1
|
Mes W, Lücker S, Jetten MS, Siepel H, Gorissen M, van Kessel MA. Gill-associated ammonia oxidizers are widespread in teleost fish. Microbiol Spectr 2024; 12:e0029524. [PMID: 39324788 PMCID: PMC11537070 DOI: 10.1128/spectrum.00295-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024] Open
Abstract
Recent advances in sequencing methods have greatly expanded the knowledge of teleost-associated microorganisms. While fish-gut microbiomes are comparatively well studied, less attention has gone toward other, external organ-microbiome associations. Gills are particularly interesting to investigate due to their functions in gas exchange, osmoregulation, and nitrogen excretion. We recently discovered a branchial symbiosis between nitrogen-cycling bacteria and teleosts (zebrafish and carp), in which ammonia-oxidizing Nitrosomonas and denitrifying bacteria together convert toxic ammonia excreted by the fish into harmless dinitrogen (N2) gas. This symbiosis can function as a "natural biofilter" in fish gills and can potentially occur in all ammonotelic fish species, but it remains unknown how widespread this symbiosis is. In this study, we analyzed all publicly available gill microbiome data sets and checked for the presence of Nitrosomonas. We discovered that more than half of the described fish gill microbiomes contain 16S rRNA gene sequences of ammonia-oxidizing bacteria (AOB). The presence of gill-specific AOB was shown in both wild and aquacultured fish, as well as in marine and freshwater fish species. Based on these findings, we propose that ammonia oxidizers are widespread in teleost fish gills. These gill-associated AOB can significantly affect fish nitrogen excretion, and the widespread nature of this association suggests that the gill-associated AOB can have similar impacts on more fish species. Future research should address the contribution of these microorganisms to fish nitrogen metabolism and the fundamental characteristics of this novel symbiosis.IMPORTANCERecent advances in sequencing have increased our knowledge of teleost-associated microbiota, but the gill microbiome has received comparatively little attention. We recently discovered a consortium of nitrogen-cycling bacteria in the gills of common carp and zebrafish, which are able to convert (toxic) ammonia into harmless dinitrogen gas. These microorganisms thus function as a natural nitrogen biofilter. We analyzed all available gill microbiome data sets to determine how widespread gill-associated ammonia-oxidizing bacteria (AOB) are. More than half of the data sets contained AOB, representing both aquacultured and wild fish from freshwater and marine habitats. In total, 182 amplicon sequencing variants were obtained, of which 115 were found specifically in the gills and not the environmental microbiomes. As gill-associated AOB are apparently widespread in teleost fish, it is important to study their impact on host nitrogen excretion and the potential to reduce ammonia accumulation in (recirculating) aquaculture of relevant fish species.
Collapse
Affiliation(s)
- Wouter Mes
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
- Department of Plant & Animal Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Sebastian Lücker
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Mike S.M. Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Henk Siepel
- Department of Plant & Animal Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Marnix Gorissen
- Department of Plant & Animal Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Maartje A.H.J. van Kessel
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
2
|
Massier L, Musat N, Stumvoll M, Tremaroli V, Chakaroun R, Kovacs P. Tissue-resident bacteria in metabolic diseases: emerging evidence and challenges. Nat Metab 2024; 6:1209-1224. [PMID: 38898236 DOI: 10.1038/s42255-024-01065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
Although the impact of the gut microbiome on health and disease is well established, there is controversy regarding the presence of microorganisms such as bacteria and their products in organs and tissues. However, recent contamination-aware findings of tissue-resident microbial signatures provide accumulating evidence in support of bacterial translocation in cardiometabolic disease. The latter provides a distinct paradigm for the link between microbial colonizers of mucosal surfaces and host metabolism. In this Perspective, we re-evaluate the concept of tissue-resident bacteria including their role in metabolic low-grade tissue and systemic inflammation. We examine the limitations and challenges associated with studying low bacterial biomass samples and propose experimental and analytical strategies to overcome these issues. Our Perspective aims to encourage further investigation of the mechanisms linking tissue-resident bacteria to host metabolism and their potentially actionable health implications for prevention and treatment.
Collapse
Affiliation(s)
- Lucas Massier
- Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Niculina Musat
- Aarhus University, Department of Biology, Section for Microbiology, Århus, Denmark
| | - Michael Stumvoll
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Rima Chakaroun
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
3
|
Tierney BT, Kim J, Overbey EG, Ryon KA, Foox J, Sierra MA, Bhattacharya C, Damle N, Najjar D, Park J, Garcia Medina JS, Houerbi N, Meydan C, Wain Hirschberg J, Qiu J, Kleinman AS, Al-Ghalith GA, MacKay M, Afshin EE, Dhir R, Borg J, Gatt C, Brereton N, Readhead BP, Beyaz S, Venkateswaran KJ, Wiseman K, Moreno J, Boddicker AM, Zhao J, Lajoie BR, Scott RT, Altomare A, Kruglyak S, Levy S, Church GM, Mason CE. Longitudinal multi-omics analysis of host microbiome architecture and immune responses during short-term spaceflight. Nat Microbiol 2024; 9:1661-1675. [PMID: 38862604 PMCID: PMC11222149 DOI: 10.1038/s41564-024-01635-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/09/2024] [Indexed: 06/13/2024]
Abstract
Maintenance of astronaut health during spaceflight will require monitoring and potentially modulating their microbiomes. However, documenting microbial shifts during spaceflight has been difficult due to mission constraints that lead to limited sampling and profiling. Here we executed a six-month longitudinal study to quantify the high-resolution human microbiome response to three days in orbit for four individuals. Using paired metagenomics and metatranscriptomics alongside single-nuclei immune cell profiling, we characterized time-dependent, multikingdom microbiome changes across 750 samples and 10 body sites before, during and after spaceflight at eight timepoints. We found that most alterations were transient across body sites; for example, viruses increased in skin sites mostly during flight. However, longer-term shifts were observed in the oral microbiome, including increased plaque-associated bacteria (for example, Fusobacteriota), which correlated with immune cell gene expression. Further, microbial genes associated with phage activity, toxin-antitoxin systems and stress response were enriched across multiple body sites. In total, this study reveals in-depth characterization of microbiome and immune response shifts experienced by astronauts during short-term spaceflight and the associated changes to the living environment, which can help guide future missions, spacecraft design and space habitat planning.
Collapse
Affiliation(s)
- Braden T Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Eliah G Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- BioAstra, Inc., New York, NY, USA
- Center for STEM, University of Austin, Austin, TX, USA
| | - Krista A Ryon
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan Foox
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Maria A Sierra
- Tri-Institutional Biology and Medicine program, Weill Cornell Medicine, New York, NY, USA
| | - Chandrima Bhattacharya
- Tri-Institutional Biology and Medicine program, Weill Cornell Medicine, New York, NY, USA
| | - Namita Damle
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Deena Najjar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jiwoon Park
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - J Sebastian Garcia Medina
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional Biology and Medicine program, Weill Cornell Medicine, New York, NY, USA
| | - Nadia Houerbi
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Jake Qiu
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Ashley S Kleinman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | | | - Matthew MacKay
- Tri-Institutional Biology and Medicine program, Weill Cornell Medicine, New York, NY, USA
| | - Evan E Afshin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Raja Dhir
- Seed Health, Inc., Venice, CA, USA
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Joseph Borg
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
| | - Christine Gatt
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
| | - Nicholas Brereton
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Benjamin P Readhead
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | | | | | | | | | | | - Ryan T Scott
- KBR; Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | | | | | | | - George M Church
- Harvard Medical School and the Wyss Institute, Boston, MA, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
- BioAstra, Inc., New York, NY, USA.
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Kelly LA, Yost CK, Cooke SJ. Opportunities and challenges with transitioning to non-lethal sampling of wild fish for microbiome research. JOURNAL OF FISH BIOLOGY 2024; 104:912-919. [PMID: 38226503 DOI: 10.1111/jfb.15650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/17/2024]
Abstract
The microbial communities of fish are considered an integral part of maintaining the overall health and fitness of their host. Research has shown that resident microbes reside on various mucosal surfaces, such as the gills, skin, and gastrointestinal tract, and play a key role in various host functions, including digestion, immunity, and disease resistance. A second, more transient group of microbes reside in the digesta, or feces, and are primarily influenced by environmental factors such as the host diet. The vast majority of fish microbiome research currently uses lethal sampling to analyse any one of these mucosal and/or digesta microbial communities. The present paper discusses the various opportunities that non-lethal microbiome sampling offers, as well as some inherent challenges, with the ultimate goal of creating a sound argument for future researchers to transition to non-lethal sampling of wild fish in microbiome research. Doing so will reduce animal welfare and population impacts on fish while creating novel opportunities to link host microbial communities to an individual's behavior and survival across space and time (e.g., life-stages, seasons). Current lethal sampling efforts constrain our ability to understand the mechanistic ecological consequences of variation in microbiome communities in the wild. Transitioning to non-lethal sampling will open new frontiers in ecological and microbial research.
Collapse
Affiliation(s)
- Lisa A Kelly
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Christopher K Yost
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Ruiz A, Torrecillas S, Kashinskaya E, Andree KB, Solovyev M, Gisbert E. Comparative study of the gut microbial communities collected by scraping and swabbing in a fish model: a comprehensive guide to promote non-lethal procedures for gut microbial studies. Front Vet Sci 2024; 11:1374803. [PMID: 38585300 PMCID: PMC10997143 DOI: 10.3389/fvets.2024.1374803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
In the present study, we propose the use of swabs in non-lethal sampling procedures to collect the mucosa-adhered gut microbiota from the posterior intestine of fish, and therefore, we compare the bacterial communities collected by conventional scraping and by swabbing methods. For this purpose, samples of the posterior intestine of rainbow trout (Oncorhynchus mykiss) were collected first using the swabbing approach, and after fish euthanasia, by mucosa scraping. Finally, bacterial communities were compared by 16S rRNA gene Illumina sequencing. Results from the current study revealed that similar values of bacterial richness and diversity were found for both sampling procedures. Similarly, there were no differences between procedures when using qualitative metrics (Jaccard and unweighted UniFrac) for estimating inter-individual diversity, but the quantitative metrics (Bray-Curtis and weighted UniFrac) showed a higher dispersion when samples were obtained by swabbing compared to scraping. In terms of bacterial composition, there were differences in abundance for the phyla Firmicutes and Proteobacteria. The cause of these differential abundances may be the inability of the swab to access to certain areas, such as the basal region of the intestinal villi. Moreover, swabbing allowed a higher representation of low abundant taxa, which may also have an important role in host microbiome regardless of their low abundance. Overall, our results demonstrate that the sampling method is a factor to be considered in experimental design when studying gut bacterial communities to avoid potential biases in the interpretation or comparison of results from different studies. In addition, the advantages and disadvantages of each procedure (swabbing vs scraping) are discussed in detail, concluding that swabbing can be implemented as a reliable and non-lethal procedure for posterior gut microbiota studies, which is of particular interest for animal welfare and the 3Rs principle, and may offer a wide range of novel applications.
Collapse
Affiliation(s)
- Alberto Ruiz
- Aquaculture Program, Centre de La Ràpita, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), La Ràpita, Spain
| | - Silvia Torrecillas
- Aquaculture Program, Centre de La Ràpita, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), La Ràpita, Spain
| | - Elena Kashinskaya
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Karl B. Andree
- Aquaculture Program, Centre de La Ràpita, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), La Ràpita, Spain
| | - Mikhail Solovyev
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
- Biological Institute, Tomsk State University, Tomsk, Russia
| | - Enric Gisbert
- Aquaculture Program, Centre de La Ràpita, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), La Ràpita, Spain
| |
Collapse
|
6
|
Mes W, Lücker S, Jetten MSM, Siepel H, Gorissen M, van Kessel MAHJ. Comparison of the gill and gut microbiomes of common carp (Cyprinus carpio) and zebrafish (Danio rerio) and their RAS environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165212. [PMID: 37391154 DOI: 10.1016/j.scitotenv.2023.165212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/12/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Recirculating aquaculture systems (RAS) are increasingly being used to grow fish, as intensive water reuse reduces water consumption and environmental impact. RAS use biofilters containing nitrogen-cycling microorganisms that remove ammonia from the aquaculture water. Knowledge of how RAS microbial communities relate to the fish-associated microbiome is limited, as is knowledge of fish-associated microbiota in general. Recently, nitrogen-cycling bacteria have been discovered in zebrafish and carp gills and shown to detoxify ammonia in a manner similar to the RAS biofilter. Here, we compared RAS water and biofilter microbiomes with fish-associated gut and gill microbial communities in laboratory RAS housing either zebrafish (Danio rerio) or common carp (Cyprinus carpio) using 16S rRNA gene amplicon sequencing. The phylogeny of ammonia-oxidizing bacteria in the gills and the RAS environment was investigated in more detail by phylogenetic analysis of the ammonia monooxygenase subunit A (amoA). The location from which the microbiome was sampled (RAS compartments and gills or gut) had a stronger effect on community composition than the fish species, but species-specific differences were also observed. We found that carp- and zebrafish-associated microbiomes were highly distinct from their respective RAS microbiomes, characterized by lower overall diversity and a small core microbiome consisting of taxa specifically adapted to the respective organ. The gill microbiome was also defined by a high proportion of unique taxa. Finally, we found that amoA sequences from the gills were distinct from those from the RAS biofilter and water. Our results showed that the gut and gill microbiomes of carp and zebrafish share a common and species-specific core microbiome that is distinct from the microbially-rich RAS environment.
Collapse
Affiliation(s)
- Wouter Mes
- Cluster Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands; Cluster Ecology & Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Sebastian Lücker
- Cluster Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Mike S M Jetten
- Cluster Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Henk Siepel
- Cluster Ecology & Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Marnix Gorissen
- Cluster Ecology & Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Maartje A H J van Kessel
- Cluster Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
7
|
Tierney BT, Kim J, Overbey EG, Ryon KA, Foox J, Sierra M, Bhattacharya C, Damle N, Najjar D, Park J, Garcia Medina S, Houerbi N, Meydan C, Wain Hershberg J, Qiu J, Kleinman A, Al Ghalith G, MacKay M, Afshin EE, Dhir R, Borg J, Gatt C, Brereton N, Readhead B, Beyaz S, Venkateswaran KJ, Blease K, Moreno J, Boddicker A, Zhao J, Lajoie B, Scott RT, Altomare A, Kruglyak S, Levy S, Church G, Mason CE. Viral activation and ecological restructuring characterize a microbiome axis of spaceflight-associated immune activation. RESEARCH SQUARE 2023:rs.3.rs-2493867. [PMID: 37886447 PMCID: PMC10602132 DOI: 10.21203/rs.3.rs-2493867/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Maintenance of astronaut health during spaceflight will require monitoring and potentially modulating their microbiomes, which play a role in some space-derived health disorders. However, documenting the response of microbiota to spaceflight has been difficult thus far due to mission constraints that lead to limited sampling. Here, we executed a six-month longitudinal study centered on a three-day flight to quantify the high-resolution microbiome response to spaceflight. Via paired metagenomics and metatranscriptomics alongside single immune profiling, we resolved a microbiome "architecture" of spaceflight characterized by time-dependent and taxonomically divergent microbiome alterations across 750 samples and ten body sites. We observed pan-phyletic viral activation and signs of persistent changes that, in the oral microbiome, yielded plaque-associated pathobionts with strong associations to immune cell gene expression. Further, we found enrichments of microbial genes associated with antibiotic production, toxin-antitoxin systems, and stress response enriched universally across the body sites. We also used strain-level tracking to measure the potential propagation of microbial species from the crew members to each other and the environment, identifying microbes that were prone to seed the capsule surface and move between the crew. Finally, we identified associations between microbiome and host immune cell shifts, proposing both a microbiome axis of immune changes during flight as well as the sources of some of those changes. In summary, these datasets and methods reveal connections between crew immunology, the microbiome, and their likely drivers and lay the groundwork for future microbiome studies of spaceflight.
Collapse
Affiliation(s)
- Braden T. Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Eliah G. Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Krista A. Ryon
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan Foox
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Maria Sierra
- Tri-Institutional Biology and Medicine program, Weill Cornell Medicine, New York, NY, USA
| | - Chandrima Bhattacharya
- Tri-Institutional Biology and Medicine program, Weill Cornell Medicine, New York, NY, USA
| | - Namita Damle
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Deena Najjar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Jiwoon Park
- Tri-Institutional Biology and Medicine program, Weill Cornell Medicine, New York, NY, USA
| | | | - Nadia Houerbi
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Jeremy Wain Hershberg
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Jake Qiu
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Ashley Kleinman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Matthew MacKay
- Tri-Institutional Biology and Medicine program, Weill Cornell Medicine, New York, NY, USA
| | - Evan E Afshin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Raja Dhir
- Seed Health, Inc, Venice, CA, USA
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Joseph Borg
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, MSD2090, Malta
| | - Christine Gatt
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, MSD2090, Malta
| | - Nicholas Brereton
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Ben Readhead
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | | | | | | | | | | | - Ryan T. Scott
- KBR; Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | | | | | | | - George Church
- Harvard Medical School and the Wyss Institute, Boston, MA, USA
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|