1
|
Liu H, Moran RA, Doughty EL, Hua X, Snaith AE, Zhang L, Chen X, Guo F, van Schaik W, McNally A, Yu Y. Longitudinal genomics reveals carbapenem-resistant Acinetobacter baumannii population changes with emergence of highly resistant ST164 clone. Nat Commun 2024; 15:9483. [PMID: 39488505 PMCID: PMC11531505 DOI: 10.1038/s41467-024-53817-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) is a persistent nosocomial pathogen that poses a significant threat to global public health, particularly in intensive care units (ICUs). Here we report a three-month longitudinal genomic surveillance study conducted in a Hangzhou ICU in 2021. This followed a three-month study conducted in the same ICU in 2019, and infection prevention and control (IPC) interventions targeting patients, staff and the ICU environment. Most A. baumannii isolated in this ICU in 2021 were CRAB (80.9%; 419/518) with higher-level resistance to carbapenems. This was accompanied by the proportion of global clone 2 (GC2) isolates falling from 99.5% in 2019 to 50.8% (213/419) in 2021. The phylogenetic diversity of GC2 increased, apparently driven by regular introductions of distinct clusters in association with patients. The remaining CRAB (40.2%; 206/419) were a highly clonal population of ST164. Isolates of ST164 carried blaNDM-1 and blaOXA-23 carbapenemase genes, and exhibited higher carbapenem MIC50/MIC90 values than GC2. Comparative analysis of publicly available genomes from 26 countries (five continents) revealed that ST164 has evolved towards carbapenem resistance on multiple independent occasions. Its success in this ICU and global capacity for acquiring resistance determinants indicate that ST164 CRAB is an emerging high-risk lineage of global concern.
Collapse
Affiliation(s)
- Haiyang Liu
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, 310014, Hangzhou, Zhejiang, China
- Zhejiang University School of Medicine, Hangzhou, 310016, Hangzhou, Zhejiang, China
| | - Robert A Moran
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Emma L Doughty
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, 310016, Hangzhou, Zhejiang, China
| | - Ann E Snaith
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Linghong Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, 310016, Hangzhou, Zhejiang, China
| | - Xiangping Chen
- Intensive Care Unit, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, Zhejiang, China
| | - Feng Guo
- Intensive Care Unit, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, Zhejiang, China
| | - Willem van Schaik
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | - Yunsong Yu
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, 310014, Hangzhou, Zhejiang, China.
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Ijaz S, Ansari F, Nawaz M, Ejaz H, Anjum AA, Saeed A, Ali T, Rehman OU, Fatima E, Ijaz T. Genomic Insights into and In Vitro Evaluation of Antimicrobial Combination Therapies for Carbapenem-Resistant Acinetobacter baumannii. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1086. [PMID: 39064515 PMCID: PMC11278937 DOI: 10.3390/medicina60071086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: Acinetobacter baumannii (A. baumannii), particularly carbapenem-resistant A. baumannii (CRAB), represents a grave concern in healthcare settings and is associated with high mortality. This study aimed to conduct molecular, mutational, and phylogenetic analyses of specific genes in CRAB and evaluate the synergistic effects of selected antimicrobial combinations. Materials and Methods: Phenotypic characterization was performed on six CRAB strains by using the Modified Hodge Test (MHT) and IMP-EDTA Double-Disc Synergy Test (IMP-EDTA DDST). Carbapenemase- and metallo-beta-lactamase-encoding genes were amplified by using Polymerase Chain Reaction. Phylogenetic analysis using the MEGA 11 tool was used to determine the evolutionary relatedness of these genes. Mutational analysis was performed by using I-Mutant, MUPro, and PHD-SNP bioinformatics tools to predict mutations in the carbapenemase-encoding genes. Microdilution checkerboard titration assessed the synergistic effects of antimicrobial combinations (azithromycin-meropenem, rifampicin-meropenem, meropenem-colistin, and azithromycin-colistin) on these CRAB isolates. Results: The phenotypic characterization of six CRAB isolates revealed positive results for MHT and IMP-EDTA DDST. The molecular characterization revealed that carbapenemase- and MBL-encoding genes were present in all isolates with varying frequencies, including blaOXA-51 (100%) and blaIMP (0%). The sequence analysis revealed high evolutionary relatedness to sequences in the NCBI database. The mutational analysis identified 16 mutations, of which 1 mutation (P116L) in the blaOXA-58 gene predicted a change in the protein product, potentially contributing to carbapenem resistance. The checkerboard titration method did not reveal any synergism among the tested antimicrobial combinations against CRAB. Conclusion: This study's findings underscore the significant challenges posed by CRAB isolates harboring multiple resistant genes in treatment. This highlights the urgent need for novel antimicrobial agents, a crucial step towards reducing mortality rates not only in Pakistan but also globally.
Collapse
Affiliation(s)
- Saadia Ijaz
- Institute of Molecular Biology & Biotechnology (IMBB), University of Lahore, Lahore 54590, Pakistan
| | - Farheen Ansari
- Institute of Molecular Biology & Biotechnology (IMBB), University of Lahore, Lahore 54590, Pakistan
| | - Muhammad Nawaz
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Aftab Ahmad Anjum
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Aqib Saeed
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Tehreem Ali
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Obaid Ur Rehman
- Department of Medicine, Services Institute of Medical Sciences, Lahore 54000, Pakistan
| | - Eeshal Fatima
- Department of Medicine, Services Institute of Medical Sciences, Lahore 54000, Pakistan
| | - Tayyaba Ijaz
- Mayo Hospital, Health Department, Lahore 54000, Pakistan
| |
Collapse
|
3
|
Xu A, Li M, Hang Y, Zeng L, Zhang X, Hu Y, Guo Q, Wang M. Multicenter retrospective genomic characterization of carbapenemase-producing Acinetobacter baumannii isolates from Jiangxi patients 2021-2022: identification of a novel international clone, IC11. mSphere 2024; 9:e0027624. [PMID: 38832781 PMCID: PMC11332331 DOI: 10.1128/msphere.00276-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
This study aimed to characterize carbapenem-resistant Acinetobacter baumannii (CRAB) isolates from Jiangxi patients using whole-genome sequencing (WGS). We subjected 100 clinical CRAB strains isolated from the three local largest teaching hospitals to WGS and antimicrobial susceptibility testing. Molecular epidemiology was investigated using multilocus sequence typing, core genome multilocus typing, core genome single-nucleotide polymorphism phylogeny, and pulsed-field gel electrophoresis. The most prevalent acquired carbapenemase was blaOXA-23, predominant in all isolates (100%). Isolates belonging to the dominating international clone IC2 accounted for 92% of all isolates. International IC11 (ST164Pas/ST1418Ox) clone was found in an additional 8% (eight isolates), with seven isolates (87.5%) carrying an acquired additional blaNDM-1 carbapenemase. The oxa23-associated Tn2009, either alone or in a tandem repeat structure containing four copies of blaOXA-23, was discovered in 62% (57 isolates) of IC2. The oxa23-associated Tn2006 was identified in 38% (35 isolates) of IC2 and all IC11 isolates. A putative conjugative RP-T1 (formerly RepAci6) plasmid with blaOXA-23 in Tn2006 within AbaR4, designated pSRM1.1, was found in IC2 A. baumannii strain SRM1. The blaNDM-1 gene found in seven IC11 isolates was located on a novel Tn6924-like transposon, a first-time report in IC11. These findings underscore the significant importance of real-time surveillance to prevent the further spread of CRAB. IMPORTANCE Carbapenem-resistant Acinetobacter baumannii (CRAB) is notorious for causing difficult-to-treat infections. To elucidate the molecular and clinical epidemiology of CRAB in Jiangxi, clinical CRAB isolates were collected and underwent whole-genome sequencing and antibiotic susceptibility phenotyping. Key findings included the predominance of OXA-23-producing IC2 A. baumannii, marked by the emergence of OXA-23 and NDM-1-producing IC11 strains.
Collapse
Affiliation(s)
- An Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of People’s Republic of China, Shanghai, China
| | - Min Li
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yaping Hang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lingbing Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xuefei Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of People’s Republic of China, Shanghai, China
| | - Yiyi Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of People’s Republic of China, Shanghai, China
| | - Qinglan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of People’s Republic of China, Shanghai, China
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of People’s Republic of China, Shanghai, China
| |
Collapse
|
4
|
Liu H, Tu Y, He J, Xu Q, Zhang X, Mu X, Chen M, Zhou H, Li X. Emergence and plasmid cointegration-based evolution of NDM-1-producing ST107 Citrobacter freundii high-risk resistant clone in China. Int J Antimicrob Agents 2024; 63:107069. [PMID: 38141833 DOI: 10.1016/j.ijantimicag.2023.107069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Carbapenem-resistant Citrobacter freundii (CRCF) poses an enormous challenge in the health care setting. However, the epidemiology and plasmid dynamic evolution of this species have not been well studied, especially for the novel high-risk resistant clones in the intensive care units (ICUs). Here, we characterised the cointegration-based plasmid dynamic evolution of the emerging ST107 CRCF clone in China. Twenty CRCF strains were identified, including ST22 (30%), ST107 (25%), ST396 (10%) and ST116 (10%). Interestingly, the tigecycline (TGC) resistance gene cluster tmexCD2-toprJ2 and blaNDM-1 and blaKPC-2 were simultaneously found in one ST107 strain. Epidemiological analysis showed that ST107 clone contained human- and environment-derived strains from five countries. Notably, 93.75% (15/16) of the isolates harboured blaNDM-1 or blaKPC-2. Plasmid fusion among various ST107 strains of two patients occurred in the same ICU, mediated by Tn5403 and IS26-based insertion and deletion events. pCF1807-2 carried blaNDM-1 while pCF1807-3 carried both tmexCD2-toprJ2 and blaKPC-2 in the CF1807 strain. Importantly, the cointegrate plasmid pCF1807-2 exhibited higher transfer efficiency and could remain stable after serial passage. Notably, no fitness cost was observed for the host. In conclusion, ST107 CRCF is a high-risk resistant clone due to its ability to integrate resistant plasmids. Our findings elucidated the potential threat and global transmission of the ST107 lineage, and reasonable monitoring should be performed to prevent its further spread in hospitals.
Collapse
Affiliation(s)
- Haiyang Liu
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuexing Tu
- Department of Critical care medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jintao He
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qingye Xu
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaofan Zhang
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xinli Mu
- Department of Infectious Diseases, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Minhua Chen
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xi Li
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Azaiez S, Haenni M, Cheikh AB, Chalbi MS, Messaoudi A, Tilouch L, Bahri S, Drapeau A, Saras E, Mtibâa M, Zouaoui R, Said H, Madec JY, Lupo A, Mansour W. Healthcare Equipment and Personnel Reservoirs of Carbapenem-Resistant Acinetobacter baumannii Epidemic Clones in Intensive Care Units in a Tunisian Hospital. Microorganisms 2023; 11:2637. [PMID: 38004649 PMCID: PMC10672855 DOI: 10.3390/microorganisms11112637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) strains can cause severe and difficult-to-treat infections in patients with compromised general health. CRAB strains disseminate rapidly in nosocomial settings by patient-to-patient contact, through medical devices and inanimate reservoirs. The occurrence of CRAB in patients residing in the intensive care units (ICUs) of the Sahloul University hospital in Sousse, Tunisia is high. The objective of the current study was to determine whether the surfaces of items present in five ICU wards and the medical personnel there operating could serve as reservoirs for CRAB strains. Furthermore, CRAB isolates from patients residing in the ICUs during the sampling campaign were analyzed for genome comparison with isolates from the ICUs environment. Overall, 206 items were screened for CRAB presence and 27 (14%) were contaminated with a CRAB isolate. The items were located in several areas of three ICUs. Eight of the 54 (15%) screened people working in the wards were colonized by CRAB on the hands. Patients residing in the ICUs were infected with CRAB strains sharing extensive genomic similarity with strains recovered in the nosocomial environment. The strains belonged to three sub-clades of the internationally disseminated clone (ST2). A clone emerging in the Mediterranean basin (ST85) was detected as well. The strains were OXA-23 or NDM-1 producers and were also pan-aminoglycoside resistant due to the presence of the armA gene. Hygiene measures are urgent to be implemented in the Sahloul hospital to avoid further spread of difficult-to-treat CRAB strains and preserve health of patients and personnel operating in the ICU wards.
Collapse
Affiliation(s)
- Sana Azaiez
- Laboratoire de Recherche Biophysique Métabolique et Pharmacologie Appliquée, LR12ES02, Faculté de Médecine Ibn Al Jazzar Sousse, Université de Sousse, Sousse 4002, Tunisia; (S.A.); (A.M.); (S.B.); (M.M.); (R.Z.)
| | - Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, ANSES—Université de Lyon, 69007 Lyon, France; (M.H.); (A.D.); (E.S.); (J.-Y.M.)
| | - Asma Ben Cheikh
- Departement of Prevention and Security of Care, Sahloul University Hospital of Sousse, Sousse 4054, Tunisia; (A.B.C.); (M.S.C.); (H.S.)
- Faculté de Médecine Ibn Al Jazzar Sousse, Université de Sousse, Sousse 4002, Tunisia
| | - Mohamed Sahbi Chalbi
- Departement of Prevention and Security of Care, Sahloul University Hospital of Sousse, Sousse 4054, Tunisia; (A.B.C.); (M.S.C.); (H.S.)
- Faculté de Médecine Ibn Al Jazzar Sousse, Université de Sousse, Sousse 4002, Tunisia
| | - Aziza Messaoudi
- Laboratoire de Recherche Biophysique Métabolique et Pharmacologie Appliquée, LR12ES02, Faculté de Médecine Ibn Al Jazzar Sousse, Université de Sousse, Sousse 4002, Tunisia; (S.A.); (A.M.); (S.B.); (M.M.); (R.Z.)
| | - Lamia Tilouch
- Laboratoire de Microbiologie Sahloul, University Hospital of Sousse, Sousse 4054, Tunisia;
- Faculté de Pharmacie, Université de Monastir, Monastir 5019, Tunisia
| | - Sana Bahri
- Laboratoire de Recherche Biophysique Métabolique et Pharmacologie Appliquée, LR12ES02, Faculté de Médecine Ibn Al Jazzar Sousse, Université de Sousse, Sousse 4002, Tunisia; (S.A.); (A.M.); (S.B.); (M.M.); (R.Z.)
| | - Antoine Drapeau
- Unité Antibiorésistance et Virulence Bactériennes, ANSES—Université de Lyon, 69007 Lyon, France; (M.H.); (A.D.); (E.S.); (J.-Y.M.)
| | - Estelle Saras
- Unité Antibiorésistance et Virulence Bactériennes, ANSES—Université de Lyon, 69007 Lyon, France; (M.H.); (A.D.); (E.S.); (J.-Y.M.)
| | - Mariem Mtibâa
- Laboratoire de Recherche Biophysique Métabolique et Pharmacologie Appliquée, LR12ES02, Faculté de Médecine Ibn Al Jazzar Sousse, Université de Sousse, Sousse 4002, Tunisia; (S.A.); (A.M.); (S.B.); (M.M.); (R.Z.)
| | - Rania Zouaoui
- Laboratoire de Recherche Biophysique Métabolique et Pharmacologie Appliquée, LR12ES02, Faculté de Médecine Ibn Al Jazzar Sousse, Université de Sousse, Sousse 4002, Tunisia; (S.A.); (A.M.); (S.B.); (M.M.); (R.Z.)
| | - Houyem Said
- Departement of Prevention and Security of Care, Sahloul University Hospital of Sousse, Sousse 4054, Tunisia; (A.B.C.); (M.S.C.); (H.S.)
- Faculté de Médecine Ibn Al Jazzar Sousse, Université de Sousse, Sousse 4002, Tunisia
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, ANSES—Université de Lyon, 69007 Lyon, France; (M.H.); (A.D.); (E.S.); (J.-Y.M.)
| | - Agnese Lupo
- Unité Antibiorésistance et Virulence Bactériennes, ANSES—Université de Lyon, 69007 Lyon, France; (M.H.); (A.D.); (E.S.); (J.-Y.M.)
| | - Wejdene Mansour
- Laboratoire de Recherche Biophysique Métabolique et Pharmacologie Appliquée, LR12ES02, Faculté de Médecine Ibn Al Jazzar Sousse, Université de Sousse, Sousse 4002, Tunisia; (S.A.); (A.M.); (S.B.); (M.M.); (R.Z.)
| |
Collapse
|
6
|
Emergence and Evolution of OXA-23-Producing ST46 Pas-ST462 Oxf-KL28-OCL1 Carbapenem-Resistant Acinetobacter baumannii Mediated by a Novel IS Aba1-Based Tn 7534 Transposon. Antibiotics (Basel) 2023; 12:antibiotics12020396. [PMID: 36830307 PMCID: PMC9951949 DOI: 10.3390/antibiotics12020396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) isolates of global clone 1 (GC1) and global clone 2 (GC2) have been widely reported. Nevertheless, non-GC1 and non-GC2 CRAB strains have been studied less. In particular, no reports concerning sequence type 46 (ST46Pas) CRAB strains have been described thus far. In this work, the genomic features and possible evolution mechanism of ST46Pas OXA-23-producing CRAB isolates from clinical specimens are reported for the first time. Antimicrobial susceptibility testing of three ST46Pas strains revealed identical resistance profiles (resistance to imipenem, meropenem, ciprofloxacin and the combination of cefoperazone/sulbactam at a 2:1 ratio). They were found to belong to ST46Pas and ST462Oxf with capsular polysaccharide 28 (KL28) and lipooligosaccharide 1 (OCL1), respectively. Whole-genome sequencing (WGS) revealed that all contained one copy of chromosomal blaOXA-23, which was located in a novel ISAba1-based Tn7534 composite transposon. In particular, another copy of the Tn7534 composite transposon was identified in an Hgz_103-type plasmid with 9 bp target site duplications (TSDs, ACAACATGC) in the A. baumannii ZHOU strain. As the strains originated from two neighboring intensive care units (ICUs), ST46Pas OXA-23-producing CRAB strains may have evolved via transposition events or a pdif module. Based on the GenBank database, ST46Pas strains were collected from various sources; however, most were collected in Hangzhou (China) from 2014 to 2021. Pan-genome analysis revealed 3276 core genes, 0 soft-core genes, 768 shell genes and 443 cloud genes shared among all ST46Pas strains. In conclusion, the emergence of ST46Pas CRAB strains might present a new threat to healthcare settings; therefore, effective surveillance is required to prevent further dissemination.
Collapse
|