H, Ji S, Fang Y, Yi X, Wu F, Xing F, Wang C, Zhou H, Xu J, Sun W. Microbiome Alteration in Lung Tissues of Tuberculosis Patients Revealed by Metagenomic Next-Generation Sequencing and Immune-Related Transcriptional Profile Identified by Transcriptome Sequencing. ACS Infect Dis 2023; 9:2572-2582. [PMID: 37975314 PMCID: PMC10715245 DOI: 10.1021/acsinfecdis.3c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
This study explored alterations in the respiratory microbiome and transcriptome after Mycobacterium tuberculosis infection in tuberculosis (TB) patients. Metagenomic next-generation sequencing (mNGS) was adopted to reveal the microbiome in lung tissues from 110 TB and 25 nontuberculous (NonTB) patients. Transcriptome sequencing was performed in TB tissues (n = 3), tissues adjacent to TB (ParaTB, n = 3), and NonTB tissues (n = 3) to analyze differentially expressed genes (DEGs) and functional pathways. The microbial β diversity (p = 0.01325) in TB patients differed from that in the NonTB group, with 17 microbial species distinctively distributed. Eighty-three co-up-regulated DEGs were identified in the TB versus NonTB and the TB versus ParaTB comparison groups, and six were associated with immune response to Mtb. These DEGs were significantly enriched in the signaling pathways such as immune response, NF-κB, and B cell receptor. Data in the lung tissue microbiome and transcriptome in TB patients offer a sufficient understanding of the pathogenesis of TB.
Collapse
Affiliation(s)
- Hong Liu
- Department
of Cardiothoracic Surgery, Nanjing Hospital
Affiliated to Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Saiguang Ji
- Department
of Cardiothoracic Surgery, Nanjing Hospital
Affiliated to Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Yuan Fang
- Genoxor
Medical Science and Technology Inc., Shanghai 201112, China
| | - Xiaoli Yi
- Genoxor
Medical Science and Technology Inc., Shanghai 201112, China
| | - Fengsheng Wu
- Genoxor
Medical Science and Technology Inc., Shanghai 201112, China
| | - Fuchen Xing
- Department
of Cardiothoracic Surgery, Nanjing Hospital
Affiliated to Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Chenyan Wang
- Department
of Cardiothoracic Surgery, Nanjing Hospital
Affiliated to Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Hai Zhou
- Department
of Cardiothoracic Surgery, Nanjing Hospital
Affiliated to Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Jian Xu
- Department
of Cardiothoracic Surgery, Nanjing Hospital
Affiliated to Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Wei Sun
- Department
of Cardiothoracic Surgery, Nanjing Hospital
Affiliated to Nanjing University of Chinese Medicine, Nanjing 210003, China
| |
Collapse
|
7
|
Luo D, Shi CY, Wei NS, Yang BY, Qin K, Liu G, Dong BQ, Qin YX, Qin XL, Chen SY, Guo XJ, Gan L, Xu RL, Li H, Li J. The potential mechanism of the progression from latent to active tuberculosis based on the intestinal microbiota alterations. Tuberculosis (Edinb) 2023; 143:102413. [PMID: 37832478 DOI: 10.1016/j.tube.2023.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/10/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
INTRODUCTION Tuberculosis (TB) poses a serious challenge to global health systems. The altered intestinal microbiota is associated with the pathogenesis of TB, but the exact links remain unclear. METHODS 16 S rDNA sequencing was performed to comprehensively detect the changes in the intestinal microbiota of feces from active TB (ATB), latent TB infection (LTBI) and healthy controls (HC). RESULTS The rarefaction curves demonstrated the sequencing results' validity. The alpha diversity was lowest in ATB, while highest in HC. Boxplot of beta diversity showed significant differences in every two groups. LDA Effect Size (LEfSe) Analysis revealed differences in probiotic bacteria like Romboutsia, Bifidobacterium and Lactobacillus in LTBI, and pro-inflammatory bacteria like R. gnavus, Streptococcus and Erysipelatoclostridium in ATB, corresponding to the cluster analysis. PICRUST2 analysis revealed the pentose phosphate pathway was active in ATB and LTBI (more active in ATB). The differences between the groups are statistically significant at the P<0.05 level. CONCLUSION Our study indicated that from LTBI to ATB, some intestinal microbiota inhibit the synthesis of interferon (INF)-γ and interleukin (IL)-17, promoting the survival and spread of Mycobacterium tuberculosis (M. tb). In addition, the metabolites secreted by intestinal microbiota and dysbiosis in intestine also have an effect on the development of LTBI to ATB.
Collapse
Affiliation(s)
- Dan Luo
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China; Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning, China
| | - Chong-Yu Shi
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Nian-Sa Wei
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bo-Yi Yang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kai Qin
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gang Liu
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Bai-Qing Dong
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Yi-Xiang Qin
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiao-Ling Qin
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Shi-Yi Chen
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiao-Jing Guo
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Li Gan
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Ruo-Lan Xu
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Hai Li
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China.
| | - Jing Li
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China.
| |
Collapse
|
8
|
Ponziani FR, Coppola G, Rio P, Caldarelli M, Borriello R, Gambassi G, Gasbarrini A, Cianci R. Factors Influencing Microbiota in Modulating Vaccine Immune Response: A Long Way to Go. Vaccines (Basel) 2023; 11:1609. [PMID: 37897011 PMCID: PMC10611107 DOI: 10.3390/vaccines11101609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Vaccine immunogenicity still represents an unmet need in specific populations, such as people from developing countries and "edge populations". Both intrinsic and extrinsic factors, such as the environment, age, and dietary habits, influence cellular and humoral immune responses. The human microbiota represents a potential key to understanding how these factors impact the immune response to vaccination, with its modulation being a potential step to address vaccine immunogenicity. The aim of this narrative review is to explore the intricate interactions between the microbiota and the immune system in response to vaccines, highlighting the state of the art in gut microbiota modulation as a novel therapeutic approach to enhancing vaccine immunogenicity and laying the foundation for future, more solid data for its translation to the clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy (G.C.); (P.R.); (M.C.); (R.B.); (G.G.); (A.G.)
| |
Collapse
|
9
|
Han K, Dong H, Peng X, Sun J, Jiang H, Feng Y, Ding J, Xiao S. Transcriptome and the gut microbiome analysis of the impacts of Brucella abortus oral infection in BALB/c mice. Microb Pathog 2023; 183:106278. [PMID: 37532208 DOI: 10.1016/j.micpath.2023.106278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Brucellosis is a zoonotic infectious disease caused by Brucella spp, which could cause serious economic losses to animal husbandry and threaten human public health. Ingestion of contaminated animal products is a common way to acquire Brucella infection in humans, while research on effect of oral Brucella infection on host gut microbiota and the gene expression in intestinal tissues is limited. In the present study, 16S rRNA sequencing and RNA sequencing were conducted to explore gut microbiota and expression profiles of mRNAs in the colon of BALB/c mice, which were infected by Brucella abortus 2308. The fecal samples were collected at 7 and 28 days post infection to observe changes in the gut microbiota during Brucella infection. In the alpha diversity analysis, significantly increased Chao 1 index was observed at 28 days after Brucella infection. The Bray-Curtis distancebased principal coordinate analysis indicated that the WT group showed a separation from the Brucella infection groups. In addition, analysis of composition of microbes revealed that Prevotellaceae_NK3B31_group were more abundant in 1 week and 4 week infection groups, while Turicibacter was only more abundant in 4 week infection group. Based on the RNA-seq assay, a total of 45 differentially expressed genes were detected between Brucella abortus infection group and control group. Furthermore, KEGG pathway enrichment analysis showed that protein processing in endoplasmic reticulum, Legionellosis, Spliceosome, Hippo signaling pathway and Influenza A were significantly enriched in response to Brucella abortus infection. Our finding will help to improve the knowledge of the mechanisms underlying Brucella infection and may provide novel targets for future treatment of this pathogen infection.
Collapse
Affiliation(s)
- Kun Han
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hao Dong
- National Institutes for Food and Drug Control, Beijing, 102600, China
| | - Xiaowei Peng
- China Institute of Veterinary Drug Control, Beijing, 102600, China
| | - Jiali Sun
- China Institute of Veterinary Drug Control, Beijing, 102600, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Hui Jiang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yu Feng
- China Institute of Veterinary Drug Control, Beijing, 102600, China
| | - Jiabo Ding
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
10
|
Huang B, Wang J, Li L. Recent five-year progress in the impact of gut microbiota on vaccination and possible mechanisms. Gut Pathog 2023; 15:27. [PMID: 37308966 DOI: 10.1186/s13099-023-00547-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/17/2023] [Indexed: 06/14/2023] Open
Abstract
Vaccine is the most effective way to prevent the spread of communicable diseases, but the immune response induced by it varies greatly between individuals and populations in different regions of the world. Current studies have identified the composition and function of the gut microbiota as key factors in modulating the immune response to vaccination. This article mainly reviews the differences in gut microbiota among different groups of vaccinated people and animals, explores the possible mechanism of vaccine immunity affected by gut microbiota, and reviews the strategies for targeting gut microbiota to improve vaccine efficacy.
Collapse
Affiliation(s)
- Biqing Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University school of medicine, Hangzhou, China
- Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences & Peking Union Medical College, Hangzhou, China
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianwei Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University school of medicine, Hangzhou, China.
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University school of medicine, Hangzhou, China.
| |
Collapse
|
11
|
Ijaz MU, Vaziri F, Wan YJY. Effects of Bacillus Calmette-Guérin on immunometabolism, microbiome and liver diseases ⋆. LIVER RESEARCH 2023; 7:116-123. [PMID: 38223885 PMCID: PMC10786626 DOI: 10.1016/j.livres.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Metabolic diseases have overtaken infectious diseases as the most serious public health issue and economic burden in most countries. Moreover, metabolic diseases increase the risk of having infectious diseases. The treatment of metabolic disease may require a long-term strategy of taking multiple medications, which can be costly and have side effects. Attempts to expand the therapeutic use of vaccination to prevent or treat metabolic diseases have attracted significant interest. A growing body of evidence indicates that Bacillus Calmette-Guérin (BCG) offers protection against non-infectious diseases. The non-specific effects of BCG occur likely due to the induction of trained immunity. In this regard, understanding how BCG influences the development of chronic metabolic health including liver diseases would be important. This review focuses on research on BCG, the constellation of disorders associated with metabolic health issues including liver diseases and diabetes as well as how BCG affects the gut microbiome, immunity, and metabolism.
Collapse
Affiliation(s)
- Muhammad Umair Ijaz
- Department of Medical Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Farzam Vaziri
- Department of Medical Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
12
|
Jeyanathan M, Vaseghi-Shanjani M, Afkhami S, Grondin JA, Kang A, D'Agostino MR, Yao Y, Jain S, Zganiacz A, Kroezen Z, Shanmuganathan M, Singh R, Dvorkin-Gheva A, Britz-McKibbin P, Khan WI, Xing Z. Parenteral BCG vaccine induces lung-resident memory macrophages and trained immunity via the gut-lung axis. Nat Immunol 2022; 23:1687-1702. [PMID: 36456739 PMCID: PMC9747617 DOI: 10.1038/s41590-022-01354-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 10/05/2022] [Indexed: 12/03/2022]
Abstract
Aside from centrally induced trained immunity in the bone marrow (BM) and peripheral blood by parenteral vaccination or infection, evidence indicates that mucosal-resident innate immune memory can develop via a local inflammatory pathway following mucosal exposure. However, whether mucosal-resident innate memory results from integrating distally generated immunological signals following parenteral vaccination/infection is unclear. Here we show that subcutaneous Bacillus Calmette-Guérin (BCG) vaccination can induce memory alveolar macrophages (AMs) and trained immunity in the lung. Although parenteral BCG vaccination trains BM progenitors and circulating monocytes, induction of memory AMs is independent of circulating monocytes. Rather, parenteral BCG vaccination, via mycobacterial dissemination, causes a time-dependent alteration in the intestinal microbiome, barrier function and microbial metabolites, and subsequent changes in circulating and lung metabolites, leading to the induction of memory macrophages and trained immunity in the lung. These data identify an intestinal microbiota-mediated pathway for innate immune memory development at distal mucosal tissues and have implications for the development of next-generation vaccine strategies against respiratory pathogens.
Collapse
Affiliation(s)
- Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Maryam Vaseghi-Shanjani
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jensine A Grondin
- Farncombe Family Digestive Health Research Institute and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Alisha Kang
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael R D'Agostino
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Yushi Yao
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Department of Immunology, Zhejiang University, Zhejiang, China
| | - Shreya Jain
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Anna Zganiacz
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zachary Kroezen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Meera Shanmuganathan
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Ramandeep Singh
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Anna Dvorkin-Gheva
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Philip Britz-McKibbin
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zhou Xing
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|