1
|
Leal K, Rojas E, Madariaga D, Contreras MJ, Nuñez-Montero K, Barrientos L, Goméz-Espinoza O, Iturrieta-González I. Unlocking Fungal Potential: The CRISPR-Cas System as a Strategy for Secondary Metabolite Discovery. J Fungi (Basel) 2024; 10:748. [PMID: 39590667 PMCID: PMC11595728 DOI: 10.3390/jof10110748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 11/28/2024] Open
Abstract
Natural products (NPs) are crucial for the development of novel antibiotics, anticancer agents, and immunosuppressants. To highlight the ability of fungi to produce structurally diverse NPs, this article focuses on the impact of genome mining and CRISPR-Cas9 technology in uncovering and manipulating the biosynthetic gene clusters (BGCs) responsible for NP synthesis. The CRISPR-Cas9 system, originally identified as a bacterial adaptive immune mechanism, has been adapted for precise genome editing in fungi, enabling targeted modifications, such as gene deletions, insertions, and transcription modulation, without altering the genomic sequence. This review elaborates on various CRISPR-Cas9 systems used in fungi, notably the Streptococcus pyogenes type II Cas9 system, and explores advancements in different Cas proteins for fungal genome editing. This review discusses the methodologies employed in CRISPR-Cas9 genome editing of fungi, including guide RNA design, delivery methods, and verification of edited strains. The application of CRISPR-Cas9 has led to enhanced production of secondary metabolites in filamentous fungi, showcasing the potential of this system in biotechnology, medical mycology, and plant pathology. Moreover, this article emphasizes the integration of multi-omics data (genomics, transcriptomics, proteomics, and metabolomics) to validate CRISPR-Cas9 editing effects in fungi. This comprehensive approach aids in understanding molecular changes, identifying off-target effects, and optimizing the editing protocols. Statistical and machine learning techniques are also crucial for analyzing multi-omics data, enabling the development of predictive models and identification of key molecular pathways affected by CRISPR-Cas9 editing. In conclusion, CRISPR-Cas9 technology is a powerful tool for exploring fungal NPs with the potential to accelerate the discovery of novel bioactive compounds. The integration of CRISPR-Cas9 with multi-omics approaches significantly enhances our ability to understand and manipulate fungal genomes for the production of valuable secondary metabolites and for promising new applications in medicine and industry.
Collapse
Affiliation(s)
- Karla Leal
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco 4810101, Chile; (K.L.); (D.M.); (M.J.C.)
| | - Edwind Rojas
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectiology and Clinical Immunology, Center of Excellence in Translational Medicine, Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile;
| | - David Madariaga
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco 4810101, Chile; (K.L.); (D.M.); (M.J.C.)
| | - María José Contreras
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco 4810101, Chile; (K.L.); (D.M.); (M.J.C.)
| | - Kattia Nuñez-Montero
- Instituto de Ciencias Aplicadas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco 4810101, Chile; (K.N.-M.); (L.B.)
| | - Leticia Barrientos
- Instituto de Ciencias Aplicadas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco 4810101, Chile; (K.N.-M.); (L.B.)
| | - Olman Goméz-Espinoza
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile;
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Isabel Iturrieta-González
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectiology and Clinical Immunology, Center of Excellence in Translational Medicine, Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile;
- Jeffrey Modell Center of Diagnosis and Research in Primary Immunodeficiencies, Center of Excellence in Translational Medicine, Medicine Faculty, Universidad de La Frontera, Temuco 4810296, Chile
| |
Collapse
|
2
|
Shen Q, Ruan H, Zhang H, Wu T, Zhu K, Han W, Dong R, Ming T, Qi H, Zhang Y. Utilization of CRISPR-Cas genome editing technology in filamentous fungi: function and advancement potentiality. Front Microbiol 2024; 15:1375120. [PMID: 38605715 PMCID: PMC11007153 DOI: 10.3389/fmicb.2024.1375120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
Filamentous fungi play a crucial role in environmental pollution control, protein secretion, and the production of active secondary metabolites. The evolution of gene editing technology has significantly improved the study of filamentous fungi, which in the past was laborious and time-consuming. But recently, CRISPR-Cas systems, which utilize small guide RNA (sgRNA) to mediate clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas), have demonstrated considerable promise in research and application for filamentous fungi. The principle, function, and classification of CRISPR-Cas, along with its application strategies and research progress in filamentous fungi, will all be covered in the review. Additionally, we will go over general matters to take into account when editing a genome with the CRISPR-Cas system, including the creation of vectors, different transformation methodologies, multiple editing approaches, CRISPR-mediated transcriptional activation (CRISPRa) or interference (CRISPRi), base editors (BEs), and Prime editors (PEs).
Collapse
Affiliation(s)
| | - Haihua Ruan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Li J, Wang Y, Yang K, Wang X, Wang Y, Zhang H, Huang H, Su X, Yao B, Luo H, Qin X. Development of an efficient protein expression system in the thermophilic fungus Myceliophthora thermophila. Microb Cell Fact 2023; 22:236. [PMID: 37974259 PMCID: PMC10652509 DOI: 10.1186/s12934-023-02245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Thermophilic fungus Myceliophthora thermophila has been widely used in industrial applications due to its ability to produce various enzymes. However, the lack of an efficient protein expression system has limited its biotechnological applications. RESULTS In this study, using a laccase gene reporting system, we developed an efficient protein expression system in M. thermophila through the selection of strong constitutive promoters, 5'UTRs and signal peptides. The expression of the laccase was confirmed by enzyme activity assays. The results showed that the Mtpdc promoter (Ppdc) was able to drive high-level expression of the target protein in M. thermophila. Manipulation of the 5'UTR also has significant effects on protein expression and secretion. The best 5'UTR (NCA-7d) was identified. The transformant containing the laccase gene under the Mtpdc promoter, NCA-7d 5'UTR and its own signal peptide with the highest laccase activity (1708 U/L) was obtained. In addition, the expression system was stable and could be used for the production of various proteins, including homologous proteins like MtCbh-1, MtGh5-1, MtLPMO9B, and MtEpl1, as well as a glucoamylase from Trichoderma reesei. CONCLUSIONS An efficient protein expression system was established in M. thermophila for the production of various proteins. This study provides a valuable tool for protein production in M. thermophila and expands its potential for biotechnological applications.
Collapse
Affiliation(s)
- Jinyang Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China
| | - Yidi Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China
| | - Kun Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China
| | - Honglian Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China
| | - Xiaoyun Su
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China.
| | - Xing Qin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China.
| |
Collapse
|
4
|
Siebecker B, Schütze T, Spohner S, Haefner S, Meyer V. Transcriptomic insights into the roles of the transcription factors Clr1, Clr2 and Clr4 in lignocellulose degradation of the thermophilic fungal platform Thermothelomyces thermophilus. Front Bioeng Biotechnol 2023; 11:1279146. [PMID: 37869709 PMCID: PMC10588483 DOI: 10.3389/fbioe.2023.1279146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction: Thermothelomyces thermophilus, formerly known as Myceliophthora thermophila, is used in industry to produce lignocellulolytic enzymes and heterologous proteins. However, the transcriptional network driving the expression of these proteins remains elusive. As a first step to systematically uncover this network, we investigated growth, protein secretion, and transcriptomic fingerprints of strains deficient in the cellulolytic transcriptional regulators Clr1, Clr2, and Clr4, respectively. Methods: The genes encoding Clr1, Clr2, and Clr4 were individually deleted using split marker or the CRISPR/Cas12a technology and the resulting strains as well as the parental strain were cultivated in bioreactors under chemostat conditions using glucose as the carbon source. During steady state conditions, cellulose was added instead of glucose to study the genetic and cellular responses in all four strains to the shift in carbon source availability. Results: Notably, the clr1 and clr2 deletion strains were unable to continue to grow on cellulose, demonstrating a key role of both regulators in cellulose catabolism. Their transcriptomic fingerprints uncovered not only a lack of cellulase gene expression but also reduced expression of genes predicted to encode hemicellulases, pectinases, and esterases. In contrast, the growth of the clr4 deletion strain was very similar compared to the parental strain. However, a much stronger expression of cellulases, hemicellulases, pectinases, and esterases was observed. Discussion: The data gained in this study suggest that both transcriptional regulators Clr1 and Clr2 activate the expression of genes predicted to encode cellulases as well as hemicellulases, pectinases, and esterases. They further suggest that Clr1 controls the basal expression of cellulases and initiates the main lignocellulolytic response to cellulose via induction of clr2 expression. In contrast, Clr4 seems to act as a repressor of the lignocellulolytic response presumably via controlling clr2 expression. Comparative transcriptomics in all four strains revealed potentially new regulators in carbohydrate catabolism and lignocellulolytic enzyme expression that define a candidate gene list for future analyses.
Collapse
Affiliation(s)
- Benedikt Siebecker
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Tabea Schütze
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | | | | | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
5
|
Kerkaert JD, Huberman LB. Regulation of nutrient utilization in filamentous fungi. Appl Microbiol Biotechnol 2023; 107:5873-5898. [PMID: 37540250 PMCID: PMC10983054 DOI: 10.1007/s00253-023-12680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023]
Abstract
Organisms must accurately sense and respond to nutrients to survive. In filamentous fungi, accurate nutrient sensing is important in the establishment of fungal colonies and in continued, rapid growth for the exploitation of environmental resources. To ensure efficient nutrient utilization, fungi have evolved a combination of activating and repressing genetic networks to tightly regulate metabolic pathways and distinguish between preferred nutrients, which require minimal energy and resources to utilize, and nonpreferred nutrients, which have more energy-intensive catabolic requirements. Genes necessary for the utilization of nonpreferred carbon sources are activated by transcription factors that respond to the presence of the specific nutrient and repressed by transcription factors that respond to the presence of preferred carbohydrates. Utilization of nonpreferred nitrogen sources generally requires two transcription factors. Pathway-specific transcription factors respond to the presence of a specific nonpreferred nitrogen source, while another transcription factor activates genes in the absence of preferred nitrogen sources. In this review, we discuss the roles of transcription factors and upstream regulatory genes that respond to preferred and nonpreferred carbon and nitrogen sources and their roles in regulating carbon and nitrogen catabolism. KEY POINTS: • Interplay of activating and repressing transcriptional networks regulates catabolism. • Nutrient-specific activating transcriptional pathways provide metabolic specificity. • Repressing regulatory systems differentiate nutrients in mixed nutrient environments.
Collapse
Affiliation(s)
- Joshua D Kerkaert
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Lori B Huberman
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
6
|
Singh V, Raheja Y, Basotra N, Sharma G, Tsang A, Chadha BS. CRISPR/Cas9 mediated gene editing of transcription factor ACE1 for enhanced cellulase production in thermophilic fungus Rasamsonia emersonii. Fungal Biol Biotechnol 2023; 10:18. [PMID: 37658430 PMCID: PMC10472679 DOI: 10.1186/s40694-023-00165-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/28/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND The filamentous fungus Rasamsonia emersonii has immense potential to produce biorefinery relevant thermostable cellulase and hemicellulase enzymes using lignocellulosic biomass. Previously in our lab, a hyper-cellulase producing strain of R. emersonii was developed through classical breeding and system biology approaches. ACE1, a pivotal transcription factor in fungi, plays a crucial role in negatively regulating the expression of cellulase genes. In order to identify the role of ACE1 in cellulase production and to further improve the lignocellulolytic enzyme production in R. emersonii, CRISPR/Cas9 mediated disruption of ACE1 gene was employed. RESULTS A gene-edited ∆ACE1 strain (GN11) was created, that showed 21.97, 20.70 and 24.63, 9.42, 18.12%, improved endoglucanase, cellobiohydrolase (CBHI), β-glucosidase, FPase, and xylanase, activities, respectively, as compared to parental strain M36. The transcriptional profiling showed that the expression of global regulator (XlnR) and different CAZymes genes including endoglucanases, cellobiohydrolase, β-xylosidase, xylanase, β-glucosidase and lytic polysaccharide mono-oxygenases (LPMOs) were significantly enhanced, suggesting critical roles of ACE1 in negatively regulating the expression of various key genes associated with cellulase production in R. emersonii. Whereas, the disruption of ACE1 significantly down-regulated the expression of CreA repressor gene as also evidenced by 2-deoxyglucose (2-DG) resistance phenotype exhibited by edited strain GN11 as well as appreciably higher constitutive production of cellulases in the presence of glucose and mixture of glucose and disaccharide (MGDs) both in batch and flask fed batch mode of culturing. Furthermore, ∆ACE1 strains were evaluated for the hydrolysis of biorefinery relevant steam/acid pretreated unwashed rice straw slurry (Praj Industries Ltd; 15% substrate loading rate) and were found to be significantly superior when compared to the benchmark enzymes produced by parent strain M36 and Cellic Ctec3. CONCLUSIONS Current work uncovers the crucial role of ACE1 in regulating the expression of the various cellulase genes and carbon catabolite repression mechanism in R. emersonii. This study represents the first successful report of utilizing CRISPR/Cas9 genome editing technology to disrupt the ACE1 gene in the thermophlic fungus R. emersonii. The improved methodologies presented in this work might be applied to other commercially important fungal strains for which genetic manipulation tools are limited.
Collapse
Affiliation(s)
- Varinder Singh
- Department of Microbiology, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Yashika Raheja
- Department of Microbiology, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Neha Basotra
- Department of Microbiology, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Gaurav Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Adrian Tsang
- Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | | |
Collapse
|
7
|
Zhu Z, Zhang M, Liu D, Liu D, Sun T, Yang Y, Dong J, Zhai H, Sun W, Liu Q, Tian C. Development of the thermophilic fungus Myceliophthora thermophila into glucoamylase hyperproduction system via the metabolic engineering using improved AsCas12a variants. Microb Cell Fact 2023; 22:150. [PMID: 37568174 PMCID: PMC10416393 DOI: 10.1186/s12934-023-02149-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/13/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Glucoamylase is an important enzyme for starch saccharification in the food and biofuel industries and mainly produced from mesophilic fungi such as Aspergillus and Rhizopus species. Enzymes produced from thermophilic fungi can save the fermentation energy and reduce costs as compared to the fermentation system using mesophiles. Thermophilic fungus Myceliophthora thermophila is industrially deployed fungus to produce enzymes and biobased chemicals from biomass during optimal growth at 45 °C. This study aimed to construct the M. thermophila platform for glucoamylase hyper-production by broadening genomic targeting range of the AsCas12a variants, identifying key candidate genes and strain engineering. RESULTS In this study, to increase the genome targeting range, we upgraded the CRISPR-Cas12a-mediated technique by engineering two AsCas12a variants carrying the mutations S542R/K607R and S542R/K548V/N552R. Using the engineered AsCas12a variants, we deleted identified key factors involved in the glucoamylase expression and secretion in M. thermophila, including Mtstk-12, Mtap3m, Mtdsc-1 and Mtsah-2. Deletion of four targets led to more than 1.87- and 1.85-fold higher levels of secretion and glucoamylases activity compared to wild-type strain MtWT. Transcript level of the major amylolytic genes showed significantly increased in deletion mutants. The glucoamylase hyper-production strain MtGM12 was generated from our previously strain MtYM6 via genetically engineering these targets Mtstk-12, Mtap3m, Mtdsc-1 and Mtsah-2 and overexpressing Mtamy1 and Mtpga3. Total secreted protein and activities of amylolytic enzymes in the MtGM12 were about 35.6-fold and 51.9‒55.5-fold higher than in MtWT. Transcriptional profiling analyses revealed that the amylolytic gene expression levels were significantly up-regulated in the MtGM12 than in MtWT. More interestingly, the MtGM12 showed predominantly short and highly bulging hyphae with proliferation of rough ER and abundant mitochondria, secretion vesicles and vacuoles when culturing on starch. CONCLUSIONS Our results showed that these AsCas12a variants worked well for gene deletions in M. thermophila. We successfully constructed the glucoamylase hyper-production strain of M. thermophila by the rational redesigning and engineering the transcriptional regulatory and secretion pathway. This targeted engineering strategy will be very helpful to improve industrial fungal strains and promote the morphology engineering for enhanced enzyme production.
Collapse
Affiliation(s)
- Zhijian Zhu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Manyu Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Dandan Liu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Defei Liu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Tao Sun
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Yujing Yang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jiacheng Dong
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Huanhuan Zhai
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Wenliang Sun
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Qian Liu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| | - Chaoguang Tian
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
8
|
Wen T, Xie P, Liu H, Liu T, Zhao M, Yang S, Niu G, Hale L, Singh BK, Kowalchuk GA, Shen Q, Yuan J. Tapping the rhizosphere metabolites for the prebiotic control of soil-borne bacterial wilt disease. Nat Commun 2023; 14:4497. [PMID: 37495619 PMCID: PMC10372070 DOI: 10.1038/s41467-023-40184-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
Prebiotics are compounds that selectively stimulate the growth and activity of beneficial microorganisms. The use of prebiotics is a well-established strategy for managing human gut health. This concept can also be extended to plants where plant rhizosphere microbiomes can improve the nutrient acquisition and disease resistance. However, we lack effective strategies for choosing metabolites to elicit the desired impacts on plant health. In this study, we target the rhizosphere of tomato (Solanum lycopersicum) suffering from wilt disease (caused by Ralstonia solanacearum) as source for potential prebiotic metabolites. We identify metabolites (ribose, lactic acid, xylose, mannose, maltose, gluconolactone, and ribitol) exclusively used by soil commensal bacteria (not positively correlated with R. solanacearum) but not efficiently used by the pathogen in vitro. Metabolites application in the soil with 1 µmol g-1 soil effectively protects tomato and other Solanaceae crops, pepper (Capsicum annuum) and eggplant (Solanum melongena), from pathogen invasion. After adding prebiotics, the rhizosphere soil microbiome exhibits enrichment of pathways related to carbon metabolism and autotoxin degradation, which were driven by commensal microbes. Collectively, we propose a novel pathway for mining metabolites from the rhizosphere soil and their use as prebiotics to help control soil-borne bacterial wilt diseases.
Collapse
Affiliation(s)
- Tao Wen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Green Intelligent Fertilizer Innovation, MARD, Sinong Bio-organic Fertilizer Institute, Nanjing, 210000, China
| | - Penghao Xie
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2753, Australia
| | - Ting Liu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengli Zhao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shengdie Yang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guoqing Niu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lauren Hale
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, USA
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2753, Australia
| | - George A Kowalchuk
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Yuan
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
9
|
Yang J, Yue HR, Pan LY, Feng JX, Zhao S, Suwannarangsee S, Chempreda V, Liu CG, Zhao XQ. Fungal strain improvement for efficient cellulase production and lignocellulosic biorefinery: Current status and future prospects. BIORESOURCE TECHNOLOGY 2023:129449. [PMID: 37406833 DOI: 10.1016/j.biortech.2023.129449] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Lignocellulosic biomass (LCB) has been recognized as a valuable carbon source for the sustainable production of biofuels and value-added biochemicals. Crude enzymes produced by fungal cell factories benefit economic LCB degradation. However, high enzyme production cost remains a great challenge. Filamentous fungi have been widely used to produce cellulolytic enzymes. Metabolic engineering of fungi contributes to efficient cellulase production for LCB biorefinery. Here the latest progress in utilizing fungal cell factories for cellulase production was summarized, including developing genome engineering tools to improve the efficiency of fungal cell factories, manipulating promoters, and modulating transcription factors. Multi-omics analysis of fungi contributes to identifying novel genetic elements for enhancing cellulase production. Furthermore, the importance of translation regulation of cellulase production are emphasized. Efficient development of fungal cell factories based on integrative strain engineering would benefit the overall bioconversion efficacy of LCB for sustainable bioproduction.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hou-Ru Yue
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Ya Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Surisa Suwannarangsee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Verawat Chempreda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
10
|
Li K, Qin LY, Zhang ZX, Yan CX, Gu Y, Sun XM, Huang H. Powerful Microbial Base-Editing Toolbox: From Optimization Strategies to Versatile Applications. ACS Synth Biol 2023; 12:1586-1598. [PMID: 37224027 DOI: 10.1021/acssynbio.3c00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Base editors (BE) based on CRISPR systems are practical gene-editing tools which continue to drive frontier advances of life sciences. BEs are able to efficiently induce point mutations at target sites without double-stranded DNA cleavage. Hence, they are widely employed in the fields of microbial genome engineering. As applications of BEs continue to expand, the demands for base-editing efficiency, fidelity, and versatility are also on the rise. In recent years, a series of optimization strategies for BEs have been developed. By engineering the core components of BEs or adopting different assembly methods, the performance of BEs has been well optimized. Moreover, series of newly established BEs have significantly expanded the base-editing toolsets. In this Review, we will summarize the current efforts for BE optimization, introduce several novel BEs with versatility, and look forward to the broadened applications for industrial microorganisms.
Collapse
Affiliation(s)
- Ke Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Ling-Yun Qin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Chun-Xiao Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| |
Collapse
|
11
|
Gu S, Zhao Z, Xue F, Liu D, Liu Q, Li J, Tian C. The arabinose transporter MtLat-1 is involved in hemicellulase repression as a pentose transceptor in Myceliophthora thermophila. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:51. [PMID: 36966330 PMCID: PMC10040116 DOI: 10.1186/s13068-023-02305-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Filamentous fungi possess an array of secreted enzymes to depolymerize the structural polysaccharide components of plant biomass. Sugar transporters play an essential role in nutrient uptake and sensing of extracellular signal molecules to inhibit or trigger the induction of lignocellulolytic enzymes. However, the identities and functions of transceptors associated with the induction of hemicellulase genes remain elusive. RESULTS In this study, we reveal that the L-arabinose transporter MtLat-1 is associated with repression of hemicellulase gene expression in the filamentous fungus Myceliophthora thermophila. The absence of Mtlat-1 caused a decrease in L-arabinose uptake and consumption rates. However, mycelium growth, protein production, and hemicellulolytic activities were markedly increased in a ΔMtlat-1 mutant compared with the wild-type (WT) when grown on arabinan. Comparative transcriptomic analysis showed a different expression profile in the ΔMtlat-1 strain from that in the WT in response to arabinan, and demonstrated that MtLat-1 was involved in the repression of the main hemicellulase-encoding genes. A point mutation that abolished the L-arabinose transport activity of MtLat-1 did not impact the repression of hemicellulase gene expression when the mutant protein was expressed in the ΔMtlat-1 strain. Thus, the involvement of MtLat-1 in the expression of hemicellulase genes is independent of its transport activity. The data suggested that MtLat-1 is a transceptor that senses and transduces the molecular signal, resulting in downstream repression of hemicellulolytic gene expression. MtAra-1 protein directly regulated the expression of Mtlat-1 by binding to its promoter region. Transcriptomic profiling indicated that the transcription factor MtAra-1 also plays an important role in expression of arabinanolytic enzyme genes and L-arabinose catabolism. CONCLUSIONS M. thermophila MtLat-1 functions as a transceptor that is involved in L-arabinose transport and signal transduction associated with suppression of the expression of hemicellulolytic enzyme-encoding genes. The data presented in this study add to the models of the regulation of hemicellulases in filamentous fungi.
Collapse
Affiliation(s)
- Shuying Gu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhen Zhao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fanglei Xue
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Defei Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Qian Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Jingen Li
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Chaoguang Tian
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| |
Collapse
|
12
|
Woodcraft C, Chooi YH, Roux I. The expanding CRISPR toolbox for natural product discovery and engineering in filamentous fungi. Nat Prod Rep 2023; 40:158-173. [PMID: 36205232 DOI: 10.1039/d2np00055e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Covering: up to May 2022Fungal genetics has transformed natural product research by enabling the elucidation of cryptic metabolites and biosynthetic steps. The enhanced capability to add, subtract, modulate, and rewrite genes via CRISPR/Cas technologies has opened up avenues for the manipulation of biosynthetic gene clusters across diverse filamentous fungi. This review discusses the innovative and diverse strategies for fungal natural product discovery and engineering made possible by CRISPR/Cas-based tools. We also provide a guide into multiple angles of CRISPR/Cas experiment design, and discuss current gaps in genetic tool development for filamentous fungi and the promising opportunities for natural product research.
Collapse
Affiliation(s)
- Clara Woodcraft
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Indra Roux
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
13
|
Wang Y, Chen H, Ma L, Gong M, Wu Y, Bao D, Zou G. Use of CRISPR-Cas tools to engineer Trichoderma species. Microb Biotechnol 2022; 15:2521-2532. [PMID: 35908288 PMCID: PMC9518982 DOI: 10.1111/1751-7915.14126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022] Open
Abstract
Given their lignocellulose degradability and biocontrol activities, fungi of the ubiquitously distributed genus Trichoderma have multiple industrial and agricultural applications. Genetic manipulation plays a valuable role in tailoring novel engineered strains with enhanced target traits. Nevertheless, as applied to fungi, the classic tools of genetic manipulation tend to be time-consuming and tedious. However, the recent development of the CRISPR-Cas system for gene editing has enabled researchers to achieve genome-wide gene disruptions, gene replacements, and precise editing, and this technology has emerged as a primary focus for novel developments in engineered strains of Trichoderma. Here, we provide a brief overview of the traditional approaches to genetic manipulation, the different strategies employed in establishing CRSIPR-Cas systems, the utilization of these systems to develop engineered strains of Trichoderma for desired applications, and the future trends in biotechnology.
Collapse
Affiliation(s)
- Ying Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible FungiShanghai Academy of Agricultural SciencesShanghaiChina
| | - Hongyu Chen
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible FungiShanghai Academy of Agricultural SciencesShanghaiChina
| | - Liang Ma
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural SciencesZhejiang A&F UniversityLin'an HangzhouChina
| | - Ming Gong
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible FungiShanghai Academy of Agricultural SciencesShanghaiChina
| | - Yingying Wu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible FungiShanghai Academy of Agricultural SciencesShanghaiChina
| | - Dapeng Bao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible FungiShanghai Academy of Agricultural SciencesShanghaiChina
| | - Gen Zou
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible FungiShanghai Academy of Agricultural SciencesShanghaiChina
| |
Collapse
|
14
|
MtTRC-1, a Novel Transcription Factor, Regulates Cellulase Production via Directly Modulating the Genes Expression of the Mthac-1 and Mtcbh-1 in Myceliophthora thermophila. Appl Environ Microbiol 2022; 88:e0126322. [PMID: 36165620 PMCID: PMC9552611 DOI: 10.1128/aem.01263-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The thermophilic fungus Myceliophthora thermophila has been used to produce industrial enzymes and biobased chemicals. In saprotrophic fungi, the mechanisms regulating cellulase production have been studied, which revealed the involvement of multiple transcription factors. However, in M. thermophila, the transcription factors influencing cellulase gene expression and secretion remain largely unknown. In this study, we identified and characterized a novel cellulase regulator (MtTRC-1) in M. thermophila through a combination of functional genomics and genetic analyses. Deletion of Mttrc-1 resulted in significantly decreased cellulase production and activities. Transcriptome analysis revealed downregulation of not only the encoding genes of main cellulases but also the transcriptional regulator MtHAC-1 of UPR pathway after disruption of MtTRC-1 under cellulolytic induction conditions. Herein, we also characterized the ortholog of the yeast HAC1p in M. thermophila. We show that Mthac-1 mRNA undergoes an endoplasmic reticulum (ER) stress-induced splicing by removing a 23-nucleotide (nt) intron. Notably, the protein secretion on cellulose was dramatically impaired by the deletion of MtHAC-1. Moreover, the colonial growth on various carbon sources was defective in the absence of MtHAC-1. Electrophoretic mobility shift assays and chromatin immunoprecipitation assays verified MtTRC-1 regulates the transcription of Mthac-1 and the major cellulase gene Mtcbh-1 by binding directly to the promoters in vitro and in vivo. Furthermore, DNase I footprinting assays identified the putative consensus binding site (5′-GNG/C-3′). These results revealed the importance of MtTRC-1 for positively regulating cellulase production. This finding has clarified the complex regulatory pathways involved in cellulolytic enzyme production. IMPORTANCE In the present study, we characterized a novel regulator MtTRC-1 in M. thermophila, which regulated cellulase production through direct transcriptional regulation of the Mthac-1 and Mtcbh-1 genes. Our data demonstrated that MtHAC-1 is a key factor for the cellulase secretion capacity of M. thermophila. Our data indicate that this thermophilic fungus regulates cellulase production through a multilevels network, in which the protein secretory pathway is modulated by MtHAC-1-dependent UPR pathway and the cellulase gene expression is directly regulated in parallel by transcription factors. The conservation of Mttrc1 in filamentous fungi suggests this mechanism may be exploited to engineer filamentous fungal cell factories capable of producing proteins on an industrial scale.
Collapse
|